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Abstract 
With the increasing use of novel exploitation techniques in modern malicious software it can be 
argued that current intrusion detection and intrusion prevention systems are failing to keep pace. 
While some intrusion prevention systems have the capability to detect evasion techniques they all 
fail to detect novel unknown exploitation techniques. Traditional proxy approaches have failed to 
protect the universe of discourse that a network enabled service can be engaged in as they view all 
information flows of the same type in a uniform manner. In this paper we propose a micro-proxy 
architecture that utilizes reverse engineering techniques to identify a valid universe of discourse 
for a network service. This valid universe of discourse is then applied to validate legitimate trans-
actions to a service. Thus in effect, the micro proxy implements a default deny policy via the analy-
sis of the application level discourse. 
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1. Introduction 
Organizations today seek to utilize information technology as part of their business processes. Networks allow 
for organizations to communicate with other organizations and people across the globe in real-time. This allows 
organizations to integrate their supply chains and perform just in time supply-chain management. However this 
level of connectivity and dependency on information technology can be viewed as a risk as it has the potential to 
allow an adversary to access confidential/sensitive information and act upon it. Thus organizations have a re-
quirement to protect and defend their information technology so as to maximize their business utility. Over the 
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past three years the following high profile sophisticated computer network attacks have functioned to illustrate 
how Computer Network Attack (CNA) has moved into the area of information acquisition and intelligence ga-
thering via the application of zero-day exploits. This indicates that the nature and capabilities of threats and 
threat agents continues to evolve. 
• Ghostnet: This the name given to the cyber spying operation discovered in March 2009. It infiltrated high- 

value political, economic and media locations in 103 countries, and in total 1295 computer systems were 
compromised. 

• Operation Aurora: This is a cyber attack, which began in mid-December 2009 and continued into February 
2010. Google first publicly disclosed the attack on January 12, 2010, when Google stated that over 20 other 
companies had been attacked. 

• Stuxnet: Stuxnet is a Windows-specific computer worm first discovered in June 2010. It is the first discov-
ered worm that spies on and reprograms industrial systems.  

• Red October: This cyber espionage network discovered in 2012 focused upon diplomatic, governmental and 
scientific research organizations in different countries mostly within the region of Eastern Europe, former 
USSR members and countries in central Asia. 

The traditional approach to proxies says that they are placed at the main ingress and egress points on a net-
work. Due to bandwidth requirements this approach fails to fully protect network services at the interaction level. 
Instead, it focuses upon the utilization of signatures and statistical analysis of data flows. What is required is a 
proxy approach targeted at the application layer within which a service functions and focused on the nature of 
the discourse that a server engages in with a client.  

2. Universe of Discourse 
We can analyze the search spaces required by various cyber attacks from a logical perspective with a view to 
identifying the complexity of the search spaces. So let the set of all possible inputs to a program be denoted as 
the set Ip. We will define two further sets: let Ia be the input set of all possible attacks, and let Iv be the input set 
of all possible valid inputs that are not an attack. Thus we may assert that Ip = Ia ∪ Iv. As was observed in [1], 
the size and complexity of this search is to all intents and purposes infinity. The challenge for an intrusion detec-
tion system is to identify all malicious input from this set. Misuse Intrusion Detection Systems such assume that 
the input space is benign and that the set of valid attacks is finite, and thus |Ia| < |Iv|. If this statement is true then 
a logical deduction is that it is possible to express via a formal grammar and a set of rules by which the mem-
bership of Iv can be completely defined. In taking such a view, the implicit assumption is to allow all input ex-
cept that which can be shown to be malicious. However, this assumption is now being challenged and event 
correlation models are being proposed that view the set of all possible attacks as being infinitely large and the 
set of all possible valid inputs being finite. Thus |Ia| > |Iv|. If this is true then we would assert that the logical ap-
proach to take to intrusion detection is to specify the set of allowable inputs and define all other non-valid input 
to be attacks, hence Iv = Ip – Ia. In taking such a view the implicit assumption is to deny all inputs except that 
which can be shown to be non-malicious. Consequently this project seeks to explore this novel approach to in-
trusion detection via the profiling of code artifacts to construct/derive a rule-set that defines the set Iv. In defin-
ing |Ia| < |Iv| we are constraining the freedom of movement of our adversary and thus controlling the cyber battle 
space. Thus the challenge is to define the allowable inputs that can occur between a remote user and a service 
executing on a computer system. In defining this interaction a detailed model of the communication that can 
occur at the application (OSI level 7) must be constructed, hence the need to examine the service at the binary, 
and code, artifact level to determine the precise structure of the interaction. 

3. State of the Art 
3.1. Static Analysis of Assembly Code 
Understanding what an executable does is paramount to the analysis of computer systems and networks in pre-
dicting accurately their behaviour, and to the discovery of critical vulnerabilities that have a devastating effect 
on our global computing infrastructure. Static approaches have also been applied to virus and worm detection, as 
well as polymorphic worm detection. Static analysis has also been applied to rootkit detection and to identifying 
spyware-like behaviour. 
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In addition we can also further classify these approaches based on the following [2]: 
• Testing-based approaches try to trigger vulnerability by exercising an application with random or malicious 

inputs, [2]. 
• Monitoring-based approaches instead of examine the execution of an application during normal use look for 

anomalous behaviours. In particular, a whole area of research has focused on ways to detect attacks on the 
basis of the analysis of the system call invocations performed by a program [3]. 

• Slicing is a widely used technique for program analysis, debugging, and comprehension [4]. Software slice 
analysis attempts to approximate the state of an application during execution via the construction of cohesion 
and coupling metrics. 

• Shape analysis attempts to construct a directed graph construct that represents the execution of a program [5]. 
Various topological transformation functions can be applied to identify sub-graphs, where each sub-graph 
corresponds to a known function call implementation. 

• Alias analysis is a method for the identification of possible security flaws due to the conversion of one type 
or another, such as type conversation/casting in the C programming language.  

Automated static analysis (ASA) identifies probable source code anomalies early in the soft ware develop-
ment lifecycle that could lead to vulnerabilities. Automated static analysis (ASA) can identify common coding 
problems early in the development process via a tool that automates the inspection of source code [6]. Auto-
mated static analysis reports potential source code anomalies, which we call alerts, like null pointer dereferences, 
buffer over flows, and style inconsistencies [7]. Developers inspect each alert to determine if the alert is an in-
dication of an anomaly important enough for the developer to fix. If a developer determines the alert is an im-
portant, fixable anomaly, then we call the alert an actionable alert [8]. When an alert is not an indication of an 
actual code anomaly or the alert is deemed unimportant to the developer (e.g. the alert indicates a source code 
anomaly inconsequential to the program’s functionality as perceived by the developer), we call the alert an un 
actionable alert [8]. 

Improving ASA’s ability to generate predominantly actionable alerts through the development of tools that 
are both sound and complete can be said to be an intractable problem [9]. Additionally, the development of al-
gorithms underlying ASA requires a trade-off between the level of analysis and execution time [9]. Methods 
proposed for improving static analysis include annotations, which could be specified incorrectly and require de-
veloper overhead, and allowing the developer to select ASA properties, such as alert types, specific to their de-
velopment environment and project [10]. Another way to increase the number of actionable alerts identified by 
static analysis is to use the alerts generated by ASA with other information about the software under analysis to 
prioritize or classify alerts.  

Static analysis techniques attempt to identify the presence of a vulnerability, or the ways in which a vulnera-
bility can be exploited. Thus in terms of search spaces they define |IA| < |IV| to be true. 

3.2. Dynamic Analysis 
Dynamic analysis is the ability to observe and examine code as it executes in real-time, and thus it has become a 
central tool in computer security and vulnerability research. Dynamic analysis is attractive because it provides 
us with the ability to perform deductive reasoning about actual executions, and thus the ability to perform pre-
cise security analysis based upon run-time data.  

Two of the most commonly employed dynamic analysis techniques in security research are dynamic taint 
analysis and forward symbolic execution. Dynamic taint analysis runs a program and observes which computa-
tions are affected by predefined taint sources such as user input. Symbolic execution refers to the analysis of 
programs by tracking symbolic rather than actual values, a case of abstract interpretation. Dynamic forward 
symbolic execution automatically builds a logical formula describing a program execution path, which reduces 
the problem of reasoning about the execution to the domain of logic. The two analyses can be used in conjunc-
tion to build formulas representing only the parts of an execution that depend upon tainted values [11]. 

The purpose of dynamic taint analysis is to track information flows [12]. Any program value whose computa-
tion depends on data derived from a taint source is considered tainted. Any other value is considered untainted. 

Symbolic execution maintains a symbolic state, which maps variables to symbolic expressions. Forward 
symbolic execution allows us to reason about the behaviour of a program on many different inputs at one time 
by building a logical formula that represents a program execution. Thus, reasoning about the behaviour of the 
program can be reduced to the domain of logic. The advantages of forward symbolic execution include [13]: 
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• Multiple inputs. One of the advantages of forward symbolic execution is that it can be used to reason about 
more than one input at once. 

• The primary difference between forward symbolic execution and regular execution is that when a function is 
executed it is evaluated symbolically; it returns a symbol instead of a concrete value. When a new symbol is 
first returned, there are no constraints on its value; it represents any possible value. 

• Creating a forward symbolic execution engine is conceptually a very simple process: take the operational 
semantics of the language and change the definition of a value to include symbolic expressions. 

The number of security applications utilizing these two techniques is enormous. Examples of security re-
search areas employing either dynamic taint analysis of forward symbolic executions are: 
• Unknown Vulnerability Detection. Dynamic taint analysis can look for misuses of user input during an ex-

ecution. For example, dynamic taint analysis can be used to prevent code injection attacks by monitoring 
whether user input is executed [14]. 

• Automatic Input Filter Generation. Forward symbolic execution can be used to automatically generate input 
filters that detect and remove exploits from the input stream [15]. Filters generated in response to actual ex-
ecutions are attractive because they provide strong accuracy guarantees [17]. 

• Malware Analysis. Taint analysis and forward symbolic execution are used to analyse how information flows 
through a malware binary, explore trigger-based behaviour, and detect emulators [16]. 

• Test Case Generation. Taint analysis and forward symbolic execution are used to automatically generate in-
puts to test programs [17], and can generate inputs that cause two implementations of the same protocol to 
behave differently [17]. 

• Abstract Interpretation [18] using numerical domains, such as intervals, octagons, and convex polyhedrals 
necessitates the use of widening and narrowing operators to guarantee termination over loops in the program. 

It should be noted that taint analysis as a technique for malware detection suffers from a variety of evasion 
techniques that allow an intruder to avoid detection of the malicious software. Dynamic analysis techniques at-
tempt to identify the presence of a vulnerability, or the ways in which a vulnerability can be exploited. Thus in 
terms of search spaces they define |IA| < |IV| to be true. 

3.3. Intrusion Detection 
In terms of the analysis of software artifacts various Intrusion Detection Systems have been developed that at-
tempt to detect the presence of software artifacts, such as malicious software, at the TCP/IP packet level. Exam-
ples of such approaches include: 
• The Snort intrusion detection system is a host/network rule based expert system approach to misuse detection. 

It operates by monitoring all TCP/IP traffic targeted at a host/network. Consequently, the rule based expert 
system approach to misuse detection is incapable of detecting new forms of malicious software due to its 
lack of prior knowledge.  

• Process monitoring approaches such as [19] monitor software processes with a view to identifying malicious 
activity based on pre-defined norms of behaviour. This type of approach is based on user-defined levels of 
normality and has a computational impact on the performance of the process being monitored. Anomaly de-
tection approaches such as [20], attempt to learn user behaviour via Markov Chains based analysis engines. 
However such approaches suffer from generating false positive results and the time taken to learn behaviour. 

• A proxy functions as the man-in-the-middle of an information flow, allowing for the information stream to 
be inspected and rules governing malicious behaviour applied [21]. Such approaches either make use of user 
defined rules to identify malicious activity, or else make use of learning algorithms to identify abnormal be-
haviour. In addition, proxies implement a white-list/black-list access control mechanism governing access to 
remote systems. Due to the volume of network traffic that the network-based proxy solutions support securi-
ty checks governing malicious behaviour are computationally and time/resource bounded. The net effect of 
this is that the complexity and sophistication of the rule set/language is constrained. Proxies’ function to pro-
tect systems from attacks at the application/content layer. The challenges facing this type of approach is that 
a rule specification is required to define malicious behaviour, and that learning algorithms suffer from gene-
rating false positive results and the time taken to learn behaviour. As a rule application/content layer proxies 
implement a default allow rule. Thus proxies fail to detect novel sophisticated attacks. 

All of the above attempt to define rules/algorithms by which erroneous behaviour can be identified and thus in 
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terms of search spaces they define |IA| < |IV| to be true. Therefore they attempt to codify all of the ways in which 
a threat agent can exploit vulnerability in order to gain unauthorized access to a system. The aim of the proposed 
architecture is to limit the access space within which an adversary can manoeuvre by assuming that all input is 
malicious unless it meets a goodness function. Hence in terms of search spaces they define |IA| < |IV| to be false 
and |IA| > |IV| to be true. Thus the default access rule is to deny access from a remote user to a server/service. 

4. Conceptal Architecture 
The basic principle underpinning the micro proxy conceptual architecture is to assume that all input are mali-
cious unless proved otherwise, in effect to implement a default deny policy at the application level. In making 
such an assumption we are constraining the way in which an adversary can interact with a system. For any inte-
raction to succeed it must pass a series of tests that define the goodness of the interaction. Hence in terms of 
search spaces we define |IA| > |IV|. The challenge can thus be reshaped to the analysis of software artifacts so as 
to define/impose the rules governing the acceptance of valid input. 

Figure 1 Defines the Conceptual Architecture. The role and function of Figure 1 is to define the various 
components by which a binary/software artifact is analyzed and a proxy configuration is constructed. The basic 
ontological constructs contained in Figure 1 are that arrows represent data flows and, squares represent 
processes, ovals represent remote agents (either a user or a service) and rounded squares represent data sources. 
At the heart of the conceptual architecture is a control flow graph. 

4.1. The Service Analysis Engine 
The service analysis engine takes a set of Service Area Artifacts as input and produces a service area profile. For 
example, suppose that the remote/legacy service is a web server and that the files in the home directory of the 
web server are as follows: 

1) /index.html 
2) /search.php 
3) /images/logo.jpeg 
The service area artifacts listed above function to specify the allowable set of valid file requests that can be 

contained in a HTTP request. 

4.2. The Reverse Analysis Engine 
The role and function of the reverse analysis engine is to take either binary artifacts such as PE/ELF, or source 
code artifacts such as C, and to produce a control flow graph. A control flow graph is a directed graph that 
represents all of the possible execution paths that can occur during the execution of a program [22]. Certain 
compliers such as GCC and disassemblers already possess a limited capability to construct control flow graphs 
in a simple text based format [23]. 

4.3. The Control Flow Graph (CFG) 
The role and function of a control flow graph is to allow for the easy constructing and reasoning about the con-
trol flow of an artifact. Traditional control flow models are no more than type-less directed graphs where each 
node is either a collection of commands or a conditional statement. The control flow model presented, and uti-
lized, in this project draws upon socio-linguistic constructs to create a richer and more structured syntac-
tic/semantic representation of the execution of an artifact. Figure 2 is a simple example of a C program and a 
control flow graph that determines if the character typed at the keyboard is a space or not. A control flow graph 
is a directed graph that consists of a number of nodes and arcs. There are a number of rules governing the con-
sistency of a control flow graph. 
• Every arc in a control flow graph must have a conditional associated with it. 
• Every node is either an atomic action or a function that can be decomposed. In Figure 2, we can see one 

atomic action that is assigned the result value of a function to a variable, and three functional actions.  
• The logical conjugation of all of the conditions on the output arcs from a node is logically true. So for exam-

ple in Figure 2 we can observe that the following logical condition is true: a = 31 ∧ a ≠ 32. 
• Every arc must have a source and a destination. The source of an arc is called the point from which the arc  
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            Figure 1. Conceptual architecture.                                                  
 

 
            Figure 2. A simple control flow graph.                                              
 

originates and the destination of an arc is the point at which the arc terminates. 
• Only one node in the graph can function solely as the source for arcs and that node is called the root node 

and is the logical start of the control flow graph.  
In constructing a socio-linguistic model of a control flow graph it is necessary to map a computer program-

ming language construct into a series of speech acts. A speech act is an action that when combined within a se-
ries of rules allows for the expression of a conversation. Thus when viewing the following program/server we 
may observe that it presents a conversation in content and structure [24]. In expressing this content and structure 
in accordance with the formal definition of a speech act we map certain types of structures to program con-
structs. 
• A propositional act is a statement which can be evaluated to be true or false, such as “is x + y < z” or “does 

this file exist”. People or machines can meaningfully utter propositional acts. Thus in terms of a control flow 
graph propositional acts are viewed as directed arcs that link nodes together.  

• An illocutionary act is always performed when a person utters certain expressions with an intention. Thus we 
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can view a function invocation as an illocutionary act that can be seen as an expression of intent to perform 
some behaviour. Types of illocutionary act are: 
o Assertive: speech acts that commit a speaker to the truth of the expressed such as assigning a value to a 

variable (x = x + y). 
o Directive: speech acts that are to cause the agent to take a particular action, e.g. the expression of a con-

ditional statement such as an if, case, repeat or while statement. 
o Commissive: speech acts that commit an agent to some future action, e.g. a function innovation 

(max(a,b)). 
o Declaration: speech acts that change the reality in accordance with the proposition of the declaration, e.g. 

the termination of a loop, or the return value of a function. 
o Expressive: speech acts that express the agent’s positions towards the proposition. In programming 

terms it can be viewed as the creation of a variable, e.g. int a. 
• A perlocutionary act is an act that produces an effect on the behaviour of an agent. For example in control 

flow graph terms a perlocutionary act can be seen as an action such as input or output.  
The output of the reverse analysis engine is a control flow graph such as the one described in Figure 2, but 

encoded in XML. 

4.4. The Proxy Compiler 
The proxy compiler functions to take the following as input and to produce an executable configuration as out-
put. 
• Service Area Profile (SAP) 
• Control Flow Graph (CFG) 

The executable configuration is produced via the concurrent execution of a series of defined constraints on a 
distributed cloud environment. This configuration is then executed on the proxy engine. The proxy compiler 
checks that the structure provided by the control flow graph matches the parameter provided via the analysis of 
the file/directory structures (the service area profile), and the application interaction patterns/behaviours speci-
fied by the service template. 

4.5. The Proxy Engine 
The role of the proxy engine is to function as a guard ensuring that all data passing to/from the remote service is 
protected and meets the goodness criteria as defined in the proxy configuration. Thus the proxy takes the input 
data stream from the user of the service and executes the configuration of proxy to ensure that the input data 
stream adheres to the rules governing the goodness of the input. If the goodness conditions are adhered to then 
the data is passed onto the remote service.  

5. Evaluation 
The test methodology to evaluate the utility of the proxy architecture is to take all of the Microsoft Security 
Bulletins published from 1st Jan 2011 to 31st Dec 2011 and examine via inspection of each bulletin whether the 
proxy architecture could detect the attack. The role and function of the Microsoft Security Bulletins is to provide 
an independent data set from which an impartial and repeatable assessment of the utility of the proxy architec-
ture could be conducted. From Jan 2011 to Dec 2011 Microsoft published 100 security bulletins numbered 
MS11-001 to MS11-100. These security bulletins cover every type of Microsoft technology, operating system 
and application. In board terms we can classify these security bulletins via two dimensions: 
• How the exploit code is delivered. Typically there are two ways that exploit code is delivered to a target ei-

ther via a remote connection of some description or locally.  
• The target of the exploitation. Typically this can be divided down into four elements. 
o Applications such as IE, Word, PowerPoint, etc. 
o Middle-ware such as .NET, JavaScript, OLE etc. 
o Services such as HTTP, DNS, WINS etc. 
o Kernel Executive, Host Operating System, Device Drivers, TCP/IP Stack etc. 
The test data contained in the Microsoft Security Bulletins is broken down as follows (Table 1). 
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Table 1. Evaluation data.                                                                                 

 Application Middleware Services Kernel 
Remote exploitation 32 24 19 7 
Local exploitation 0 0 0 18 

 
Thus from the data contained in Table 1 we can observe for all of 2011 Microsoft issues: 

• 18 security bulletins regarding kernel level vulnerabilities that could be exploited locally and 7 security bul-
letins regarding kernel vulnerabilities that could be exploited remotely;  

• 19 security bulletins regarding service level vulnerabilities that could be exploited remotely; 
• 24 security bulletins regarding middleware level vulnerabilities that could be exploited remotely; 
• 32 security bulletins regarding application level vulnerabilities that could be exploited remotely. 

From the analysis of the data we can observe for all Microsoft Security Bulletins published in 2011 (MS 001 
to MS 100), that the proxy could have detected 29 of these vulnerabilities, and have their exploitation prevented 
by our proxy architecture. Of these 29 vulnerabilities that could have been detected detailed breakdown is as 
follows: 
• 19 of these vulnerabilities relate to remote exploitation of services; 
• 2 of the vulnerabilities relate to remote exploitation of the kernel; 
• 8 of these vulnerabilities relate to remote exploitation of the middleware.  

It should be noted that our proposed micro-proxy architecture; 
• Did detect 100% of the vulnerabilities targeted at a service running on a server. Key services include: DNS, 

WINS, IIS and FTP. 
• Could only detect the middleware vulnerabilities when the middle-ware technology was deployed within a 

server environment; 
• Did not detect any of the Microsoft Security Bulletins relating to applications such as Microsoft Office and 

Internet Explorer. 
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