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Abstract 
A numerical method based on B-spline is developed to solve the time-dependent Emden-Fow- 
ler-type equations. We also present a reliable new algorithm based on B-spline to overcome the 
difficulty of the singular point at 0x = . The error analysis of the method is described. Numerical 
results are given to illustrate the efficiency of the proposed method. 
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1. Introduction 
In recent years, a lot of attentions have been devoted to the study of B-spline method to investigate various 
scientific models. The efficiency of the method has been formally proved by many researchers [1]-[7]. 

Spline functions have some attractive properties. Due to the being piecewise polynomial, they can be 
integrated and differentiated easily. Since they have compact support, numerical methods in which spline 
functions are used as a basis function lead to matrix systems including band matrices. Such systems have 
solution algorithms with low computational cost. 

In this paper, we employ the B-spline method to solve the time dependent partial differential equations. For 
clarity, the method is presented for the heat equation  

( ) ( ), , , , 0 1, 0t xx x
ru u u a x t u x t x t
x

η µ= + + + < < >                 (1) 

subject to the boundary conditions  
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( ) ( ) ( )0, 0, 1, ,xu t u t tξ= =                                   (2) 

and the initial condition  

( ) ( ),0 .u x xν=                                         (3) 

Some forms of the above equations model several phenomena in mathematical physics and astrophysics such 
as the diffusion of heat perpendicular to the surface of parallel planes, theory of stellar structure, the thermal 
behavior of a spherical cloud of gas, isothermal gas sphere and theory of thermionic currents [8]-[10]. 

The solution of the time-dependent Emden-Fowler equation as well as a variety of linear and nonlinear 
singular IVPs in quantum mechanics and astrophysics is numerically challenging because of singularity 
behavior at the origin. The singularity behavior that occurs at the point 0x =  is the main difficulty in the 
analysis of Equations (1)-(3). 

The approximate analytical solutions to the Lane-Emden equations were presented by Shawagfeh [11] and 
Wazwaz [12]-[14] using the Adomian decomposition method (ADM). Very recently, Chowdhury and Hashim 
[15] applied the homotopy-perturbation method (HPM) and the variational iteration method (VIM) [16] to 
obtain approximate analytical solutions of the time-dependent Emden-Fowler-type equations. 

The paper is organized as follows. In Section 2, we review some basic facts about the B-spline that are 
necessary for the formulation of the discrete linear and nonlinear system. In Section 3, the error analysis of the 
method is described. In Section 4, we formulate our B-spline collocation method to the solution of (1)-(3). In 
Section 5, numerical experiments are tested to demonstrate the viability of the proposed method. 

2. Some Properties of B-Spline 
B-splines are mathematically more sophisticated than other types of splines, so we start with a gentle introduc- 
tion. We first use basic assumptions to derive the expressions for the cubic uniform B-splines directly and with- 
out mentioning knots. We then show how to extend the derivations to uniform B-splines of any order. Following 
this, we discuss a different, recursive formulation of the weight functions of the uniform B-splines. 

The third-degree B-spline is used to construct numerical solutions to a given problem (1). A detailed 
description of third-degree B-spline functions can be found in [13] [17]. The third-degree B-splines are 
defined as  

( ) ( )( )1 0 1 , 2,3,iB x B x i h i− = − − = 
                      (4) 

( )

3

3 2 2 3

0 3 3 2 2 3

3 2 2 3

if ; 0 <

3 12 12 4 , if ; < 21
6 3 24 60 44 , if ; 2 < 3

12 48 64 if ; 3 < 4

x x h
x hx h x h h x h

B x
h x hx h x h h x h

x hx h x h h x h

 ≤

− + − + ≤= 

− + − ≤
− + − + ≤

                  (5) 

We can simply check that each of the function ( )iB x  is twice continuously differentiable on the entire real 
line. Also,  

( )
4, if ;
1, if ; 1
0, if . 2

i j

i j
B x i j

i j

=
= − = ±
 − = ±

                            (6) 

Similarly, we can show that:  

( )
0, if ;

3 , if ; 1

0, if . 2

i j

i j

B x i j
h

i j

=
′ = ± − = ±


− = ±

                            (7) 

and 
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( )

2

2

12 , if ;

6 , if ; 1

0, if . 2

i j

i j
h

B x i j
h

i j

− =

′′ = − = ±

 − = ±


                             (8) 

3. Error Analysis 
3.1. Governing Equation 
Since 0x =  is singular point of Equation (1), we first modify Equation (1) at 0.x =  By L’Hospital rule, the 
boundary value problem (1) is transform into  

( ) ( ) ( ) ( ), , , ,t xx xu p x u q x u a x t u x tη µ= + + +                      (9) 

where 

( ) ( )
0, 0;1, 0;

1, 0 , 0

xr x
p x q x rx x

x

=+ = = = ≠ ≠ 

 

Let ( ) ( ), , ,x t u h x t uη = , we consider the linear non-homogeneous Emden-Fowler differential Equation (9), 
difference schemes for this problem considered as following:  

( ) ( ) ( ) ( )
2

1 1 1
12

d d
, ,

dd
i i i i

i
u u u u

p x q x ah x t u x t
x tx

µ+ + +
+

−
+ + + =

∆
               (10) 

or  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1
1 1 1, 1 ,i i i it p x u tq x u a t h x t u u t x tµ+ + +∆ + ∆ + ∆ − = − − ∆            (11) 

Suppose ( )S x  is the cubic B-spline interpolating ( )1,k iu x t +  at the ( )1 thi +  time level then  

( ) ( )
1

3

n

k
k

S x C B x
−

=−

= ∑                               (12) 

Theorem 3.1. Let the collocation approximation ( )S x  to the solution ( )u x  of the boundary value 
problem (1) is (12) then the following relation is hold  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

4
6

2 4
6

180

12 360

x i xxxxx i

xx i xxxx i xxxxxx

hS x u x u x O h

h hS x u x u x u O h

′ = − +

′′ = − + +

                  (13) 

3.2. Truncation Error of Time Dependent Emden-Fowler Equation 
Theorem 3.2. By using the combination of the finite difference approximation and cubic B-spline method, the 
truncation error is ( )2,O t h∆ . 

Proof: Consider the Equation (10) when apply finite difference  

( ) ( ) ( ) ( ) ( )1
1 , ,i i xx xu u p x u q x u ah x t u x t
t

µ+ − = + + +
∆

 

apply taylor expansion for L.H.S  

( ) ( ) ( ) ( ) ( ) ( )
2 3

1 , ,
2! 3!i t tt ttt i xx x

t t
u tu u u u p x u q x u ah x t u x t

t
µ

 ∆ ∆
 + ∆ + + + − = + + +
 ∆  

  
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( ) ( ) ( )

( ) ( ) ( ) ( )

2
2 4 6

4 6

1 1
2! 3! 12 360

1 , ,
180

t tt ttt xx xxxx xxxxxx

x xxxx

ttu u u p x u h u h u O h

q x u h u O h ah x t u x tµ

∆∆  + + + = − + + 
 
 + − + + + 
 



 

if  

( ) ( ) ( ) ( ) ( ), , ,xx xp x u q x u ah x t u x t x tµ λ+ + + =  

we can calculate the truncation error which is defined as ( ),i te u x tλ= −  as:  

( ) ( )
2 2 4

6

2! 3! 12 180tt ttt xxxx

tt h he u u u O h
∆  ∆

= + + + − − 
 


 

4. B-Spline Solutions for Time-Dependent Emden-Fowler 
In this section, we shall introduce a reliable algorithm based on B-spline method to handle singular initial value 
problems (IVPs) in a realistic and efficient way considering Emden Fowler equation as a model problem. 

4.1. Linear Time-Dependent Emden-Fowler 
Let 

( ) ( )
1

3

n

j j
j

u x C B x
−

=−

= ∑                                    (14) 

be an approximate solution of Equation (1), where iC  are unknown real coefficients and ( )jB x  are third- 
degree B-spline functions. Let 0 1, , , nx x x  be 1n +  grid points in the interval [ ], ,a b  so that  

0, 0,1, , , , ,i n
b ax a ih i n x a x b h

n
−

= + = = = =
 

We can deduce the following  

( ) ( ) ( )

( ) ( ) ( )

1
1

3

1
2

3

n

j j
j

n

j j
j

u x C B x

u x C B x

−

=−

−

=−

′=

′′=

∑

∑
                              (15) 

Theorem 4.1. If the assumed approximate solution of the problem (10) is (14), then the discrete collocation 
system for the determination of the unknown coefficients { } 1

3

n
j j

C
−

=−
 is given by  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1

3 3

1

3
, 1 , , 0 .

n n

i j j i i j j i
j j

n

i j j i i i
j

t p x C B x tq x C B x

a t h x t C B x u t x t i nµ

− −

=− =−

−

=−

′′ ′∆ + ∆

 + ∆ − = − − ∆ ≤ ≤ 

∑ ∑

∑
          (16) 

Proof: If we replace each term of (10) with its corresponding approximation given by (14) and (15) and 
substituting kx x=  and applying the collocation to it. 

The boundary conditions (3) can be written as  

( )

( ) ( )

1

3

1

3

0 0

1

n

j j
j

n

j j
j

C B

C B tξ

−

=−

−

=−

′ =

=

∑

∑
                                 (17) 

Then use them with the system of Equation (16), which can be written in the matrix form  
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=AC F                                      (18) 
where  

( )

1

2

2

3

0
,

n

n

C
C

C t
C

ξ

−

−

−

−

 
       = =        
 
 

C F 
 

Also the matrix A  can be written as  

( ) ( ) ( )
( ) ( )

( )
( ) ( )

1 0 2 0 3 0

1 1 2 1

3 1

2 3

3 30 0 0

0 0
0 0 0

0 0 0
0 0
0 0 4 1

n

n n

h h
x x x

x x

x
x x

α α α
α α

α
α α

−

− 
 
 
 
 
 =
 
 
 
 
 
 

A





     







 

where  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2

2 2

3 2

6 3 , 1

12 , 1 4

6 3 , 1

i i i i

i i i

i i i i

x p x q x a t x t
hh

x p x a t x t
h

x p x q x a t x t
hh

α η

α η

α η

     = − + ∆ −        
   = − + ∆ − ⋅    
     = + + ∆ −        

 

It is easily seen that the matrix A  is strictly diagonally dominant and hence nonsingular. Now we have a  

linear system of 3n +  equations for the 3n +  unknown coefficients, namely, { } 1

3

n
j j

C
−

=−
. We can obtain the 

coefficient of the approximate solution by solving this linear system by Q-R method. 

4.2. Non-Linear Time-Dependent Emden-Fowler 
Let ( ) ( ) ( ), , ,x t u h x t g uη = , we consider the nonlinear non-homogeneous Emden-Fowler differential equation  

( ) ( ) ( ) ( ) ( ), ,xx x tp x u q x u ah x t g u x t uµ+ + + =                      (19) 

We can use finite difference method  

( ) ( ) ( ) ( ) ( )
2

1 1 1
12

d d
, ,

dd
i i i i

i
u u u u

p x q x ah x t g u x t
x tx

µ+ + +
+

−
+ + + =

∆
              (20) 

Theorem 4.2. If the assumed approximate solution of the problem (20) is (14), then the discrete collocation 
system for the determination of the unknown coefficients is given by  

( ) ( ) ( ) ( ) ( ) ( )

( )
( )

1 1 1

1
3 3 3

1

3
1

,

, , 0,1, , .

n n n

j j k j j k k i j j k
j j j

n

j j k i
j

k i

p x C B x q x C B x ah x t g C B x

C B x u
x t k n

t
µ

− − −

+
=− =− =−

−

=−
+

 
′′ ′+ +  

 

−
+ = =

∆

∑ ∑ ∑

∑


         (21) 

Then the boundary condition (17) with the system of Equation (21). Now we have a nonlinear system of 
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3n +  equations in the 3n +  unknown coefficients. We can obtain the coefficients of the approximate solution 
by solving this nonlinear system by Newton’s method. 

5. Examples and Comparisons 
In this section, we will present three of our numerical results of time dependent problems using the method 
outlined in the previous section. The performance of the B-spline method is measured by the maximum absolute 
error kε  which is defined as  

exact B-splinek u uε = −  

Example 1: [18] Consider the problem  

( )22 6 4 cos , 0 1, 0t xx xu u u x t u x t
x

= + − + − < < >  

subject to boundary conditions  

( ) ( ) 1 sin0, 0, 1, e ,t
xu t u t += =  

and the initial condition  

( ) 2
,0 e .xu x =  

whose exact solution is  

( ) 2 sin, e .x tu x t +=  

The maximum absolute errors at different n  and different time t  with 0.001t∆ =  is given in Table 1. 
Example 2: [18] Consider the linear problem  

( ) ( )2 4 226 5 4 5 4 ,t xx xu x x u u x u
x

+ − − = + − +  

subject to boundary conditions  

( ) ( ) 10, 0, 1, 1 e ,t
xu t u t += = +  

and the initial condition  

( ) 22,0 e .xu x x= +  

whose exact solution is  
 

Table 1. Maximum absolute errors for Example 1.                        

n T = 0.1 T = 0.5 T = 1.0 

10 0.002756 0.00493 0.007185 

20 6.556E−04 0.00119 0.001819 

30 2.693E−04 5.124E−04 8.373E−04 

40 1.348E−04 2.742E−04 4.947E−04 

50 7.304E−05 1.643E−04 3.364E−04 

60 3.999E−05 1.049E−04 2.506E−04 

70 2.074E−05 6.951E−05 1.990E−04 

80 1.261E−05 4.683E−04 1.657E−04 
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( ) 2 2, e .x tu x t x+= +  

The maximum absolute errors at different n  and different time t  with 0.001t∆ =  is given in Table 2. 
Example 3: [18] Now we turn to a singular nonlinear problem  

( )2 2 2 25 24 16 e 2 e ,u u
t xx xu u u t t x x

x
= + − + −  

subject to boundary conditions  

( ) ( ) ( )0, 0, 1, 2 ln 1 ,xu t u t t= = − +  

and the initial condition  

( ),0 0.u x =  

whose exact solution is  

( ) ( )2, 2 ln 1 .u x t tx= − +  

The maximum absolute errors at different n  and different time t  with 0.001t∆ =  is given in Table 3. 

6. Conclusions 
We have presented a B-spline collocation method for the solution of time-dependent Emden Fowler type 
Equations (1)-(3). This method produces a spline function which is useful to obtain the solution at any point of 
the interval, whereas the finite difference method gives the solution only at selected nodal points. The numerical 
results given in tables show that the present method approximates the exact solution very well. 

This present analysis exhibits the reliable applicability of B-spline method to solve linear and nonlinear 
problems with singular feature. In this work, we demonstrate that this method can be well suited to attain 
solution to the type of examined equations, linear and nonlinear as well. The difficulty in this type of equations,  

 
Table 2. Maximum absolute errors for Example 2.                        

n T = 0.1 T = 0.5 T = 1.0 

10 0.002756 0.00498 0.00821 

20 6.528E−04 0.00117 0.00192 

30 2.664E−04 4.729E−04 7.799E−04 

40 1.319E−04 2.309E−04 3.807E−04 

50 7.021E−05 1.203E−04 1.984E−04 

60 3.727E−05 6.203E−05 1.022E−04 

70 1.823E−05 2.906E−05 4.791E−05 

80 1.541E−05 2.431E−05 4.008E−05 

 
Table 3. Maximum absolute errors for Example 3.                        

n T = 0.01 T = 0.1 T = 0.2 

10 6.597E−05 5.805E−04 0.001176 

20 1.494E−05 1.340E−04 2.807E−04 

30 6.481E−06 5.202E−05 1.148E−04 
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due to the existence of singular point at 0,x =  is overcome here. Finally, we conclude that the B-spline method 
is a promising tool for both linear and nonlinear singular time-dependent Emden-Fowler-type equations. 
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