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Abstract 
In this work, we analyze Couette flow problem for an unsteady magnetohydrodynamic (MHD) 
fourth-grade fluid in presence of pressure gradient and Hall currents. The existing literature on 
the topic shows that the effect of Hall current on Couette flow of an unsteady MHD fourth-grade fluid 
with pressure gradient has not been investigated so far. The arising non-linear problem is solved 
by the homotopy analysis method (HAM) and the convergence of the obtained complex series so-
lution is carefully analyzed. The influence of pressure number, Hartmann number, Hall parameter 
and fourth-grade material parameters on the unsteady velocity is discussed through plots and on 
local skin-friction coefficient discussed through numerical values presented in tabular form. 
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1. Introduction 
In fluid mechanics, everyone is familiar with Couette flow problem, the flow between two parallel plates in 
which bottom plate is fixed and upper plate is initially at rest and is suddenly set into motion in its own plane 
with a constant velocity, is termed as Couette flow [1] [2]. Bhaskara and Bathaiah [3] have analyzed Couette 
flow problem with Hall effects for flow through a porous straight channel. Ganapathy [4] wrote a note on the 
oscillatory Couette flow in a rotating system. Erdogan [5] solved unsteady Couette flow for viscous fluid by 
Laplace transform method. Stokes and Couette flows due to an oscillating wall are discussed by Khaled and 
Vafai [6]. Hayat et al. [7] used Laplace transform method to determine the analytic solutions of Couette flows of 
a second grade fluid. Oscillatory Couette flow is studied by Singh [8]. Guria [9] discussed Couette flow problem 
for rotating and oscillatory flow. Couette flow of an unsteady third-grade fluid with variable magnetic field is  
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investigated by Hayat and Kara [10], here fluid is in an annular region between two coaxial cylinders. The axial 
Couette flow problem of an electrically conducting fluid in an annulus is examined by Hayat et al. [11]. Das et 
al. [12] studied unsteady Couette flow problem in a rotating system. Recently, Zaman et al. [13] presented solu-
tion for unsteady Couette flow problem for the Eyring-Powell model. When a strong magnetic field is applied in 
an ionized gas of low density, the conductivity normal to the magnetic field is decreased by free spiraling of 
electrons and ions about the magnetic lines of force before suffering collisions. This phenomenon is known as 
Hall effect and a current induced in a direction normal to the electric and magnetic fields is called Hall current 
[15]. The study of the Effects of Hall current on flow of non-Newtonian fluids [15]-[23] is important because of 
its applications in power generators and pumps, Hall accelerators, refrigeration coils, electric transformers, in 
flight MHD, electronic system cooling, cool combustors, fiber and granular insulation, oil extraction, thermal 
energy storage and flow through filtering devices. 

In order to understand the interaction of electric, magnetic, and hydrodynamic forces in the unsteady 
fourth-grade fluid, we considered a simple flow problem, known as the Couette flow. The effects of pressure 
gradient and Hall current on the flow are also taken into account. The complex analytic solution for non-linear 
problem is found by using the homotopy analysis method (HAM) [24]-[31]. This solution is valid for all values 
of the time in the whole spatial domain 0 1η≤ < . The convergence of the analytic solution is ensured with the 
help of -curveh . The effects of pressure number, Hartmann number, Hall parameter, second-grade parameter, 
third-grade and fourth grade parameters on the unsteady velocity are illustrated through plots. Also the effects of 
the pertinent parameters on the local skin friction coefficient at the surface of the wall are presented numerically 
in tabular form. 

2. Formulation of the Problem and Its Analytic Solution 
Consider the unsteady flow of an electrically conducting incompressible fourth-grade fluid between two parallel 
flat plates, subjected to a uniform transverse magnetic field. We assume that the bottom plate is fixed and the top 
plate is stationary when 0t <  and at 0t = , the top plate starts moving impulsively in its own plane with a 
constant velocity U  and a pressure gradient is also applied. The flow here is maintained by the motion of the 
top plate. The Cauchy stress tensor T  for a fourth-grade fluid is given as [32] 

( ) ( ) ( )
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where p  is the scalar pressure, I  is the identity tensor, µ  is the coefficient of viscosity, iα , jβ , kγ  
( ) ( ) ( )( )1,2 , 1,2,3  and 1,2, ,8i j k= = =   are the material parameters of fourth-grade fluid, and iA  ( )1,2,3,4i =  

are the first four Rivlin-Ericksen tensors defined by [32] 
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The equations governing the magnetohydrodynamic flow with Hall effect are: 
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The boundary and initial conditions are 

( ) ( ) ( ), 0, at  0,  for  0, , , at  , for  0, , 0, at  0, for  0 ,wu y t y t u y t u U y h t u y t t y h= = > = = = ≥ = = ≤ <  (6) 
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where ( ),u y t  is the velocity component in the -directionx , t  is time, ν  is the kinematic viscosity, ρ  is 
the fluid density, σ  is the electrical conductivity of the fluid, 0B  is the applied magnetic field, ( )e ew τ∈ =  
is the Hall parameter, ew  and eτ  are the cyclotron frequency and collision time of the electrons respectively, 
U  is the velocity of the upper plate and h  is the distance between two parallel plates and it will be considered 
as a length scale of the flow. Equation (5) shows that p  is independent of y . In order to non-dimensionalize 
the problem let us introduce the similarity transformations 

( ) 2, , , ,y tu Uf
h h

νη ξ η ξ= = =                           (7) 

where ( ),f η ξ  is the dimensionless velocity function, η  is the dimensionless distance from the bottom fixed 
plate and ξ  is the dimensionless time. Equations (4) and (6) become 
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where prime denotes differentiation with respect to η , ( )2
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( )2 d dP h U p xρ ν= ×  is the dimensionless pressure number and ( )2 2
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modified Hartmann number [33]. The local skin friction coefficient or fractional drag coefficient on the surface 
of the moving wall is 
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Now using Equations (1)-(3) and (7) the Equation (10) can be written in dimensionless variables as 
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where ( )eR Uh ν=  is the Reynolds number 
The boundary conditions (9) lead us to take base functions for the velocity ( ),f η ξ  as 

{ }, 0, 0 ,n j n jη ξ ≥ ≥                               (12) 

The velocity ( ),f η ξ  can be expressed in terms of base functions as 
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To start with the homotopy analysis method, due to the boundary conditions (9) it is reasonable to choose the 
initial guess approximation 
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where 1C , 2C  and 3C  are arbitrary constants. Following the HAM and trying higher iterations with the 
unique and proper assignment of the results converge to the exact solution: 

( ) ( ) ( ) ( ) ( )0 1 2, , , , , ,mf f f f fη ξ η ξ η ξ η ξ η ξ≈ + + + +                 (17) 

At 0.1∈= , 0.1N = , 0.1α = , 0.1β = , 0.1ζ = , 1 0.1Γ = , 2 0.1Γ = , 0.1P =  using the symbolic com-
putation software such as MATLAB, MAPLE, MATHEMATICA to successively obtain 
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similarly ( )2 ,f η ξ , ( )3 ,f η ξ , ( )4 ,f η ξ  and so on are calculated. The obtained values of 0f , 1f , 2f , …, 
lead us to take 
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The total complex analytic solution in compact form is 
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where from initial guess in Equation (14) we obtain 

( ) ( )0 1 1
0,1 0,1 0,2 0,1, 1, 1, all other 0, 0,1,2,3,4 , 0,1,2 ,j

n j nδ δ δ δ= = = − = = =                 (21) 

all other unknown constants can be determined by utilizing first nine given in Equation (21) by using the recur-
rence relations, which we calculated but it is not possible to write here due to their length. We know that the 
auxiliary parameter   gives the convergence region and rate of approximation for the homotopy analysis me-
thod. From -curve  in Figure 1 we note that the range for the admissible value for   is 0.7 0− < < . Our 
calculations depict that the series of the dimensionless velocity in Equation (20) converges in the whole region 
of η  and ξ  for 0.5= − . 

3. Graphs, Tables and Discussion 
The discussion of emerging parameters on the dimensionless velocity ( ),f η ξ  is as follows: 

Figures 2 to 10 are plotted in absence of Hall currents and in Figure 11 Hall current is taken into account. 
Figure 2 displays the velocity f  for various values of η . This figure describes that as we move from fixed  

 

 
Figure 1. -curve  for f(η, ξ).                         
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Figure 2. Influence of η on f(η, ξ).                 

 

 
Figure 3. Influence of ξ on f(η, ξ).                         

 

 
Figure 4. Influence of N on f(η, ξ).                  

 
bottom plate to towards the moving top plate the velocity increases for all values of the time, even the fluid close 
to the upper plate moves with the same velocity as of the upper plate and the fluid close to the bottom plate has 
nearly zero velocity. Figure 3 presents the velocity profile f  for various values of ξ . This figure shows that 
with the passage of time the velocity of the fluid decreases as we go in the increasing direction of η . Figure 4 
elucidates the variation of Hartmann number on the velocity. It is found that the velocity increases with an in-
crease in N  and the boundary layer thickness decreases. This means that the magnetic force provides a me-
chanism to the control of boundary layer thickness. Figure 5 illustrates the influence of second-grade parameter 
on the velocity profile f . It is evident from the figure that an increase in α  results in the increase of the ve-
locity, here boundary layer thickness decreases and shear thinning is observed. In Figures 6 and 7 the velocity  
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Figure 5. Influence of α on f(η, ξ).                  

 

 
Figure 6. Influence of β on f(η, ξ).                   

 

 
Figure 7. Influence of ζ on f(η, ξ).                      

 
distribution is presented for the various values of third-grade parameters β  and ζ . It is observed that the ve-
locity increases by increasing the influence of β  and ζ . Figure 8 depicts the variation of the pressure num-
ber on the velocity. It is observed that the velocity increases with an increase in P , which is consistent with 
what we expected. In Figures 9 and 10 it is observed that the velocity f  has opposite behavior for 
fourth-grade parameters 1Γ  and 2Γ . For 1Γ  velocity increases and for 2Γ  velocity decreases as we move 
from fixed bottom plate to towards the moving upper plate. With the inclusion of Hall term velocity field be-
comes complex, so we plot absolute value of the velocity profile f  in Figure 11. We observe that with in-
crease in Hall parameter ∈  absolute value of the velocity increases and boundary layer thickness decreases. 

It is observed from Table 1 that with increase in Hartmann number N  absolute value of the skin friction 
coefficient e fR C×  increases for all values of the time ξ  and pressure P , also with increase in Hall current 
∈  absolute value of the skin friction coefficient decreases. Increase in dimensionless time ξ  leads a reduction  
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Figure 8. Influence of P on f(η, ξ).                  

 

 
Figure 9. Influence of Γ1 on f(η, ξ).                 

 

 
Figure 10. Influence of Γ2 on f(η, ξ).                   

 
in the absolute value of the skin friction coefficient. Increase in pressure number P , increases the shear stress 
at the moving wall. Table 2 illustrates that increase in the fourth-grade material parameters 1Γ  and 2Γ  give a 
reduction in the value of the shear stress at the moving wall. 

4. Conclusion 
The Couette flow between two parallel plates filled with MHD unsteady fourth-grade fluid is studied analytical-
ly. The effects of the pressure and Hall current are also incorporated. A non-linear fourth-grade model for the 
fluid is used. The model is invoked into the governing equations and the resulting one dimensional equation for 
unsteady MHD flow is derived. This equation is solved by HAM in general to study the sensitivity of the flow to  
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Figure 11. Influence of ∈  on Abs(f(η, ξ)). 

 
Table 1. Absolute values of the skin friction coefficient Re × Cf with α = 0.1, β = 0.1, ζ = 0.1, Γ1 = 0.1, Γ2 = 0.1, 0.5= − . 

ξ  P  0.1∈=  0.1∈=  0.1∈=  0.1N =  0.1N =  0.1N =  
  0.1N =  0.3N =  0.5N =  0.2∈=  0.3∈=  0.5∈=  

0.1  0.1  2.35909  2.47416  2.58937  2.35745  2.35492  2.34816  
0.3  0.1  2.17475  2.28871  2.40271  2.17313  2.17062  2.16393  
0.5  0.1  1.98266  2.09463  2.20655  1.98106  1.9786  1.97203  
0.1  0.2  2.44703  2.56261  2.67833  2.44539  2.44284  2.43605  
0.1  0.3  2.53576  2.65186  2.76812  2.5341  2.53155  2.52472  
0.1  0.5  2.71564  2.83286  2.95026  2.71397  2.71139  2.7045  

 
Table 2. Absolute values of the skin friction coefficient Re × Cf with α = 0.1, β = 0.1, ζ = 0.1, ξ = 0.1, P = 0.1, 0.5= − . 

1Γ  2Γ  0.1∈=  0.1∈=  0.1∈=  0.1N =  0.1N =  0.1N =  
  0.1N =  0.3N =  0.5N =  0.2∈=  0.3∈=  0.5∈=  

0.1  0.1  2.35909  2.47416  2.58937  2.35745  2.35492  2.34816  
0.3  0.1  2.29954  2.41317  2.52694  2.29792  2.29542  2.2887  
0.5  0.1  2.24003  2.35223  2.46455  2.23843  2.23596  2.22938  
0.1  0.2  2.20476  2.32664  2.44886  2.20303  2.20035  2.19321  
0.1  0.3  1.63943  1.76654  1.8943  1.63763  1.63486  1.62744  
0.1  0.5  1.40772  1.27198  1.13504  1.40971  1.4128  1.42096  

 
the parameters that are used in the fourth-grade model. The various dimensionless parameters seem to affect the 
velocity a lot. The velocity profile and local skin friction coefficient are greatly influenced by the Hall parameter, 
fourth-grade fluid parameters, pressure and Hartmann numbers. 
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