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Abstract 
In 2011, Chinese researcher Ni found the solution of the Oppenheimer-Volkoff problem for a sta- 
ble configuration of stellar object with no internal source of energy. The Ni’s solution is the non- 
rotating hollow sphere having not only an outer, but an inner physical radius as well. The upper 
mass of the object is not constrained. In our paper, we contribute to the description of the solution. 
Specifically, we give the explicit description of metrics inside the object and attempt to link it with 
that in the corresponding outer Schwarzschild solution of Einstein field equations. This task ap-
pears to be non-trivial. We discuss the problem and suggest a way how to achieve the continuous 
linkup of both object-interior and outer-Schwarzschild metrics. Our suggestion implies an impor-
tant fundamental consequence: there is no universal relativistic speed limit, but every compact 
object shapes the adjacent spacetime and this action results in the specific speed limit for the 
spacetime dominated by the object. Regardless our suggestion will definitively be proved or the 
successful linkup will also be achieved in else, still unknown way, the success in the linkup 
represents a constraint for the physical acceptability of the models of compact objects. 
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1. Introduction 
It is known that the final stage of a star that spent all storage of its nuclear fuel is either a white dwarf or a neu- 
tron star. Or, if the mass of dying star exceeds the Oppenheimer-Volkoff limit, the object is believed to eter- 
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nally collapse to its center, i.e. it becomes a black hole. The mass limit between the stable and unstable neutron 
objects was found, at the first time, by Oppenheimer and Volkoff in 1939 who solved the appropriate equations 
[1]. Hereinafter, we refer to this problem, with the original set of equations considered, as to the Oppenheimer- 
Volkoff (OV) problem. In more detail Oppenheimer and Volkoff considered a cool, non-rotating object consist- 
ing of neutrons. Its gravity was described by the Einstein field equations adopted for the spherical symmetry of 
the problem [2]-[4]. The quantities characterizing the object’s interior were calculated from the equation of state 
for the cold, degenerated, Fermi-Dirac neutron gas published by Landau as well as by Chandrasekhar [5] [6]. 
Oppenheimer and Volkoff used the form of equations given by Chandrasekhar (a more detailed description is 
provided in Section 2). 

A few years ago, in 2011, Chinese scientist Ni published the solution of the equations figuring in the OV 
problem for a stable object without any upper mass limit [7]. The original feature of this solution is the existence 
of an inner physical surface of corresponding object. We therefore will call this object as “hollow sphere”. Soon 
after the Ni’s paper was published, Mei independently considered the hollow-sphere concept (he was the first 
who used the term “hollow sphere”) as well as the solid spheres and described the metrics for the object of a 
constant density [8]. He however did not deal with the metrics of adjacent empty space. 

The description of any stable compact object can be regarded as complete if not only the behavior of state 
quantities, but the behavior of the metrics in its interior as well as in the surrounding empty space is given. The 
linkup of the interior and empty-space metrics appears to be a non-trivial task. It this paper, we deal with this 
problem. 

The paper is divided into six sections. In Section 2, we recall the basic equations of the OV problem. In 
Section 3, we discuss the suitable initial values entering the numerical integration of the equations. We demon- 
strate that the asymptotic solution of these equations for the radial distance 0r →  implies an infinite magni- 
tudes of pressure and energy density. Thus, a realistic solution for a stable object must start in a distance larger 
than zero. It means that the object has to have an inner surface and is, therefore, the hollow sphere. Because of 
this reason, we deal only with the metrics linkup in the case of hollow sphere in Sections 4 and 5. The concept 
of the hollow sphere seems to harbor all stable neutron objects, also those of neutron-star size. 

In Section 4, we attempt to link up the interior and empty-space metrics for the set of obvious conditions and 
assumptions and demonstrate that it is not possible in this case. In Section 5, we suggest a solution of this prob-
lem and outline the consequences of one new, modified assumption. Some concluding remarks are presented in 
Section 6. 

2. Outline of the Problem of Stable Configuration 
Before any further study, let us summarize the basic set of the equations in the OV problem. We recall, the equ- 
ations describe a spherically symmetric, non-rotating object, which consists of a cold, degenerated, mono-par- 
ticle (neutron), Fermi-Dirac gas. 

The gravitational field inside the object is described by the Einstein field equations [2] [3]. These can be sim-
plified, to find a static solution for the case of spherical symmetry, to form 

2 2
1 d 1 1e ,

dnP
r r r r

λ νγ −  = + − 
 

                                          (1.1) 

221 d 1 d d 1 d 1 d 1 de ,
2 d 4 d d 4 d 2 d 2 dnP

r r r r r r r r
λ ν λ ν ν ν λγ −
  = − + + −  

   
                  (1.2) 

2 2
1 d 1 1e ,

dnE
r r r r

λ λγ −  = − + 
 

                                           (1.3) 

with the line element defined by 

( )22 2 2 2 2 2 2d e d d sin d e ds r r r c tλ νϑ ϑ φ= − − − +                       (1.4) 

in the spherical coordinate system r, ϑ , and ϕ , where nP  is the pressure and En is the energy density of the 
degenerated neutron gas, λ  and ν  are the functions depending on the radial coordinate r  in the static case, 
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and c is the relativistic speed limit (equal to the velocity of light) [4]. We denoted 48 cγ κ= π , where κ  is the 
gravitational constant. In purpose, we use the SI units throughout the paper. The field equations yield the con- 
dition of hydrodynamical equilibrium 

d d .
d 2 d

n n nP E P
r r

ν+
= −                                   (1.5) 

The condition gives the pressure gradient balancing the gravity. If there is a larger gradient in the gas, the 
object expands and vice versa. Oppenheimer and Volkoff re-wrote this condition to form 

( )
3d 1 ,

d 2 2
n n n

n
P E P P r u
r r r u

γ+  = − + −  
                        (1.6) 

where the function ( )u u r=  was established as 

( )1 1 e .
2

u r λ−= −                                      (1.7) 

With the help of field equations, the derivative of this function with respect to r  can be given as 

2d 1 .
d 2 n
u E r
r

γ=                                        (1.8) 

To find if the requirement on the pressure gradient set by relation (1.6) can be satisfied, one can again follow 
Oppenheimer and Volkoff who utilized the equation of state for the degenerated Fermi-Dirac gas in the form 
presented by Chandrasekhar [6] (Appendix). Specifically, they considered the formulas for energy density nE  
and pressure nP  converted to forms 

( )sinh ,nE K τ τ= −                                   (1.9) 

( )1 sinh 8sinh 2 3 ,
3nP K τ τ τ= − +                        (1.10) 

where ( )4 5 34oK m c h= π  and 
2

4 ln 1 .F F

o o

p p
m c m c

τ
   = + +     

                          (1.11) 

Denotation used: om  is the rest mass of the gas constituents (neutrons), h is the Planck’s constant, and Fp  
is the Fermi impulse. The inverse relation to (1.11) is ( )sinh 4F op m c τ= . 

According to Oppenheimer and Volkoff, the pressure gradient, ( )( )d d d dn nP r P rτ τ= ∂ ∂ , is proportional to 

( )
( )
( ) ( )3sinh 2sinh 2d 4 1 sinh 8sinh 2 3 .

d 2 cosh 4cosh 2 3 6
Kr u

r r r u
τ ττ γ τ τ τ

τ τ
−  = − − + +   − − +  

     (1.12) 

They also re-wrote Equation (1.8) with the help of formula (1.9) to 

( )2d 1 sinh .
d 2
u Kr
r

γ τ τ= −                              (1.13) 

Equations (1.12) and (1.13) give the derivatives of τ  and u in the Schwarzschild coordinates. However, the 
effective gradient of pressure (Equation (1.6)) is the differential of the pressure, d nP , divided by the proper 
element of the radial coordinate. If one wants to replace the Schwarzschild element dr  with the proper element 
d pr , the exchange 2d e d pr rλ→  (see, e.g., [9], p. 605) or d d 1 2pr r u r→ −  has to be made. Equation (1.6)  
then changes to 

3
2

d 1 .
d 21 2

n n n
n

p

P E P P r u
r r u r

γ+  = − + −  
                     (1.14) 

In the calculation of d d   d dnr P rτ ∝ , the correction factor 2eλ  occurs in both left-hand and right-hand 
sides of the appropriate equation, therefore it eliminates itself and Equation (1.12) remains unchanged. 
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The behavior of 44g -component of metric tensor can be gained integrating equation 
d 1 1 1
d 1 2 nrP
r u r r r
ν γ = + − −  

                           (1.15) 

simultaneously with Equations (1.12) and (1.13). Equation (1.15) is derived from Equation (1.1), in which e λ−  
is replaced with the form containing the function u  with respect to relation (1.7). The choice of initial value 

oν  entering the numerical integration is arbitrary, when a solution independent on, e.g., outer Schwarzschild 
(OSCH, hereinafter) metrics is calculated. If one seeks a convergence of 44g  to the OSCH solution in outR , a 
relevant value of oν  has to be searched for in an iteration. 

The internal (heat) energy of, e.g., the Sun is negligible in comparison to its rest energy. According to the 
model of stellar structure published in [10] (Table 7 in [10]), the heat energy inside the solar body can be 
estimated 411.3 10 J× . The rest energy of the Sun equals 2 471.8 10 JM c ×



  and is, therefore, many orders 
of magnitude larger than the heat energy. A similar ratio between the internal and rest energies can be assumed 
for other normal stars and other non-compact objects. It however appears that the internal energy of the objects 
described by the solutions found here can be so large that it exceeds, several times, the objects’ rest energy. 
Consequently, the mass of the object, M, largely exceeds its rest mass, oM . Therefore, we need to distinguish 
between both masses. 

The object’s rest mass can be calculated as 

( ) 2 24 e d ,out

in

R
o n R

M m n r r rλ= π∫                          (1.16) 

and its total mass is given by 

( ) 2 2
2

4 e d ,out

in

R
nR

M E r r r
c

λπ
= ∫                            (1.17) 

where nm  is the rest mass of neutron and ( )n r  is the number density given by relation 

( )3 3
3

8 .sinh 43 nn m c
h

τπ
=                                (1.18) 

3. Starting the Numerical Integration 
Differential Equations (1.12) and (1.13) can be integrated numerically. To find the physically acceptable be- 
havior of the quantities occurring in these equations, one must, however, choose the suitable set of initial values 
entering the integration. 

Assuming that the energy density is a function of pressure (e.g. s
n nE CP= , where C  is a constant and s  is 

a real number), Oppenheimer and Volkoff started the numerical integration at the origin of coordinate system, 
i.e. at 0r = , where they assumed the finite initial values oP  and ou  of integrated quantities [1]. Ni however 
showed that the origin can be a conflict point for the starting [7]. In the following, we present another argu- 
mentation against the start in this point. 

For 0r → , we can assume an asymptotic form of solution of 1 2
1 2n o oP a r a r a r a rα α α α+ += + + + ,  

1 2
1 2n o oE b r b r b r b rβ β β β+ += + + + , and 1 2

1 2o ou c r c r c r c r+ += + + +

    , where coefficients ja , jb , and 
jc  ( )0,1,2,j =   as well as indices α , β , and   can acquire arbitrary real values. Supplying the assumed 

power series for nP , nE , and u  to Equations (1.14), (1.8) and neglecting the higher than the first terms, we 
obtain the equations  

1 3

2 1

1 ,
21 2

o o
o o o

o

a r b ra r a r c r
r c r

α β
α αα γ− +

−

+  − ⋅ + 
 −






               (1.19) 

1 21 ,
2o oc r b rβγ− +



                                      (1.20) 

from which a constraint on the indices α , β  and   can be derived. We divide Equation (1.19) by 1rα−  and 
Equation (1.20) by 1r − . The new equations, after a simple algebraic handling, are 

2 2 1 2 1

1

1 1 1 ,
2 21 2

o o o o o o o o

o

a a r a c r a b r b c r
c r

α β β αα γ γ+ − + − + −

−

 − + + + 
 −



 


  (1.21) 
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31 .
2o oc b rβγ − +



                                 (1.22) 

To keep the argument of the square root figuring in Equation (1.21) finite, there has to be valid the condition 
(i) 1≥  (if 1= , then 1 2oc < ). The terms in the parentheses of Equation (1.21) do not diverge if conditions 
(i), as well as (ii) 2 0α + ≥ , (iii) 2 0β + ≥ , and (iv) 1 0β α− + − ≥  are valid. Since the left-hand sides of 
Equations (1.21) and (1.22) are non-zero, one of forms in the conditions (i) − (iv) has to be equal zero and also 
condition (v) 3 0β − + =  must be valid. Condition (iv) can be re-written as 2 1α β+ ≤ + + , whereby 

( )1 2 1β β+ + = + + −  . Using (i), we obtain ( )2 1 2β β+ + − ≥ + . Now, taking into account this last 
inequality and the re-written form of condition (iv), we have ( )2 2 1 2α β β+ ≤ + + − ≥ + . The inequalities in 
the borders can be satisfied only for (vi) α β= . 

If condition (vi) is valid, then (ii) and (iii) as well as (i) and (iv) become identical. Since one of (i) − (iv) must 
change to the equality equal to zero, either 1 0− =  or 2 0α + = . In the first case, i.e. 1= , condition (v) 
implies 2β = −  and, according to (vi), also 2α = − . In the second case, 2α = −  and, again according to (vi), 
also 2β = − . It means that 2  nP r−∝ →∞  and 2  nE r−∝ →∞  when 0r → . In other words, point 0r =  is 
singular and, hence, it is inappropriate for starting the numerical integration. 

Ni started some integrations in the outer radius, outR , of the object. We however regard also this starting 
point as problematic. In both radii, inR  and outR , the pressure (and energy density) is zero. With respect to 
Equation (1.10) (and Equation (1.9)), quantity τ  must also be zero. For 0inr R= >  or 0outr R= >  and,  
generally, 0u ≠ , forms ( )4 2 0r r u− ≠  and ( ) ( )36 sinh 8sinh 2 3r K u uγ τ τ τ− + + →    when 0τ →  in  

Equation (1.12). But the other form in this relation, fraction 
( ) ( )sinh 2sinh 2 cosh 4cosh 2 3 4τ τ τ τ τ− − + → →∞      

 
for 0τ → . So, d drτ →∞  for 0τ → , there- 

fore the numerical integration has to start in other distance than r = Rin or r = Rout. Numerically, we can closely 
approach to inR  (integrating inward) and outR  (integrating outward), but it is impossible to reach these 
borders in the correct calculation. (Fortunately, all quantities we are interested in converge to a finite value when 
we approach these points, therefore the above mentioned circumstance has no practical impact on our analysis.) 

In conclusion, the numerical integration of Equations (1.12) and (1.13) should start in a distance or , which is 
in o outR r R< <  assuming an initial value of Fermi impulse 0Fop >  and initial value ou , which is constrained 

by the necessity of positive argument of square root in relation (1.14). This necessity implies 2o ou r< . To 
perform the integration, we use the Runge-Kutta method. 

Hyperbolic sines and hyperbolic cosines set a high demand on the precision of the calculations when the nu- 
merical integration is performed. We found that the common Fortran “double” precision (REAL*8) is insuffi- 
cient to make the integration for some combinations of the input parameters. (One can do a simple test changing 
the length of integration step. Using the Fortran double precision, the resultant behaviors of corresponding inte- 
grated quantities were not the same for various step lengths.) C-computer-language “long double” precision ap- 
pears to be a minimum demand to perform the integration with a satisfactory precision. 

4. Search for Continuity 
In this section, we start to deal with the continuity of metrics in the outer radius of object. Since we consider the 
spherically symmetric object, only the diagonal components of metric tensor are non-zero. The spherical sym- 
metry also causes that the corresponding transverse components of the tensor, 22g  and 33g , for the interior of 
hollow sphere and surrounding empty space are identical. Hence, we need to link up only the radial and time 
components, 11g  and 44g , in outR . 

Within our study, we calculated (doing also a lot of iterations) several hundreds of the solutions, for a large 
variety of input parameters. The obtained solutions indicate a possibility of existence of small, white-dwarf- 
starsized stable compact neutron objects with their mass distributed as a hollow sphere. (Some of them have 
internal density sufficient for keeping the neutrons stable!) One can also find some solutions at the currently 
estimated critical limit between the neutron stars and black holes. Or, the masses considerably exceed the upper 
limiting mass of neutron stars, but—we emphasize—all these solutions are for the stable objects. The range of 
masses of stable neutron objects is quite large. 

There are the solutions for the stable objects with the outer radii above the classical event horizon, but also 
for the objects below this horizon. (Below, we distinguish between the common, well-known, i.e. “classical” 
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event horizon and “modified” event horizon.) 
The examples of the behavior of 11g  and 44g  components of metric tensor in two solutions are shown in 

Figures 1(a) and 1(b), respectively. The corresponding behavior of density, calculated as 2
nE c , is shown in 

Figure 1(c). The mass of the object described by the first (second) solution is 7.33272M


 ( )4.66256M


 and 
the rest mass equals 6.93262M



 ( )4.61810M


. While the first example is related to the object with its outer 
physical radius smaller than the corresponding classical Schwarzschild gravitational, Rg, the outer radius is 
larger than Rg in the second example. Thick curves in Figures 1(a) and 1(b) show the behaviors in the interior of 
each object. The dotted curve shows the behavior of 11g  as well as 44g  in the corresponding OSCH solution 
for the second object. 

When the solution for the hollow sphere is calculated using an ad hoc set of constants or , Fop , ou , and oν  
entering the numerical integration in its beginning, like in the cases shown in Figure 1, the function ( )11g r  
related to the interior of object has never any common point with ( )11g r  of the corresponding OSCH solution. 
The analogous functions ( )44g r  have either no common point or the OSCH-solution function crosses that for 
the object’s interior in an arbitrary point of the latter. Making an iteration, we can find such a value of input 
constant oν  that the crossing of both ( )44g r  functions occurs just in the distance outr R= , i.e. we can achi- 
eve a linkup of both functions we searched for. However, it appears that this linkup is not continuous. 

In Figure 1(b), the increasing part of each function ( )44g r  corresponds to the gravity acting inward and the 
decreasing part to the gravity acting outward from the origin of the used Schwarzschild coordinate frame (cen- 
ter of the object). In the interval corresponding to the inward acting gravity, 44g  decreases with decreasing r, 
i.e. this behavior is similar to the corresponding Schwarzschild ( )44g r . However, the decrease does not 
continue to the value 44 0g =  for gr R= . Instead, there is a turn-point, where the gravity (net gravity, more 
exactly) is zero and its action becomes oriented outward, in shorter distances. In each of these shorter distances, 
e.g. in 1r r= , the summary mass accumulation in the external half-space with respect to an observer situated in  
 

  
 

 
Figure 1. Two examples of the behavior of components g11 (plot a) and g44 (b) of metric tensor and the internal density (c) 
inside the compact objects described by the concept of hollow sphere. The dotted curves in plots (a) and (b) show the beha- 
vior of g11 and g44 in the OSCH solution for the second object. 
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distance 1r  is obviously measured larger than that measured in the supplementary internal half-space. 
The above mentioned change in the orientation of the gravitational action implies the following, important, 

general-relativistic effect. Let us consider a thin, perfectly spherically symmetric material layer. We know that 
the net gravitational force on a test particle inside the layer is zero in the Newtonian approximation. In a strongly 
curved, relativistic field, the net gravity on the particle is not zero, but the particle is attracted to the nearest point 
of the layer. 

The consequence of this non-zero net gravity is a qualitatively new feature of the relativistic object in 
comparison with an object described by the Newtonian physics: the existence of the inner surface. The surface is 
the essential feature of the hollow-sphere concept. To well accept this concept for the physical description of 
real objects, it is worthy to discuss the mechanism of the occurrence of the inner physical surface. Let us again 
consider the thin, homogeneous, spherically symmetric layer, but now consisting of a gas. The pressure gradient 
forces the gas to expand outward as well as inward. The outward oriented expansion can be stopped when the 
pressure gradient is balanced by the gravity in both Newtonian physics and general relativity. This is the 
mechanism of the occurrence of the outer physical surface of gaseous objects as common stars, gaseous planets, 
or neutron stars. The inward oriented expansion cannot however be stopped in the Newtonian physics, since the 
net gravity inside the layer is zero and there is, therefore, no force to balance the pressure gradient in this case. 
The gas has to fill in the whole interior of the layer. 

However, as was evidenced above, the gravitational attraction inside the layer is larger than zero and oriented 
toward the nearest point of the layer in the strongly relativistic spacetime. So, there is the agent that can balance 
the pressure gradient and can, therefore, yield the inner surface. Our inspection of several tens of found solutions 
indicates that the gravity not only can, but it always balances the gradient of pressure and creates the inner 
surface. The mechanism of occurrence of inner physical surface in general relativity is essentially the same as 
the mechanism of the occurrence of outer physical surface. 

The linkup of function ( )44g r  can be achieved by the finding of the appropriate value of input constant oν  
entering Equation (1.15). Can we also achieve a linkup of function ( )11g r  by the finding of an appropriate 
combination of input constants or , Fop  (implying oτ ), and ou  entering the system of Equations (1.12) and 
(1.13)? Let us now deal with this question. 

From the mathematical point of view, the link up occurs when the function ( )exp λ  describing the metrics in 
the object will equal its counterpart in the OSCH solution in outR . According to Equation (1.7), the former can  
be given as ( ) ( )exp 1 1 2out out outR u Rλ  = −  , where we denoted ( )out outu R u≡ . The OSCH solution gives  

( ) ( )exp 1 1out g outR R Rλ  = −  . Now, it is easy to demonstrate that these functions equal each other if 2uout = 
Rg. 

A search, if the equality 2 out gu R=  can occur, in the whole, three-dimensional phase space of initial values 
or , oτ , and ou  would be difficult. We reduce the number of the initial parameters to two starting the inte- 

gration in the maximum of τ -behavior, i.e. in the point where d d 0rτ = . According to Equation (1.12), the 
first possibility to obey this demand is the equality ( )sinh 2sinh 2o oτ τ=  or ( )2sinh 2 0τ = . One can prove 
that this is the condition for the (double) local minimum of function ( )rτ τ=  (assuming the physical demand 
that 0τ ≥ ). The local minima occur in borders inR  and outR . The second possibility to obey demand 
d d 0rτ = , which we utilize, is 

31 sinh 8sinh 3 .
6 2

o
o o o ou Kr τ

γ τ τ = − − + 
 

                     (1.23) 

Now we calculate the solutions for the sequences of initial or  and oτ . 
To find if ( )2 outu R  can acquire the value of gR , we construct the dependence of ratio ( )2g outR u  on the 

input value of Fermi impulse, Fpp , for several input distances, or , and inspect if the value of this ratio equals 
unity. Since the integration of Equations (1.12) and (1.13) always starts in the distance of the maximum pressure, 
i.e. with the value of input ou  given by Equation (1.23), also ou  is included into the considered set of initial 
values and, thus, the whole phase space of reasonable combinations of or , Fop , and ou  is considered in fact. 

The resultant dependencies of ( )2g outR u  on Fop  for a set of or  are shown in Figure 2 (each curve is for 
the given value of or , which is indicated, in the solar gravitational radii gR



, in the top left corner of the figure. 
The ratio is always a monotonous, increasing function of Fop  and approaches unity only in the limit of 

0Fop → , which implies the limit 0M → . So, the ratio seems to never equal to unity in the case of the object 
of a finite mass. In other words, there is no combination of initial parameters, which would lead to such a  
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Figure 2. The dependence of ratio Rg/(2uout) on the value of 
input constant pFO entering the numerical integration in the 
beginning for several sequences of solutions of Equations 
(1.12) and (1.13). The given sequence (curve in graph) is 
characterized by the same value of another input parameter ro. 
Its value is written in the left upper corner of plot. The unit of 
ro is the solar gravitational radius, gR



. The dotted horizon- 
tal line shows the limit, unity, that is attempted to be reached. 

 
behavior of ( )11g r  that its end-point in outr R=  would be, at the same time time, the point of the function 

( )11g r  of the OSCH solution. A suggestion to remove this problem and to achieve the continuity of ( )11g r  in 
outR  is presented in the next section. 

5. New Gauging in the Outer Schwarzschild Solution 
In this section, we present a suggestion of how to achieve the perfect linkup of the metric tensor describing the 
spacetime in the interior of hollow sphere with that in the corresponding OSCH solution in distance outr R= . 
Namely, the discontinuity in the ( )11g r  and ( )44g r  linkup found in the previous section, if not removed, 
would be a serious problem not only in course of an acceptability of newly found solutions for stable objects, 
but also in the course to physically accept the OSCH solution itself, because the active agent curving the 
spacetime is the mass accumulation in the object. So, the object and the solution describing its structure are 
primary and the description of surrounding spacetime should be an extension of the solution for the object. 

It however seems that the discontinuity can be only a problem occurring due to our not completely 
appropriate requirements in the gauging of the integration constants in the OSCH solution. In the OV problem, 
there is the system of three differential equations of the first degree (Equations (1.1)-(1.3)), which imply three 
integration constants. Two of these constants, 1K  and 2K , occur in the general form of g11 and g44 com-  
ponents of metric tensor. Specifically, ( ) 1

11 1 2g K K r −= − +  and 44 1 2g K K r= + . In the process of deriving  
the solution (see, e.g., [4]), we obtain equation d d d dr rν λ= − , which gives Kνν λ+ = − , after its integration. 
So, it produces the third integration constant, Kν . In the gauging of solution, the metrics is demanded to 
become flat in the limit of r →∞  (free space), i.e. 1 1K →  and 0Kν → . 

Analyzing in detail the relation for the line element, especially its form (1.4) written in the SI units, we see 
that the metrics is given not only by the metric tensor, but by the speed limit, c, as well. In the gauging of 
constant Kν , the implicit assumption that the speed limit is always equal to c is thus comprehended, in addi- 
tion. The metric tensor obviously describes the curvature and the maximum velocity characterizes the “intrinsic” 
properties of spacetime. (Or, we can include the factor of 2c  to 44g -component of metric tensor, which will 
then converge 2

44g c→  in the limit r →∞ . To retain all components of metric tensor dimensionless, we 
however prefer the representation with the intrinsic properties.) In the following, let us hypothetically assume 
that not only the metric tensor, but the intrinsic properties of spacetime and, therefore, the value of the speed 
limit can be shaped by a material object. Quantitatively, a significant change of the intrinsic properties can be 
expected at the relativistic, compact objects. 

Splitting the characteristics of spacetime to its curvature and intrinsic properties, the requirement of the flat, 
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Euclidean space for r →∞  can also be satisfied for 0Kν ≠ . If we convert this constant to another constant, 
cK , via relation 2 eK

cK ν= , the line element (1.4) for the non-zero Kν  (or 1cK ≠ ) can be given as: 
( )22 2 2 2 2 2 2d e d d sin d e dcs r r r K c tλ νϑ ϑ φ= − − − +                (1.24) 

Product cK c  in the last term of this relation can be regarded as the limiting velocity in the spacetime shaped 
by the object to which constant Kν  (and therefore cK ) is related. We denote this new limiting velocity by c . 

Changing the limiting velocity, the Schwarzschild gravitational radius has to also be changed, from gR  to 
gR , whereby 2

g g cR R K= . In the outer radius of object, the modified function eλ  is, thus, equal to 

( ) 121 g out cR R K
−

 −  . Since this must be, at the same time (according to the requirement of continuity), equal to  

( ) 11 2 out outu R −− , the quadrate of cK  is equal to 
2 .

2
g

c
out

R
K

u
=                                       (1.25) 

Ratio ( )2g outR u  can be calculated from the quantities M and uout obtained from the numerical integration. 
In all solutions obtained, it was valid that ( )2 1g outR u >  (see Figure 2. Hence, Kc > 1 and, consequently, 
c c>  and g gR R< . We note, the components 11g  and 44g  of the OSCH solution for Kc > 1 can be given as 

11

2

1 1 1 ,211 1g outg

c

g R uR
rK r r

= − = − = −
−− −





                         (1.26) 

2 2 2 2
44 2

2
1 1 1g g g out

c c c c
c

R R R u
g K K K K

r r rK r
    = − = − = − = −          



        (1.27) 

Interestingly, if the correction of the limiting velocity about factor cK  is done, it is not only possible to find 
the point of the OSCH-solution function ( )11g r  identical to the point of this function for the hollow sphere in 

outR , but the linkup of both functions is the continuous function. The derivatives of 11g  with respect to r of 
both OSCH-solution and hollow-sphere functions equal each other. In addition, the continuity also appears in 
the case of the linkup of component 44g . The success of the linkup of ( )11g r  and ( )44g r  is illustrated in 
Figure 3. It is intriguing that the modification of the single assumption ( 1cK =  is changed to 1cK ≠ ) enables 
to achieve three partial result: (i) it removes the displacement in ( )11g r , (ii) ( )11g r  becomes the continuous 
function in outR  as well as (iii) ( )44g r  becomes the continuous function in outR . 

Furthermore, it appears that the continuity exists not only in the case of objects with out gR R> , but for those 
with out gR R<  as well. The example is the first solution shown in Figure 3. The occurrence of the continuity 
for out gR R<  is possible due to the fact, noticed empirically, that there is always valid the inequality out gR R>  . 
According to the found solutions, the object never shrinks below the “modified” event horizon. 

The radial component of acceleration due to gravitational force in the limit of weak, Newtonian field, is given 
as ( ) 441 2 g r− ∂ ∂  when the unit of speed 1c =  and as ( ) ( )2

441 2 c g r− ∂ ∂  when the SI units are used. It 
appears that this acceleration is the same regardless the speed limit is c  or c . Namely, ( ) ( )2

441 2 c g r− ∂ ∂
 

( ) ( )2 22 1 gc R r r M rκ= − ∂ − ∂ = −  and ( ) ( ) ( )( ) ( )22 2 2
441 2 1 2 1c g cc g r K c R K r r M rκ − ∂ ∂ = − ∂ − ∂ = −  

 i.e. we obtain the same result in both cases. 

6. Concluding Remarks 
Every model of compact object should also provide a description of the metrics of spacetime in its interior as 
well as in the neighboring empty space. Otherwise the model cannot be regarded as complete and, therefore, 
physically well-acceptable. Considering a simple model of non-rotating, stable, compact neutron object, we 
pointed out the serious problem concerning the linkup of metrics at the outer physical surface. 

Nevertheless, a definitive conclusion based only on our result would be premature. The concerning scientific 
community does not widely know the problem, at the moment. As far as we know, the linkup has not been tried 
to be achieved in a variety of existing models of neutron stars, either. Nor was it considered at the spinning 
compact objects. In principle, there are two following ways in course to definitively solve the problem of the 
linkup. Our work contributes to both ways. 

(1) The universal relativistic speed limit will be retained. It supposes that some still unknown way of the 
successful linkup will be found in the future. It will be possible if the discontinuity of the metrics in outR  is not 
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Figure 3. Two examples of the successful linkup of components g11 (plot a) and g44 (b) of metric tensor inside 
two compact objects described by the concept of hollow sphere (thick curves) with g11 and g44 in the OSCH 
solution (thin, dotted curves), in r = Rout. 

 
attribute of every possible model of the compact object. The demand on the success in the linkup is then an 
important constraint for the models of compact objects. It discriminates between the realistic and pure 
theoretical (toy) models. The specific speed limit for given compact object suggested in Section 5 is, likely, only 
a theoretical possibility. 

(2) The continuous linkup can be achieved only in the way we suggested in Section 5. Since we showed how 
to make the continuous linkup, it is no longer any problem in this case. However, we have to accept the serious 
fundamental consequence: there is no universal relativistic speed limit, but every compact (and not only com-
pact, in principle) object shapes the adjacent spacetime and this action results in the specific speed limit for the 
spacetime dominated by the object. As well, we also have to accept the further consequences of this conse-
quence. These will however be a subject of future research if this, second, alternative is more proved to be the 
reality. 
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