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ABSTRACT 
This paper presents some biomedical applications 
that involve fluid-structure interactions which are si- 
mulated using the Immersed Finite Element Method 
(IFEM). Here, we first review the original and en- 
hanced IFEM methods that are suitable to model in- 
compressible or compressible fluid that can have den- 
sities that are significantly lower than the solid, such 
as air. Then, three biomedical applications are studi- 
ed using the IFEM. Each of the applications may re-
quire a specific set of IFEM formulation for its re- 
spective numerical stability and accuracy due to the 
disparities between the fluid and the solid. We show 
that these biomedical applications require a fully-cou- 
pled and stable numerical technique in order to pro- 
duce meaningful results.  
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1. INTRODUCTION 
In the past decade, the interest in developing novel simu- 
lation techniques for modeling fluid-structure interac- 
tions revived due to the increasing demands in capabili- 
ties to accurately and efficiently study biomedical appli- 
cations. Biomedical applications often involve fluid (blood) 
interacting with soft tissues. In some cases, the fluid can 
also be air, which has a disparate density compared to the 
soft tissues. 

Since soft tissues come in with all forms, shapes and 
sizes, it is more convenient to set up a simulation using 
non-boundary-fitted modeling technique. The non-boun- 
dary-fitted approaches avoid the re-meshing process by 
defining independent meshes for the fluid and solid re- 

spectively. The solid can freely move on top of the fluid 
grid without deforming the surrounding fluid. A widely 
used numerical approach for bio-interface applications is 
the immersed boundary (IB) method, which was initially 
proposed by Peskin to study the blood flow around heart 
valves [1-7]. The mathematical formulation of the IB 
method employs a mixture of Eulerian and Lagrangian 
descriptions for fluid and solid domains. In particular, the 
entire fluid domain is represented by a uniform back- 
ground grid, which can be solved by finite difference me- 
thod with periodic boundary conditions; whereas the sub- 
merged structure is represented by a fiber or boundary 
network. The interaction between the fluid and structure 
is accomplished by distributing the nodal forces and in- 
terpolating the velocities between Eulerian and Lagran- 
gian domains through a smoothed approximation of the 
Dirac delta function. The advantage of the IB method is 
that the fluid-structure interface is tracked automatically 
by following the displaced structural boundary move- 
ment, which removes the costly computations due to var- 
ious mesh update algorithms. Many other numerical al- 
gorithms have been developed that are inspired by the IB 
method, such as the immersed interface method (IIM) 
[8-14], the extended immersed boundary method (EIBM) 
[15] and the immersed boundary finite element method 
(IB-FEM) [16,17]. A review on several methods can be 
found in [18]. 

The problem existing in the non-boundary-fitted ap- 
proaches mentioned above is the lack of more realistic 
representations of the solid, which hinders the accurate 
assessment of the material behavior and its deformation. 
Since the solid and the fluid domains are fully-coupled, a 
slight inaccuracy in estimating the solid solution may 
even affect the surrounding fluid solutions. This problem 
may propagate over time and cause instabilities in the so- 
lution or convergence issues. The immersed finite ele- 
ment method (IFEM) [19-22] was developed to tackle 
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this problem by representing the background viscous flu- 
id with an unstructured finite element mesh and non-li- 
near finite elements for the immersed deformable solid. 
Similar to the immersed boundary method, the fluid do- 
main is defined on a fixed Eulerian grid. However, the 
solid domain is constructed independently with a La- 
grangian mesh, which makes it possible to use a more 
detailed constitutive model to describe the solid material 
such as linear elastic, hyperelastic and viscoelastic. This 
approach is particularly attractive to modeling biomedi- 
cal applications including stent deployment, blood flow 
in athersclerosis in arteries, etc. [23-31]. With finite ele- 
ment formulations for both fluid and solid domains, the 
submerged structure is solved more realistically and ac- 
curately in comparison with the corresponding fiber net- 
work representation in the IB method. The caveat, of 
course, is to remove the artificial fluid where the solid 
volume occupies. Since the solid moves at every time 
step, the artificial fluid also moves. Using the non-boun- 
dary-fitted approach, this volume can be easily identified. 
The fluid solver is based on a stabilized equal-order fi- 
nite element formulation applicable to problems involv- 
ing moving boundaries [32-34]. This stabilized formula- 
tion prevents numerical oscillations without introducing 
excessive numerical dissipations. It is also possible to 
assign sufficiently refined fluid mesh in local regions 
wherever necessary to obtain more accurate interfacial 
solutions. 

The two-way coupled approach, i.e. the interpolation 
and the distribution of the velocity and the forces be- 
tween the two domains, is quite robust when the solid be- 
haves very much like the fluid. However, if there exists 
high discontinuity in density as well as other intrinsic pa- 
rameters in the solid and the fluid, the force and the ve-
locity to be interpolated between the two fields can no 
longer provide consistent convergence. Therefore, a se- 
mi-implicit algorithm for the immersed finite element 
[35] was developed to alleviate the situations when large 
density difference and/or stiff solid material are used in 
the solid domain. The calculation of the fluid-structure 
interaction force is modified in order to achieve a larger 
stabilization range.  

The semi-implicit IFEM algorithm works well when 
the fluid dominates the dynamics of the system, in which 
the solid moves and deforms by following the fluid flow. 
However, when the solid dynamics or inertia must be 
taken into account, letting the solid follow the fluid 
movement may lead to unrealistic solid deformation and 
sometimes even causes the distortion of the solid mesh, 
because it is not appropriate to still approximate the solid 
behaviors using only the fluid velocity. A modified IFEM 
algorithm (mIFEM) [36] was then introduced to provide 
a more accurate prediction of the solid motion and defor- 
mation, which directly depend on the solid inertia effects, 

constitutive laws, and the fluid solutions near the fluid- 
structure interface. The results show that it produces 
more accurate and reasonable solid responses compared 
to the original IFEM algorithm. 

In this paper, we first provide a detailed derivation and 
descriptions of the mathematical formulations for IFEM, 
the semi-implicit IFEM, and the modified IFEM. Then, 
we will show several biomedical applications that used 
IFEM algorithms. The choice of the algorithm used for 
each application is dependent on the nature of the fluid- 
structure interactions involved, which comes clear as the 
readers go through the motivations of each of the algo- 
rithm development. 

2. KINEMATICS AND ASSUMPTIONS 
2.1. Kinematics 

Let us consider a deformable structure that occupies a 
finite domain, sΩ , which is completely immersed in a 
fluid domain fΩ , as illustrated in Figure 1. The fluid 
and the solid together occupy the entire computational 
domain Ω, and they intersect at a common interface 

FSIΓ , where “FSI” represents a line if Ω is a two-di- 
mensional domain or a surface if Ω is in three-dimen- 
sions. The interface FSIΓ  coincides with the solid boun- 
dary sΓ . The nomenclature involved can be partitioned 
into two categories: one belongs to the solid and the oth- 
er to the fluid. The notations associated with the solid 
have superscript s to distinguish them from those of the 
fluid f. 

2.2. Assumptions 
Before showing derivations, we first need to state three 
assumptions: 

1) The fluid exists everywhere in the domain, Ω. This 
assumption allows us to generate fluid and solid meshes 
and solve fluid and solid equations independently, thus 
avoiding frequent mesh updating schemes required to 
track the fluid-structure interface. In the IFEM, the solid 
immersed in the fluid domain occupies a physical space 
or volume in the computational domain. Therefore, when 
the solid domain, sΩ , is constructed, it overlaps with 
the entire domain Ω filled with fluid. Since both the solid 
and the “artificial” fluid co-exist in sΩ , it is also re- 
ferred to as the “overlapping domain”, Ω , i.e., sΩ = Ω , 
in later text. This is illustrated in Figure 1. This assump- 
tion may simplify the computations, but does not comply 
with the actual physics. Therefore, this “artificial” fluid 
effect in the solid domain must be eliminated when for- 
mulating the equations. 

2) The interface between the fluid and the solid must 
abide by the matching velocity (or no-slip) and traction 
boundary conditions. This assumption states that the sol-  
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Figure 1. Computational domain decomposition. 
 
id boundary moves together with the artificial fluid boun- 
dary or vice-versa, and the surface traction on both do- 
mains are equal and opposite. This assumption allows 
appropriate coupling to occur between the two domains. 

3) The solid must always remain immersed in the fluid 
domain to avoid inaccurate interpolations at the fluid- 
solid interface. 

2.3. Interpolations between Fluid and Solid  
Domains 

The solid and fluid meshes are constructed independently, 
therefore it is impossible to have the moving solid boun- 
dary nodes exactly coinciding with the fluid nodes in Ω. 
An interpolation function, φ , must be used to couple the 
fluid velocity field ( ),f f tv x  and the solid nodal velo- 
city ( ),s s tv X , such that:  

( ) ( ) ( )( ), , , d .s
s s f f f s s
i iv t v t tφ

Ω
= − Ω∫X x x x X   (1) 

Similarly, the interaction force calculated in the solid 
(overlapping) domain ( ), ,FSI s s tf X  is distributed to the 
fluid domain ( ), ,FSI f f tf x  as: 

( ) ( ) ( )( ), ,, , , d .FSI f f FSI s s f s s
i if t f t tφ

Ω
= − Ω∫x X x x X (2) 

This two-way coupling is necessary to ensure the sta- 
bility and convergence of the algorithm. There are mul- 
tiple ways of performing the interpolation process. The 
interpolation function, φ , can be acquired through the 
discretized Dirac delta function [37], the sharp finite ele- 
ment interpolation function [22], or the reproducing ker- 
nel interpolation function [20]. The details and the cha-
racteristics of each approach can be found and compar- 
ed in Ref. [22]. 

3. THE IMMERSED FINITE ELEMENT  
METHOD 

The derivation of IFEM starts from the principle of vir- 

tual work or the weak form, which is used for standard 
finite element analysis. The weak forms of the derived 
equations are equivalent to their strong forms if the weak 
form solution is smooth enough to satisfy at least 0C  
continuity. 

3.1. Derivation 
The virtue work in the solid domain with a test function, 

sδv  can be expressed as: 

,
d

d 0.
ds

s
s s s si
i ij j i

v
v g

t
δ ρ σ ρ

Ω

 
− − Ω = 

 
∫     (3) 

The terms in the bracket of Equation (3) describe the 
governing equation for the solid, where sσ  is the stress 
which is directly related to the internal force that is de- 
termined by the material types and properties. The term 

( )d ds s
iv tρ , or s suρ  , is the inertial force and s

igρ  is 
the body or external force. 

To include the artificial fluid related terms without 
contradicting the equilibrium, Equation (3) can be re- 
written as: 

( ) ( )

( )

, ,

,

d d
d d

d 0.

s

s s
s s f f s fi i
i ij j ij j

f s f f
ij j i i

v v
v

t t

g g

δ ρ ρ ρ σ σ

σ ρ ρ ρ

Ω


− + − −


− − − − Ω =

∫
   (4)  

The added terms are underlined. One can notice that 
they sum to zero. Since sΩ  and Ω  belong to the same 
physical space, we can rearrange this equation to yield: 

( ) ( ) ( ), ,

,

d
d

d

d
d 0.

d

s

s
s s f s f s fi
i ij j ij j i

s
s f f fi
i ij j i

v
v g

t

v
v g

t

δ ρ ρ σ σ ρ ρ

δ ρ σ ρ

Ω

Ω

 
− − − − − Ω 

 
 

+ − − Ω = 
 

∫

∫
 

(5)  
Equation (5) now contains two integral terms. The first 

term is the work done by the solid in the solid domain 
subtracting the work done by the artificial fluid. The se- 
cond term represents the work done by the artificial fluid 
in this overlapping domain. 

We define the first term in Equation (5) to be the in- 
teraction force:  

( ) ( ) ( ),
, ,

d
.

d

s
FSI s s f s f s fi

i ij j ij j i
v

f g
t

ρ ρ σ σ ρ ρ− = − − − − −   

(6) 
Since this interaction force is first evaluated in the so- 

lid domain on the solid nodal points, it is therefore label- 
ed as ,FSI sf . It represents the interaction force acting on 
the solid from the fluid. Once it is evaluated, the nodal 
forces are then distributed onto the fluid domain as 



L. T. Zhang / J. Biomedical Science and Engineering 7 (2014) 130-145 

Copyright © 2014 SciRes.                                                                       OPEN ACCESS 

133 

,FSI ff . This force, then, becomes the driving force for 
the fluid. Equation (5) becomes:  

,
,

d
d d .

d

s
s f f f s FSI fi
i ij j i i i

v
v g v f

t
δ ρ σ ρ δ

Ω Ω

 
− − Ω = Ω 

 
∫ ∫  (7)  

Using the no-slip assumption made in Assumption (2) 
which allows f s

i iv v=  in Ω , Equation (7) becomes: 

,
,

d
d 0.

d

f
f f f f FSI fi

i ij j i i
v

v g f
t

δ ρ σ ρ
Ω

 
− − − Ω = 

 
∫   (8)  

Inside the bracket of this equation is the momentum equ-
ation for the artificial fluid, where all the terms resem- 
bles the Navier-Stokes equation except the addition of 
the interaction force ,FSI ff . The interaction force only 
exists in the overlapping region and its immediate sur-
roundings. Its value diminishes to zero at places outside 
the region. 

Now, combining the work done by the real fluid and 
the artificial fluid described in Equation (8) with the ex- 
pansion of the total time derivative term,  

, ,d df f f f
i i t j i jv t v v v= + , we obtain 

( )
( )

,
, , ,

, , ,

d

d 0.

f f f f f f f FSI f
i i t j i j ij j i i

f f f f f f f
f i i t j i j ij j i

v v v v g f

v v v v g

δ ρ σ ρ

δ ρ σ ρ

Ω

Ω

 + − − − Ω 
 + + − − Ω = 

∫

∫
 (9)  

The two integral terms in Equation (9) can be combined 
into the entire computational domain, Ω , as: 

( ) ,
, , , d 0.f f f f f f f FSI f

i i t j i j ij j i iv v v v g fδ ρ σ ρ
Ω

 + − − − Ω = ∫  

(10)  
Since the fluid is homogenous and both physical and 
artificial fluids are assumed to be incompressible, we can 
write the complete governing equations of fluid as 

, 0,f
i iv =                  (11) 

( ) ,
, , , 0.f f f f f f FSI f

i t j i j ij j i iv v v g fρ σ ρ+ − − − =    (12) 

In the IFEM formulation, the term ,FSI f
if  can be in- 

terpreted as the external force applied to the fluid that is 
generated from the artificial fluid. It is important to note 
that since the solid nodal velocities follow that of the 
overlapping fluid grid velocities, the compressibility of 
the solid must follow that of the fluid as well. Therefore, 
the solid must be incompressible or at least nearly in- 
compressible when the fluid is incompressible. This re- 
striction is alleviated in the modified IFEM algorithm in 
Section 5. 

3.2. Outline of the IFEM Algorithm 
An outline of the IFEM algorithm can be illustrated as 
follows: 

1) Given the structural configuration sx  and the fluid 
velocity fv  from the previous time step 1n − , 

2) Evaluate the nodal interaction forces ,FSI sf  on so- 
lid material points, using Equation (6), 

3) Distribute the material nodal force onto the fluid 
grid, from ,FSI sf  to ,FSI ff  using interpolation function 
Equation (2), 

4) Solve for fluid velocities fv  and pressure fp  
implicitly using Equations (11) and (12) at current time 
step n , 

5) Interpolate the velocities in the fluid domain to the 
material points, i.e. from fv  to sv , as in Equation (1), 

6) Update the positions of the structure using 
s s t= ∆u v  and go back to step (1). 

4. SEMI-IMPLICIT IFEM 
In the IFEM, small time step has to be used to ensure the 
stability of the coupling procedure because the solid do- 
main and fluid domain are coupled to each other expli- 
citly at every time step. Since the Navier-Stokes equa- 
tions are solved implicitly, such small time step require- 
ment due to the coupling stability makes the whole algo- 
rithm numerically inefficient especially for the cases 
when the solid properties are very different from the flu- 
id. Semi-implicit coupling between the fluid and solid 
domain is then introduced in order to enlarge the stability 
range. 

4.1. Explicit Fluid-Structure Interaction Force 
Although the force or the work is balanced seamlessly in 
the strong and weak forms at every time step, the fluid 
domain is numerically balanced with the fluid-structure 
interaction force evaluated based on the solid configura- 
tion of the previous time step. Therefore, the coupling 
between the two domains is considered explicit. In Equa-
tion (6) both the acceleration term ( )su  and the solid 
internal stress term s∇⋅σ  are evaluated based on the 
solid nodal velocity which is interpolated from the fluid 
velocity of the previous time step, 1n − :  

( ) ( )
( )

1 1,

  in  .

n nFSI s s f s s f

s f s

ρ ρ

ρ ρ

− − = − − + ∇ ⋅ −∇ ⋅ 

+ − Ω

f u σ σ

g
 (13) 

with two of the terms evaluated from time step 1n − , 
the interaction force is effectively ( ) 1, nFSI s −

f . It is then 
passed onto the Navier-Stokes momentum equation to 
solve for v  and p  at the current time step n :  

( ) ( ) ( ) ( ) ( )

( )

2
,

1,

1

1 0  in  .

n n n n nf f f f f
t f

nFSI f
f

p ν
ρ

ρ
−

+ ⋅ ∇ + ∇ − ∇

− = Ω

v v v v

f
 (14) 

Noting that every term in Equation (14) is solved in 
the current time step n  except the last term where the 
interaction force is evaluated from the previous time step 

1n − . The last term can be related to the current interac- 
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tion force by taking the Taylor's expansion at time step n:  

( ) ( ) ( ) ( )1, , , 2
, .

n n nFSI f FSI f FSI f
t t O t

−
= − ∆ + ∆f f f  (15)  

The error due to the explicit coupling can be approx- 
imated by substituting Equation (15) into Equation (14):  

( ) ( ), 2
,

1= .Coupling FSI f
tfError t t O t

ρ
∆ + ∆f    (16)  

Based on the definition of the fluid-structure interac- 
tion force in Equation (13), each term of this fluid- 
structure interaction force contributes to the accumula- 
tive coupling error. These terms are proportional to the 
density ratio 1s fρ ρ − , the stiffness ratio fK ρ  and 
the gravity ratio ( )1s f gρ ρ − , respectively. Here, K is 
an equivalent Young’s modulus of the solid representing 
the stiffness of the solid material. If any of these terms 
are large, the resulting error due to the coupling would be 
large. These large errors often result in instability or di- 
vergence of the solution. 

4.2. Semi-Implicit Fluid-Structure Interaction  
Force 

To alleviate the numerical issues caused by the restric- 
tions in time step size of explicit coupling and the con- 
vergence problem due to highly disparate properties be- 
tween the fluid and the solid domains, a semi-implicit 
approach is introduced [35]. In the semi-implicit algo- 
rithm, the interaction force ,FSI sf  is re-defined in the 
solid domain, which only includes the internal forces for 
the fluid and solid from the original definition in Equa-
tion (13), such that:  

,   in  ,FSI s s f s= ∇ ⋅ −∇ ⋅ Ωf σ σ        (17) 

The rest of the terms in the original explicit formula- 
tion Equation (13), namely, the inertial and external force 
terms, are now incorporated into the fluid equations. The 
newly defined sFSI ,f  is distributed to the fluid domain 
as in the original IFEM. The Navier-Stokes equations now 
must also be re-defined as follows:  

0,f∇⋅ =v                (18) 

( ) 2 ,
,   in   ,f f f f f FSI f
t pρ µ ρ+ ⋅∇ = −∇ + ∇ + + Ωv v v v f g

(19) 
where ρ  is defined as:  

( ) ( ).f s f Iρ ρ ρ ρ= + − x          (20) 

Here, the indicator function, ( )I x , is to identify the 
real fluid region fΩ , the artificial fluid region or the 
solid region sΩ , and the fluid-structure interface 

FSIΓ , 
in the computational domain Ω . The value of the indi- 
cator function is ranged between 0 and 1 where it is 0 if 
an entire element belongs to the fluid and 1 if an entire 

element belongs to the solid. This newly revised fluid’s 
momentum equation combines the inertial and the gravi- 
ty terms in the original FSI force equation. 

To further improve the algorithm, we enhance the in- 
dicator function so that it can accommodate high density 
ratios between the fluid and the solid. This means that 
the interfacial elements have the transitional indicator va- 
lues. To do so, the elements that contain the fluid-solid 
interface have varying indicator value that transits from 0 
to 1 by solving Poisson’s equation [38]:  

2 ,f∇ = ∇⋅I G              (21) 

where fG  is interpolated by  

( )d .f s s
s φ

Γ
= − Γ∫G n x x           (22) 

Here, n  is the unit outward normal of the solid in- 
terface and ( )sφ −x x  is the same interpolation func- 
tion used by the velocity interpolation function and force 
distribution. The boundary conditions are given as,  

( ) 0,   in  fI = Ωx             (23a) 

( ) 1,   in  .sI = Ωx             (23b) 

Since the fluid-solid interface moves, this indicator 
function is updated at every time step based on the rela- 
tive position of the solid domain in the entire computa- 
tional domain. Comparing to the original IFEM algo- 
rithm, the inertial and the external force terms in the 
original interaction force formulation are now been con- 
sidered in the governing equation and can be evaluated 
iteratively with the most updated velocity field. This is, 
therefore, considered as semi-implicit IFEM algorithm. 

In this formulation, the solid internal stress is still de- 
pendent on the fluid solutions from the previous time 
step. Even though this term is evaluated explicitly, the 
semi-implicit scheme still significantly improves the 
convergence of the solution when the solid material is 
very stiff. If we re-visit the coupling error Equation (16), 
the magnitude of the coupling error in the internal stress 
term is proportional to the stiffness ratio K ρ . Noting 
that in the semi-implicit form, ρ  is defined in Equation 
(20); the stiffness ratio here is in fact sK ρ . For most 
of the cases, the solid density will be larger than the fluid 
density, which reduces the coupling error comparing to 

fK ρ  from the original explicit form. Therefore, al- 
though the solid internal force is still computed explicitly, 
the coupling error for the semi-implicit scheme is smaller 
than the explicit scheme. 

Overall, this semi-implicit scheme relaxes the small 
time step requirement and ensures the stability of the FSI 
force estimation. In particular, this algorithm can handle 
a much larger range of fluid and solid properties without 
sacrificing the computational time. 
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4.3. Outline of the Semi-Implicit IFEM  
Algorithm 

An outline of the semi-implicit IFEM algorithm is illu-
strated as follows: 

1) Given the structural configuration sx  and the fluid 
velocity fv  from time step 1n − , 

2) Evaluate the nodal semi-implicit interaction forces 
,FSI sf  on the solid material points, using Equation (17), 

3) Distribute the material nodal force onto the fluid 
grid, from ,FSI sf  to ,FSI ff  using delta function Equa- 
tion (2), 

4) Obtain the indicator field by solving Equation (21), 
5) Solve for fluid velocities fv  and pressure fp  

implicitly using Equations (18), (19) and (20), 
6) Interpolate the velocities in the fluid domain to the 

material points, i.e. from fv  to sv , as in Equation (1), 
7) Update the positions of the solid nodes using 

s s t= ∆u v  and go back to step (1). 

5. THE MODIFIED IFEM 
Although the semi-implicit coupling scheme alleviates 
some convergence issues when the fluid and solid have 
large property differences, one can notice that the solid 
dynamics is still been controlled by the artificial fluid. 
For cases where the solid behavior dominates the entire 
system or high Reynolds number flows using the IFEM 
algorithm may lead to unrealistic solid deformation and 
may even cause the severe distortion of the solid mesh, 
because it is not appropriate to approximate the solid be- 
havior based on the fluid velocity by letting s f=v v . 
The idea of the modified IFEM is to let the artificial fluid 
to behave more like the solid, or letting f s=v v . Doing 
so allows the solid governing equation to be solved rather 
than be evaluated. Since the artificial fluid is not real any- 
way, its role is to produce the same velocity as the solid 
so that the real fluid realizes the existence of the solid. 
This modified IFEM algorithm allows the solid behavi- 
ors to be estimated more accurately and have stronger in- 
fluences in the fluid-structure interactions. The detailed 
rationale and derivations, as well as validation cases 
were presented in [36]. 

5.1. Derivation 
In order to find the solid displacement field su  and the 
velocity field sv , the solid equation is solved,  

, ,   in  .s s s s
i tt ij juρ σ= Ω            (24) 

The solid stress sσ  is evaluated using the solid strain 
tensor sε ,  

, ,s s s
kl ijkl ij ijkl ij tcσ ε η ε= +            (25) 

where ( ), ,1 2s s s
ij i j j iu uε = + . Different combinations of 

ijklc  and ijklη  provide various choices of solid material 
constitutive laws such as linear elastic, viscolinear elastic, 
hyper-elastic, etc. 

The boundary condition of the solid domain can be ap- 
plied using either Dirichlet boundary condition described 
in Equation (26) or Neumann boundary condition de-
scribed in Equation (27).  

   on  .s f sq
i i iu q v t= = ∆ Γ           (26) 

   on  .s f sh
ij j i ij jn h nσ σ= = − Γ         (27) 

Here, n is the outward normal of the fluid-structure 
interface FSIΓ . These boundary conditions are evaluated 
based on the fluid velocity ( )fv  and stress ( )fσ  on 
the fluid-structure interface solved from the fluid equa- 
tions at previous time step. t∆  is the time step size. 

Once the solid solution is obtained, the next step is to 
make the artificial fluid to follow the solid, i.e. solving 
the artificial fluid governing equation so that f sv v=  in 
Ω . To accomplish this, the artificial fluid property, such 
as the density, should mimic that of the solid. 

The continuity equation of the artificial fluid ( )Ω  
can be written as,  

( )
,

0   in  .
s

s f
i i

v
t
ρ ρ∂

+ = Ω
∂

          (28) 

It is also necessary that the artificial fluid has the same 
compressibility ( )sκ  as the solid. Therefore, the artifi- 
cial fluid is described as a pseudo-compressible fluid:  

1 1 ,
s f

s s

p
t t
ρ

ρ κ
∂ ∂

=
∂ ∂

             (29) 

where the compressibility of the solid sκ  is used for the 
compressibility of the artificial fluid. The continuity equ- 
ation in the artificial fluid domain ( )Ω  can be even- 
tually written as follows,  

,
1 0   in  .

f
f

i is

p v
tκ

∂
+ = Ω

∂
           (30) 

Using the same semi-implicit interaction force defini- 
tion and the indicator function as mentioned in the semi- 
implicit IFEM algorithm, the continuity and momentum 
equations of the fluid domain, which combines the real 
fluid domain and artificial fluid domain, can be written 
as follows, 

( ) ,
1 0   in  .

f
f

i is

p I v
tκ

∂
+ = Ω

∂
x         (31) 

,
, ,    in  .

f
f f f FSI fi
j i j ij j i

v
v v f

t
ρ ρ σ
∂

+ = + Ω
∂

     (32) 

To enforce the assumption f s=v v  in Ω , a correc- 
tion force is introduced and added into the fluid-structure 
interaction force. The correction force, ∆vf  is defined as,  
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    in  .
s f

s sD D
Dt Dt

ρ∆  
= − Ω 

 
v v vf       (33) 

The correction force is effectively the difference be- 
tween the material derivative of velocity in the solid and 
the artificial fluid so that both the inertial and convective 
acceleration forces are accounted for. It would be zero if 
the artificial fluid follows the solid exactly. Including this 
correction force the fluid structure interaction force is re- 
defined as,  

,    in  .FSI s s s∆= ∇ ⋅ −∇ ⋅ + Ωvf σ σ f        (34) 

5.2. Outline of the Modified IFEM Algorithm 
The algorithm of the modified IFEM is outlined as the 
following: 

1) Solve the solid governing equation Equation (24) 
with the boundary conditions interpolated from the fluid 
field in the previous time step, 

2) Evaluate the nodal semi-implicit interaction forces 
,FSI sf  on the solid material points, using Equation (34), 

3) Distribute the material nodal force onto the fluid 
grid, from ,FSI sf  to ,FSI ff  using interpolation func- 
tion, Equation (2), 

4) Obtain the indicator field by solving Equation (21), 
5) Solve for fluid velocities fv  and pressure fp  im- 

plicitly using Equations (31) and (32), 
6) Interpolate the interface velocities and stress from 

the fluid domain to the material points, Equations (26) 
and (27), go back to step (1). 

6. EXAMPLES 
In this paper, three biomedical applications are demon- 
strated. The first example is a blood cell traveling through 
a bifurcated blood vessel; the second example is to si- 
mulate the deployment of an angioplasty stent, which 
was first presented in [31]; the third example is to study 
the vocal folds vibration. The first two examples used the 
original IFEM algorithm where the fluid is blood and the 
solid is soft tissues. We used the mIFEM algorithm for 
the third example where the density ratio between the 
fluid (air) and the soft tissue is large.  

6.1. Red Blood Cells in a Bifurcated Vessel 
Understanding the behavior of red blood cell (RBC) flow- 
ing in blood vessels, especially when bifurcation happens, 
is important in estimating the nonuniform hematocrit dis- 
tribution that would affect the microvasular oxygen dis- 
tribution, the effective viscosity of blood in microvessels 
and the distribution of other metabolites. Learning the 
behaviors of diseased RBCs that have abnormal rigidity, 
radius and shape, can be helpful in designing medical 
therapy. Using the established IFEM method, we can 

simulate the motion and the deformation of the red blood 
cell within the vessels, and study in detail how the geo- 
metry of bifurcation and fluid field affect and direct 
which daughter branch the RBC flows. 

The geometry of a bifurcated blood vessel is shown in 
Figure 2, where 0w  is the diameter of the mother vessel; 

1w  and 2w  are the diameters of the daughter vessels on 
the top and the bottom, respectively; 1β  and 2β  are the 
respective branching angles of the daughter vessels; the 
branching fillet radii 0r , 1r  and 2r  are given as 3μm  
to make the vessel branching transition smooth; 0Q , 1Q  
and 2Q  represent the flow rate of each vessel. A RBC is 
placed near the inlet of the vessel. The radius of the RBC 
is also given as 2.66 μm. The incoming velocity of the 
mother vessel is set to be a constant as 0.1 cm/s. The 
branching angles 1β  and 2β  are set to be equal and 
constant, 1 2 π 4β β= = . In this study, we set the diame- 
ter of the mother branch to be 0 8 μmw = , and consider 
two sets of diameter ratios, 1 2dr w w= , to be 1 and 1.44. 
When the diameter ratio is 1, it is considered as symme- 
tric bifurcation; when it is not 1, then it is considered as 
asymmetric.  

Figures 3 and 4 represent the blood cell behaviors 
when encountering bifurcation in symmetric and asym- 
metric vessels with different original positions and ratios 
of flow rate of each daughter vessel. Based on Figure 3 
we can notice that although the daughter branches are 
symmetric in the geometry, due to the asymmetric boun- 
dary conditions where the ratio of the flow rates for the 
two daughter branches is 1 2 3Q Q = , the blood cell 
tends to move to the daughter branch with a higher mass 
flow rate. When the daughter branches are asymmetric in 
geometry but with the same mass flow rate 1 2 1Q Q = , 
as shown in Figure 4, the blood cell moves to the one 
with a smaller cross section area, which is due to the 
higher average velocity in that daughter branch. 

A multi-blood cell case is also simulated and the result 
is shown in Figure 5. The cell-to-cell interaction can be  
 

 
Figure 2. Bifurcation geometry. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. A RBC owing in a symmetric bifurcated 
vessel with 1 2 3Q Q = . (a) t = 0.008 s; (b) t = 0.012 s; 
(c) t =0.016 s; (d) t = 0.020 s. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. A RBC flowing in an asymmetric bi- 
furcation vessel with 1 2 1Q Q = . (a) t = 0.00 s; (b) 
t = 0.01 s; (c) t =0.02 s; (d) t = 0.03 s. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Two RBCs in a symmetric bifurcation. (a) 
t = 0.004 s; (b) t = 0.008 s; (c) t =0.012 s; (d) t = 
0.018 s. 

thought as two parts: 1) one cell changes the deformation 
and motion of the other cells by directly contacting each 
other; 2) one cell affects the other cells indirectly by 
changing the surrounding fluid field. For this case, in- 
stead of specifying the flow rate ratio between the daugh- 
ter vessels, a constant inlet flow rate is given. Therefore, 
by simulating two RBCs laying in a line profile going 
through the symmetric bifurcation together, we are able 
to see this indirect cell-to-cell interaction. From these si- 
mulation results, the IFEM is proved to be suitable to 
simulate the red blood cell motion and deformation in 
microvessel bifurcation. 

6.2. Deployment of Angioplasty Stents 

For individuals with an occlusive vascular disease, blood 
flowing to an organ or to a distal body part is impaired by 
narrowed arteries with fatty deposits or calcium accumu- 
lations. Angioplasty was introduced by Dr. Andreas Gru- 
entzig in the mid to late 1970’s and is widely used today. 
The area of arterial blockage is dilated with the help of a 
catheter that has an inflatable small balloon at its tip. 
Then, the plaque is squeezed along the artery wall. A 
decade later, stenting was introduced by Dr. Julio Palmaz 
in 1988 to improve the angioplasty procedure. Like an- 
gioplasty, coronary stents physically open the channel of 
constricted arterial segments. During stenting, a catheter 
delivers a balloon and a surrounding stent to the location 
of the blockage area. The balloon deploys the stent, re- 
mains inflated for 30 seconds and then is deflated. At the 
end of the process, the expanded stent is embedded into 
the wall of the diseased artery and holds it open. 

Here, we mainly focus on the deployment process of 
balloon-expanding stents. Balloon expandable stents are 
typically made of stainless steel tubing mounted over an 
angioplasty balloon and then plastically deformed to their 
final diameter by high pressure balloon inflation. 

Colombo et al. [39] and Goldberg et al. [40] demon- 
strated that stent apposition was inappropriate in up to 87% 
of the cases using conventional balloon implantation te- 
chniques. Therefore, researchers started to study the role 
of stent deployment in order to define an optimal dep-
loyment technique. Deviations from normal blood flow 
pattern may favor the initiation and progression of a va- 
scular wall lesion. These conditions are certainly fulfilled 
when a stent is deployed in the vessel wall, completely or 
incompletely. Segers et al. [41] showed experimentally 
the importance of optimal stent deployment for steady 
state condition and pulsatile flow by studying the most 
important stents parameters that influence hemodynam- 
ics. Russo et al. [42] suggested that the use of high pres- 
sure non-compliant balloon stent deployment techniques 
give better initial results. However, these stents provoke 
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an increased intimal growth due to more profound and 
deep vascular injury. Shear stress, exerted on both the va- 
scular wall and on the blood constituents, is considered 
to play an important role in restenosis. Therefore, besides 
biocompatibility issues, the design of both the stent and 
delivery mechanisms should receive the necessary atten-
tion during the development process of the future gener-
ation of stents. 

In our previous work [27], we built a computer model 
and simulated a balloon expandable stent interacting with 
its surrounding fluid using the immersed finite element 
method. The initial configuration of the balloon and stent 
are designed and discretized using SolidWorks [43] and 
imported into our IFEM code. With the previously deriv- 
ed computational algorithm, the displacement and stress 
distribution of the stent and the velocity profile of the 
fluid domain can be obtained and analyzed. A balloon is 
designed with deflated tips at its two ends in its initial 
undeformed configuration, as shown in Figure 6(a). A 
catheter is located inside the balloon to apply appropriate 
pressure to inflate the balloon. The balloon has a length 
of 15 mm, an outer diameter of 1.54 mm, and a thickness 
of 0.04 mm. Both ends of the balloon are fixed in all 
directions as shown in Figure 6(b). 

The balloons used for stenting are made of very stiff 
polyamide (nylon) material [44,45]. The balloon is mod- 
eled as hyperelastic material with Mooney-Rivlin de- 
scription in the simulation. The parameters and material 
properties used for the balloon are summarized in Table 
1. 

A stent is a cylindrical and symmetrical assembly of 
inter-connected diamond-shaped members. In this par- 
ticular model, we use the Medtronic AVE Modular stents 
S7 (Medtronic AVE, Inc., Santa Rosa, CA, USA), Figure 
7(a). Although this stent is no longer been widely used, it is 
still a good representation of a typical geometrical shape 
of a stent, the model can be simply modified to other ex- 
pandable devices. The stent, made of wires that form a 
diamond shape as shown on Figure 7(b), has an outer 
diameter of 1.64 mm. The stent is made of 16 identical 
structural members with a total length of 8 mm before its 
expansion. The cross-section of the wire has a width of 
0.08 mm. The structural members are connected peak-to- 
peak at their tips. Balloon-expandable stents are made 
from materials that can be plastically deformed through 
the inflation of a balloon. An ideal stent should have low 
yield stress (to make it deformable at manageable bal- 
loon pressures), high elastic modulus (for minimal re- 
coil), and high strength through expansion. The most 
widely used material for this type of stents is stainless 
steel, typically 316 L, a particular corrosion-resistant ma- 
terial. For stents the fatigue resistance is of high impor- 
tance. Therefore, the microstructure requires very small  

Table 1. Parameters and material properties used for the bal- 
loon. 

5929 nodes Length = 15 mm Density= 3000 kg/m3 

17,846 elements Diameter = 1.54 mm Shear modulus = 300 Pa 

 Thickness = 0.04 mm Bulk modulus = 1500 Pa 

 

 
(a) 

 
(b) 

Figure 6. Balloon geometry setup. (a) Initial balloon geome- 
try before inflation; (b) Fixed boundaries applied at the two 
ends of the balloon. 
 

 
      (a)                        (b) 

Figure 7. Design of a Medtronic AVE Modular stents S7. 
 
grain sizes. The typical average grain sizes of approx- 
imately 25 μm exist in stainless steel stents and 8 to 9 
grains over the strut wall thickness are desired [46]. We 
assume a clean homogeneous material with a uniformly 
fine grain size and a near 100% density. Stainless-steel 
alloys are usually preferred to design stents because they 
have been proven to be biocompatible for long-term im- 
plants in the human body and easily deformable in fully 
annealed condition. The stent is discretized using 9.979 
nodes and 16.888 elements. A summary of the properties 
and parameters used for the stent is listed in Table 2.  

Finally, the stent is mounted around the balloon as 
shown in Figure 8. The stent is placed at the center of 
the balloon. At this point, several assumptions must be 
made: 1) the force applied on the balloon is transferred 
directly to the stent; 2) there is no fluid between the bal- 
loon and the stent; and 3) the contact surface between the 
balloon and the stent is frictionless.  

The fluid domain represents blood in the artery where 
the stent is deployed. We consider a straight artery seg- 
ment with a length of 16 mm and a lumen diameter of  
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Table 2. Parameters and material properties used for the stent. 

9979 nodes Length = 8 mm Density = 4000 kg/m3 

16,888 elements Diameter = 1.64 mm Shear modulus = 300 Pa 

 Thickness = 0.08 mm Bulk modulus = 1500 Pa 

 

 
Figure 8. Initial configuration of catheter, ballon, and stent. 
 
4.5 mm. Our computational model assumes that the fluid 
is everywhere in the domain. Although the balloon is not 
inflated with the same fluid as the surrounding blood, a 
liquid (with color) that has similar properties as the blood 
is normally inserted into the balloon for easier visualiza- 
tion in surgeries. Therefore, it is a reasonable assumption 
to have homogeneous fluid in the entire computational 
domain. Blood is an incompressible fluid consisting of a 
suspension of deformable particles (blood cells, platelets, 
etc.) in a Newtonian liquid (plasma). Except within the 
microcirculation, blood can be considered homogeneous 
with constant density and viscosity. The parameters and 
properties used for the fluid domain to perform the si- 
mulation can be found in Table 3.  

The crimped stent is deformed by a radial force from 
the balloon. Experiments performed by Dumoulin and 
Cochelin [47], and Moore and Berry [48] showed that, 
except at the tips, the structure is almost uniformly di- 
lated and finally expanded. Thus, it seems justifiable to 
model expansion by considering a long structure under 
uniform radial internal pressure. This pressure difference 
is applied from the centerline towards the outer diameter 
of the balloon and the artery wall, as shown on Figure 9. 
The applied inflation pressure is dependent on the struts 
of the wires and the specific material used. The total in- 
flation pressure for the balloon is equal to the sum of the 
pressure required to deform the balloon material and to 
deploy the stent. During the entire simulation the infla- 
tion pressure is constant and equals to 100 g/cm2.  

Our primary goal is to study the deformation of the 
stent during its deployment. Figure 10(a) shows the dep- 
loyment of the stent during balloon expansion at different 
time steps. The pressure applied onto the fluid inflates 
the balloon and the balloon provides a force onto the 
stent, which enables the stent to expand radially outward 
until it contacts the inner surface of the artery wall.  

During deployment, the diameter of the stent increases 
from 1.64 mm to 2.82 mm. As expected, the stent de- 
forms uniformly in its radial direction, expanding by 1.7 
times its initial diameter for our given material. Figure 
11(a) shows that the expansion of the stent in its radial 
direction follows a linear variation. 

Figures 10(a) demonstrates how the diamond shape of  

Table 3. Parameters and properties used for the fluid domain. 

4348 nodes Length = 16 mm Density = 1000 kg/m3 

20,568 elements Diameter = 4.5 mm Viscosity = 0.01 N∙s/m2 

 

 
Figure 9. The initial conditions applied to the fluid domain: 
constant pressure difference (P2 − P1) is applied from the ca- 
theter to the fluid boundaries. 

 

 
(a) 

 
(b) 

Figure 10. Stent configuration and von Mises stress map du- 
ring stent deployment. (a) Stent deployment process; (b) Von 
Mises stress during stent deployment. 
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(a) 

 
(b) 

Figure 11. Stent diameter and maximum von 
Mises stress vs. time during stent deployment. 
(a) Stent diameter variation during the deploy- 
ment; (b) Maximum Von Mises stress varia- 
tion during the deployment. 

 
the stent deforms during the deployment. Compared to 
experiments and observations of deployment of a real 
stent, our three-dimensional computational model gives a 
realistic representation of stent expansion during balloon 
inflation. 

The strength and the long term in-vivo performance of 
the stent can be determined from the stress distributions 
with the goal of minimizing vascular injury. The Von 
Mises stress distribution along the stent is reported at 
different time steps in Figure 10(b). The stress distribu- 
tion is uniform longitudinally along the stent and varies 
during deployment. The highest stress values appear at 
the final stage of expansion, and the peak Von Misses 
stress follows a linear variation during the entire simula- 
tion as shown on these values are critical for recoil and 
failure analysis. It can be concluded that the stress dis- 
tribution is a function of applied pressure, balloon and 
stent material properties, fluid properties, and stent geo- 
metry. Figure 12 shows the radial fluid velocity profile 
during the deployment of the stent. This profile repre- 
sents better how the applied uniform pressure acts on the 
balloon in the radial direction. Figure 13 shows the mag- 
nitude and profile of the velocity in the transverse plane. 
Both figures demonstrate a uniform velocity distribution 
in the direction of expansion, illustrating how well our 
model simulates the expansion mechanism through ap- 
plied pressure difference.  

 
Figure 12. Radial fluid velocity profile at different time steps. 
 

 
Figure 13. Velocity profile in the longitudinal direction during 
expansion at different time steps. 

6.3. Human Vocal Folds Vibration during  
Phonation 

Voice is produced by the vibration of vocal folds. The 
vocal folds are a pair of pliable structures located within 
the larynx at the top of the trachea, see Figure 14. The  
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Figure 14. Human vocal folds. 

 
human vocal folds are roughly 10 - 15 mm in length and 
3 - 5 mm thick. The human vocal folds are laminated 
structures composed of five different layers: the epithe- 
lium, the superficial layer (SLP), the intermediate layer 
(ILP), the deep layer and thyroarytenoid muscle, shown 
in Figure 14. 

An accurate numerical simulation of the vocal folds 
vibration can help us obtain a better understanding of the 
dynamics of the voice production in human beings. Due 
to the complicated nature of this problem, the numerical 
model has to fulfill the following requirements. First, the 
numerical model has to represent completely a coupled 
fluid-structure interaction system. Second, the numerical 
model should perform well when there exists large densi- 
ty ratio between the fluid and structure because the den- 
sity of the vocal fold muscle is close to water and the 
density ratio between the vocal fold muscle and the air- 
flow is about 1000. Third, the motion and deformation of 
the structure have to be predicted accurately with com- 
plicated geometry and material descriptions because the 
vocal folds have complex shape and layer-structures and 
are viscoelastic materials. The mIFEM is a perfect nu- 
merical method to perform the simulation of this com-
plex problem. 

The geometry of the self-oscillated vocal folds model 
is shown in Figure 15. Since sound is generated by the 
compression of air, the working fluid is taken as com- 
pressible air governed by the ideal gas law at room tem- 
perature. The density of the fluid is  

3 31.3 10 g/cmfρ −= ×  and the viscosity of the fluid is 
41.8 10 g/cm sµ −= × ⋅ . 

The vocal fold muscle is considered as isotropic vis- 
coelastic material. The vocal fold is assumed to have 
layered structure, outside cover layer (red) and inside 
body layer (green). The cover layer is much softer than 
the body layer. For the cover layer the Young’s modulus 
is 10 kPaE = , whereas 40 kPaE =  for the body layer. 
The densities of both cover and body layer are assumed 
to be the same as 31.0g/cmsρ = . The Poisson ratio is 

0.3ν = . Two vocal folds have the exact same geometry  

 
Figure 15. 2-D two-layer self-oscillated vocal folds model. 
 
and material description, sit in the fluid channel symme- 
tric about the central line. A constant total pressure 
boundary condition of 1 kPainP =  is applied at the 
channel inlet and the outflow boundary is given at the 
channel exit. No-slip and no-penetration boundary con- 
ditions are applied on the channel walls and on the vocal 
fold surfaces.  

A snapshot of the fluid velocity field at two typical in- 
stances during a steady vibration cycle are shown in 
Figure 16. One can see that the fluid field is not symme- 
tric about the central line during the vibration. The glottal 
jet tends to attach to one side of the vocal folds randomly, 
which is the so-called the “Coanda effect” [49,50]. 

The asymmetrical airflow causes an asymmetrical 
pressure distribution in regions near the vocal folds and 
change in the vibration pattern. The minimum distance 
between the vocal fold surface and the central line is 
measured to represent the half glottis width ( )Gw , 
shown in Figure 17, where Gwup and Gwdown represent 
the opening width for the up and down vocal folds, re- 
spectively. This figure shows that the simulation captures 
the vocal folds to have a repeated opening and closing 
process. When the glottis width is zero or near-zero, then 
the vocal folds are closed, there is no air flowing through. 
The pressure starts to build up in the upstream of the 
vocal channel. As the pressure increases, it starts to push 
the vocal folds to open and eventually reaches a maxi- 
mum glottis width, the high pressure is released. The 
vocal folds then return back to its closed position, and 
the whole process restarts. The glottis width for the up 
and down vocal folds do not equal each other over cycles, 
indicating that the vocal folds motion is asymmetric al- 
though the vibrational frequency is found to be the same. 
The vibrational magnitude is slightly off from each other. 
To find out the vibration frequency, FFT is performed on 
the up and down glottis widths and the volume flow rate, 
Q . The power spectra are plotted in Figure 18 where the 
frequency for these three variables are the same and 
found to be 234 Hz, which is in the expected range of a 
female vocal fold vibrational frequency.  

7. CONCLUSION 
In this paper, we reviewed IFEM algorithms that had  
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Figure 16. Fluid velocity field at two typical instances during 
steady vibration. 

 

 
Figure 17. Half glottis width of top and bottom vocal folds. 

 

 
Figure 18. Spectrum plot of flow rate and half glottis width 
of the top and bottom vocal folds. 

 
been developed over the past decade. The IFEM method 
is a numerical scheme that adopts the non-boundary-fit- 
ted mesh approach and fully couples the fluid-structure 
interaction by interpolation of the interacting domains. 

The fluid and solid domains are solved independently us- 
ing finite element method and coupled with each other 
within one time step through fluid-structure interaction 
force. The original IFEM algorithm is considered as ex-
plicitly coupling for the fluid and solid, which can lead to 
instability issue when time step is not sufficiently small. 
The semi-implicit IFEM algorithm tackles this problem 
by modifying the FSI force and adopting the concept of 
the indicator function. It extends the stability range of the 
numerical scheme and allows us to consider the fluid- 
structure interaction problems when the fluid and solid 
properties are very different from each other, for example 
high density ratio between the solid and fluid, and the 
solid with relatively large stiffness. For high Reynolds 
number flows,, the modified IFEM algorithm performs 
better due to its accurate description of the solid motion 
and deformation through capturing the dynamics of the 
solid motion. Three biomedical applications are studied 
using these IFEM algorithms to simulate soft tissues in-
teracting with fluid where the fluid can be either blood or 
air. 
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