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ABSTRACT 
The multi-physics simulation of coupled fluid-structure interaction problems, with disjoint fluid and solid do- 
mains, requires one to choose a method for enforcing the fluid-structure coupling at the interface between solid 
and fluid. While it is common knowledge that the choice of coupling technique can be very problem dependent, 
there exists no satisfactory coupling comparison methodology that allows for conclusions to be drawn with re-
spect to the comparison of computational cost and solution accuracy for a given scenario. In this work, we de- 
velop a computational framework where all aspects of the computation can be held constant, save for the method 
in which the coupled nature of the fluid-structure equations is enforced. To enable a fair comparison of coupling 
methods, all simulations presented in this work are implemented within a single numerical framework within the 
deal.ii [1] finite element library. We have chosen the two-dimensional benchmark test problem of Turek and 
Hron [2] as an example to examine the relative accuracy of the coupling methods studied; however, the compar- 
ison technique is equally applicable to more complex problems. We show that for the specific case considered 
herein the monolithic approach outperforms partitioned and quasi-direct methods; however, this result is prob- 
lem dependent and we discuss computational and modeling aspects which may affect other comparison studies. 
 
KEYWORDS 
Fluid-Structure Interaction; FSI; Finite Element Method; Monolithic Coupling; Partitioned Coupling;  
Dirichlet-Neumann Coupling; Multi-Physics 

1. Introduction 
In this work, we focus on constructing a numerical 
framework in which algorithms for solving the class of 
engineering problems commonly referred to as Fluid- 
Structure Interaction (FSI) problems can be benchmarked 
and compared in a consistent and quantitative manner. 
The primary challenge in finding a numerical solution to 
a FSI problem is not in solving the field equations over 
either the solid of fluid components of the domain, but 
rather handling the compatibility conditions that must be 
enforced on the interface between these components.1 
Recently, two primary strategies for enforcing this coupl- 

ing in the Arbitrary Lagrangian-Eulerian (ALE) frame- 
work have emerged: solving the solid and fluid compo- 
nents of the domain separately, while iteratively passing 
information between them, and a simultaneous solution 
of all field equations at once. The former method is re-
ferred to in this work as “partitioned”, and the latter as 
“monolithic”. 

The choice of coupling strategy is an important deci- 
sion to make from the start of any endeavor to implement 
a numerical ALE framework for the simulation of fluid- 
structure interaction, as it places inherent constraints on 
the entire effort moving forward. On one hand, an author 
must be sure to choose an approach that allows for all of 
the relevant physics to be captured, but must also con- 
sider the performance of the resulting computer code, the 
ease of implementation, and its ability to address prob- 
lems of interest. If one turns to the work of other authors 

*Corresponding author. 
1Mesh motion [3] is another challenging research area for ALE-based 
methods. For this work, we assume that a mesh motion strategy is cho-
sen and fixed for our coupling types, and as such studies of optimal 
mesh motion strategies are outside of the current scope. 

OPEN ACCESS                                                                                        WJM 

http://www.scirp.org/journal/wjm
http://dx.doi.org/10.4236/wjm.2014.42007
mailto:Jason.P.Sheldon@psu.edu
mailto:scott.miller@psu.edu
mailto:jonathan.pitt@psu.edu


J. P. SHELDON  ET  AL. 55 

for guidance, conflicting statements can be found re- 
garding the performance of various coupling approaches. 
In addition to this, there is seemingly conventional wis- 
dom in the community today that partitioned approaches 
are faster than their monolithic counterparts due to the 
optimized nature of the individual component solvers and 
smaller systems inverted by the linear solvers [4-7]; 
however, these notions have been challenged in [8]. 
There is agreement within the FSI community that, in 
general, the choice of coupling type is problem depen- 
dent, although no specific guidance exists on exactly 
when a coupling strategy should be preferred. 

Michler et al. [9] state that in a simple one dimension-
al FSI problem “the computational cost of the monolithic 
procedure is three to four times the one of the partitioned 
procedure;” however, he does not hold each approach to 
the same convergence tolerance. In fact, he requires more 
strict convergence of the monolithic solver, which con- 
tributes to its longer run time. In contrast, he later hypo- 
thesizes that for more complex problems the monolithic 
approach would be superior in a comparison of computa- 
tional cost for a desired accuracy against his partitioned 
method. 

Degroote et al. [6] utilize ADINA [10], a commercial 
finite element software package, to compare partitioned 
and monolithic FSI. They claim that ADINA converges 
both methods to the same tolerances, for the norms of 
displacement and force on the interface; however, it is 
unclear exactly what convergence criterion is used as no 
equations or methods are presented. They find that for 
certain cases their partitioned method requires half the 
computational time of their monolithic method, while for 
other cases it requires as much as four times the compu- 
tational time of the monolithic method, and in some cas- 
es, the partitioned method does not converge at all. 

On the other hand, Heil et al. [8] use the open source 
finite element library OOMPH-LIB [11] to compare par- 
titioned and monolithic methods. In their tests, they 
found that, in terms of computation time required, mono- 
lithic methods outperform partitioned methods when FSI 
effects were significant and that this behavior was ampli- 
fied with proper pre-conditioners. Again, it is unclear 
exactly what parameters they use to signify convergence. 
They claim that the convergence criterion is either the 
maximum global residual, or the maximum change in 
position of nodes between iterations; however, in all of 
their cases they do not require the partitioned method to 
converge to the same tolerances as the monolithic me- 
thod. 

As can be seen by these examples, although there has 
been past work in comparing coupling techniques, there 
is no clear agreement on which method is optimal for a 
given problem. To aid in providing clarity to this situa- 
tion, we have developed an ALE-based framework that 

can hold constant many of the confounding factors and 
can focus solely on the fluid-structure coupling metho- 
dology. This includes performing all calculations on the 
same mesh, using the same discretization scheme for all 
approaches, and using the same benchmark problem for 
all approaches. Most importantly, we use the same con- 
vergence criterion and linear solvers for all coupling me- 
thods, ensuring that we are eliminating as many con- 
founding factors as possible. We believe that this type of 
framework is necessary in order to provide a fair com- 
parison between FSI coupling types, and has clearly been 
lacking in prior work. 

We note that we are interested in algorithms appropri- 
ate for fully-coupled FSI problems, i.e., where the struc- 
tural and fluid responses are tightly intertwined and re- 
quire a truly simultaneous solution. Problems requiring 
only one-way or weak coupling are outside the scope of 
this study. We begin this presentation by deriving the 
governing equations necessary for FSI in Sections 2 - 3. 
The discretization procedure is presented in Section 4, 
the three coupling strategies we are comparing are dis- 
cussed in Section 5, and formal verification of the im- 
plemented algorithm is demonstrated in Section 6. Final- 
ly, results of the study and our conclusions are discussed 
in Sections 7 - 8. 

2. Kinematics 
Fluid-structure interactions are modeled as initial boun- 
dary value problems (IBVPs). This section presents an 
overview of the mathematical background necessary to 
describe these problems. This material is presented from 
a continuum mechanics perspective, see Gurtin [12], 
Bowen [13], Chadwick [14], or Spencer [15] for a more 
detailed discussion. 

Kinematics is the geometrical description of motion. It 
provides descriptions for the movement of bodies (a 
collection of material points) and changes of reference 
frames. We denote a body 3β ∈  in the reference 
configuration 3κ  as κβ , where the reference confi- 
guration is chosen to be the configuration of the body 
initially before deformation. The same body β  can be 
defined in subsequent configurations through a defor- 
mation function χ . The position of a material point in 
κ  is ( ), tX X , while the position of a material point in 
the deformed configuration, known as the spatial point, is 
x . The deformation function ( ), tχ X  maps a material 

point X  to the spatial point x  at the instant of time 
t , as shown in Figure 1. 

Considering a smooth sequence of configurations or- 
dered in time, a motion is defined as  

( ) ( ), , ,t tχ = = +X x X X u           (1) 

where u  is the displacement vector, given by  
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Figure 1. Configurations of a body before and after defor- 
mation. 
 

( ), .t= −u x X X               (2) 

The domain Ω  of an FSI problem, as shown in 
Figure 2, is defined as the union of the disjoint solid and 
fluid subdomains: 

S FΩ =Ω Ω , 

where SΩ  is the solid subdomain and FΩ  is the fluid 
subdomain. Similarly, the domains’s boundary ∂Ω  is 
split into four parts: the Dirichlet boundaries for the fluid 
and solid subdomain 

FDΓ  and 
SDΓ  and the Neumann 

boundaries for the fluid and solid subdomain 
FNΓ  and 

SNΓ , where 
S F S FD D N N∂Ω = Γ Γ Γ Γ   . These boun- 

daries can be subdivided further to suit a given problem. 
The interface between the solid and fluid subdomains is 

FS S FΓ = Ω Ω . 
Furthermore, we find it useful to think of this 

boundary as 
D NFS FS FSΓ = Γ Γ , denoting the Dirichlet 

and Neumann parts with the subscripts. The usefulness of 
this arises when defining proper finite-dimensional 
function spaces and setting boundary conditions for our 
discrete problems. 

The displacement vector is piecewise defined over the 
solid and fluid subregions as  

s S

m F

,
∀ ∈Ω

=  ∀ ∈Ω

u X
u

u X
           (3) 

where su  is the solid displacement and mu  is the 
(arbitrary) displacement of the fluid subdomain. 
Continuity of displacement on the fluid-solid interface 
requires  

s m FS.− = ∀ ∈Γu u X0         (4) 

The deformation gradient is the spatial gradient of the 
motion, defined as  

( ), Grad Grad ,t χ= = +F X I u        (5) 

where I  is the identity tensor. In the next section, we 
will use F  for push-forward and pull-back operations 
in the Arbitrary-Lagrangian-Eulerian (ALE) description  

 
Figure 2. Domain Ω of an arbitrary two-dimensional fluid-
structure interaction problem. The solid and fluid subdo-
mains, Dirichlet and Neumann boundaries, and the fluidso-
lid interface are labeled. 
 
of the fluid region. Operators with capitalized first letters 
(e.g. Grad) denote differential operators with respect to 
X , while those with lower-case first letters (e.g. grad) 

denote differential operators with respect to x . The 
determinant of F  is  

( )det .J = F                  (6) 

3. Governing Equations 
Governing equations are generated by complementing 
balance laws with constitutive relations for specific ma- 
terials and kinematic relations. We consider solid mate- 
rials that are modeled as St. Venant-Kirchhoff hyperelas- 
tic isotropic solids. Fluids considered are all incompress- 
ible and linearly viscous (Newtonian). We choose to use 
the ALE description for the fluid to address the disparity 
on the fluid-solid interface between the reference frames 
naturally used for the fluid (Eulerian) and solid (Lagran- 
gian). Other approaches, such as space-time techniques 
[16,17], or immersed boundary/body methods [18,19], 
could also have been implemented, but we chose to use 
the ALE description for the purposes of our study. The 
ALE fluid deformation is described with the equations of 
linearized elasticity.  

3.1. Elasticity 
The governing differential equations for an elastic solid 
are cast in the Lagrangian (referential) frame. The bal- 
ance of linear momentum is  

s
s R s s SDiv ,

t
ρ ρ

∂
− = ∀ ∈Ω

∂
v T b X          (7) 

where sv  is the solid's velocity field, ( )s sρ ρ= X  is 
the referential mass density, ( )s s ,t=b b X  is the body 
force per unit mass, and ( )R ,tT X  is the first Piola- 
Kirchhoff stress. The first Piola-Kirchhoff stress is 
related to the second Piola-Kirchhoff stress ( ),tS X  via  

R .=T FS                     (8) 

For an isotropic material,  
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( )s str 2 ,λ µ= +S E I E             (9) 

where λ  and µ  are Lamé’s first and second parame- 
ters and the strain tensor ( ) ( )T, 1 2t = −E X F F I . 
Lamé’s parameters relate to Poisson’s ratio ν  and Young’s 
modulus E  as ( )( )2ν λ λ µ= +  and  

( ) ( )3 2E µ λ µ λ µ= + + . The strain tensor expressed as 
a function of displacement is  

( ) ( )( )T T
s s s s

1 Grad Grad Grad Grad .2= + +E u u u u  (10) 

The separate displacement and velocity fields necessi- 
tate the use of the kinematic compatibility condition  

s
s S.

t
∂

− = ∀ ∈Ω
∂
u v X0           (11) 

Strong enforcement of (11) yields the familiar 
governing differential equation for elastic solids solely in 
terms of su :  

2
s

s R s s S2 Div .
t

ρ ρ
∂

− = ∀ ∈Ω
∂

u T b X     (12) 

In this work, (7) and (11) are referred to as the two- 
field ( )s s,u v  formulation of elastodynamics, while (12) 
is referred to as the one-field ( )su  formulation of 
elastodynamics. We choose to use the two-field formu- 
lation in our FSI formulation, as it is very convenient to 
have the velocity as a primitive variable on the fluid- 
solid interface (see Section 3.4). 

3.2. Incompressible Navier-Stokes 
The Eulerian frame is the natural setting for the mathe- 
matical description of fluid behavior. In the context of 
FSI descriptions, however, we need to unify the mathe- 
matical description of the fluid and solid domains (on the 
interface, at least). The ALE description of fluid behavior 
utilizes a smooth map between the referential and spatial 
domains. We begin by providing the incompressible 
Navier-Stokes equations in the Eulerian frame, and then 
transform those equations into the ALE description. 

3.2.1. Eulerian Description 
The balance of linear momentum in the Eulerian frame is  

( )f Fdiv div ,t
t

ρ ρ∂ + ⊗ = + ∀ ∈Ω ∂ 

v v v T b x   (13) 

where ( )F tΩ  is the current deformed fluid domain, ρ  
is the mass density, and T  is the Cauchy stress tensor. 
We denote the velocity field in the fluid domain as 

f=v v . Mass balance for an incompressible flow reduces 
to the divergence free velocity condition  

( )Fdiv 0 .t= ∀ ∈Ωv x         (14) 

The Cauchy stress for a linearly viscous, incompre- 
ssible fluid, is given as  

( )( )Tgrad grad ,p µ= − + +T I v v       (15) 

where p  is the fluid pressure and µ  is the fluid 
dynamic viscosity. Equations (13), (14), and (15) are 
collectively known as the Navier-Stokes equations for an 
incompressible flow. 

3.2.2. Arbitrary Lagrangian-Eulerian Description 
The ALE formulation is used to provide a unified refer- 
ence frame for fluid-structure interaction problems. This 
requires transforming the fluid governing differential 
Equations (13), (14), and (15), into a form defined on the 
reference configuration ( )0FΩ . The resulting equa- 
tions are termed the ‘incompressible Navier-Stokes equa- 
tions in ALE form.’ 

The following relations are necessary to construct the 
transformation:  

1grad Grad ,κ
−=v v F            (16) 

and 

( )[ ]1
mGrad ,

t t
κ

κ
−∂∂

= −
∂ ∂

vv v F v         (17) 

where mv  is the fluid domain velocity, defined as 
m tχ= ∂ ∂v . The κ  subscript is used to denote quan- 

tities transformed from spatial coordinates into the ALE 
reference frame. Using these relations, the ALE form of 
the incompressible Navier-Stokes equations2 are  

( )[ ]

( ) ( )

1
m

T
F

Grad

Div 0 ,
t
κ

κ κ

κ κ

ρ ρ

ρ

−

−

∂
+ −

∂
+ = ∀ ∈Ω

v v F v v

T F b X
     (18) 

( )1 T
F: Grad 0 0 ,κ

− = ∀ ∈ΩF v X           (19) 

and 

( )( )T1 TGrad Grad .pκ κ κ κ κµ − −= − + +T I v F F v   (20) 

3.3. Mesh Motion 
The computational mesh is a non-physical object which 
can be constructed in any manner we see as beneficial; 
this is the “arbitrary” component of the ALE formulation. 
We choose to treat the mesh as a linearly elastic material 
governed by an elastostatic equation (derived from the 
balance of linear momentum (7)): 

( )R FDiv 0 0 .= ∀ ∈ΩT X          (21) 

For linearly elastic (infinitesimal deformation) mate- 
rials, which require that mGrad 1u  , the first Piola- 
2Hron and Turek [20], Richter and Wick [21], and perhaps others, 
present a different relation for the balance of mass in an ALE frame 
than the one we present in (19). It can be shown that (19) is a simplified  
but identical, version of these through application of equation (2.2.30) 
from Bowen [13]. 
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Kirchhoff stress, when linearized with respect to mGradu , 
is given as  

( )R m mtr 2 ,λ µ= +T e I e           (22) 

where mλ  and mµ  are arbitrarily defined mesh 
material properties and e  is the infinitesimal strain 
tensor. The infinitesimal strain tensor  

( )( )T
m m

1 Grad Grad .2= +e u u       (23) 

results from linearizing E  with respect to mGradu . 

3.4. Boundary and Initial Conditions 
In addition to the governing differential equations, there 
are also boundary conditions, fluid-structure interfacial 
conditions, and initial conditions necessary to fully de- 
fine a FSI problem. A boundary condition that prescribes 
a value for a field variable is a Dirichlet boundary condi- 
tion, while a boundary condition involving spatial deriv- 
atives of a field variable is a Neumann boundary condi- 
tion. Initial conditions prescribe a value for a field varia- 
ble over the entire domain (or a subdomain) at the initial 
time. Specific boundary and initial conditions are prob- 
lem dependent, but the general form can be defined. 

The primitive variables can be can be prescribed on 
the Dirichlet boundaries as  

( )
DS

s s , ,t
Γ

=u u X            (24) 

( )
DS

s s , ,t
Γ

=v u X            (25) 

( )
DF

, ,tκ κΓ
=v v X           (26) 

where time differentiation is denoted with a superposed 
dot as tθ θ= ∂ ∂ . The tractions can be prescribed on the 
Neumann boundaries as  

[ ] ( )
NS

s s s , ,t
Γ

=T n t x            (27) 

[ ] ( )
NF

, .tκ κ κΓ
=T n t x            (28) 

For the mesh, a constraint is placed on the entire 
boundary that there be no normal mesh displacement, to 
maintain a conforming geometry: 

( )
D NF F

m f 0.
Γ Γ

⋅ =u n


             (29) 

The initial conditions for the primitive variables can be 
prescribed over their respective domains at 0t =  as  

( ) ( )
ss 0, 0 ,t = =u X u X             (30) 

( ) ( )
ss 0, 0 ,t = =v X v X             (31) 

( ) ( )f 0, 0 .t
κ

= =v X v X             (32) 

FSI coupling imposes three additional conditions on 

the fluid-solid interface. The solid displacement governs 
the mesh displacement on the interface:  

( )
FSD

m s ,
Γ

− =u u 0               (33) 

the velocity fields are continuous across the interface:  

( )
FSD

s ,κ Γ
− =v v 0                (34) 

and the tractions are continuous across the interface:  

[ ] [ ]( ) ( )[ ]
FSFS NN

s s s s ,κ κ κ ΓΓ
+ = − =T n T n T T n 0    (35) 

where the orientation of the interface requires s κ= −n n . 

4. Discretization via Finite Elements 
The finite element method (FEM) is used to solve an 
IBVP by transforming its governing partial differential 
equations (PDEs) into a system of algebraic equations 
that approximately solve the original problem. The PDEs 
are weighted by an arbitrary function, and integrated over 
their respective domains. Integration by parts yields the 
weak form of the equations. In this work, the notation is 
used that ( ), d

Ω Ω
≡ ⋅ Ω∫a b a b . The ALE form of the fluid  

equations requires us to compute the spatial integrals 
over a reference configuration; as such, the following 
transformation from the Eulerian to the ALE frame is 
necessary:  

( ) ( ) ( ) ( )
F F 0

d d .
t

f x f J XκΩ Ω
=∫ ∫x X        (36) 

In all future equations ( )F F 0Ω ≡Ω  for brevity. A 
sufficiently regular computational mesh is used to 
discretize the domain Ω , and we ensure that the fluid- 
structure interface FSΓ  is coincident with element edges. 

The approximate solutions are denoted by the super- 
script h . We define the following standard finite-dimen- 
sional trial solution spaces on our mesh:  

( ){ }DS

1
s s s S s s: , ,h h h hH

Γ
= ∈ Ω =u u u uU      (37) 

( ){ }DS

2
s s s S s s: , ,h h h hL

Γ
= ∈ Ω =v v v uV       (38) 

( ){ }
Df

1
F: , ,h h h hHκ κ κ κ κΓ

= ∈ Ω =v v v vV      (39) 

( ){ }2
F: ,h h hp p Lκ κ κ= ∈ ΩP           (40) 

( ) ( )
D Nf f

1
m m m F m: , 0 .h h h hH κ

Γ Γ

 = ∈ Ω ⋅ = 
 

u u u n


U   (41) 

Our weighting function spaces are 

( ){ }DS

1
s s s S sˆ ˆ ˆ: , ,H

Γ
= ∈ Ω =u u u 0U         (42) 

( ){ }DS

2
s s s S sˆ ˆ ˆ: , ,L

Γ
= ∈ Ω =v v v 0V          (43) 
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( ){ }Df

1
Fˆ ˆ ˆ: , ,Hκ κ κ κ Γ

= ∈ Ω =v v v 0V        (44) 

( ){ }2
Fˆ ˆ: ,p p Lκ κ κ= ∈ ΩP           (45) 

( ){ }D Nf f

1
m m m F mˆ ˆ ˆ: , .H

Γ Γ
= ∈ Ω =u u u



0U     (46) 

With these definitions, it is clear that our finite ele- 
ment method is of the standard (Bubnov-) Galerkin weak 
formulation, in which weighting function spaces and trial 
solution spaces are taken to be the same except on the 
Dirichlet boundaries [22]. 

The temporal discretization is handled with the impli- 
cit, second-order accurate Crank-Nicolson method. The 
choice of time integration, while important for accuracy 
and efficiency of a method, is not the focus of our current 
work. We are interested in investigating different strate- 
gies for solving the fully-coupled FSI system. As such, in 
the remaining mathematical formulation of the FSI prob- 
lem, we shall omit the time discretization aspect of the 
problem for the sake of brevity. The weak formulation of 
the problem is understood to be integrated over a time 
step with a suitable approximation of the time deriva- 
tives. 

Weak Formulation 
An FSI problem consists of three distinct sub-problems 
which are coupled through boundary conditions on the 
fluid-structure interface FSΓ . We introduce the Galerkin 
formulation for each sub-problem separately, followed 
by the statement of the global FSI problem. 

Problem 1 (Solid sub-problem) 
Find { }s s s s,h h h h∈ ×u v U V  such that  

( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) { }

S S SS S

S S FSD

FS NN S

s s s s s s s

R s s s s s s

s s s s s s s s

ˆ ˆ ˆ, , ,

ˆ ˆ ˆ,Grad , ,

ˆ ˆ ˆ ˆ, , 0 , .

k k

κ

ρ

ρ

Ω Ω ΩΩ Ω

Ω Ω Γ

Γ Γ

− +

+ − + −

− − = ∀ ∈ ×

u u v u v v

T v b v v v v

t v t v u v

 

U V

 (47) 

where 
S

kΩ  is a constant over the solid domain with 
dimensions of mass per length cubed per time cubed to 
give our equations dimensional consistency. For the solids 
considered in this work, the first Piola-Kirchhoff stress 

RT  uses the St. Venant-Kirchhoff strain tensor given in (10). 
Problem 2 (Fluid sub-problem) 
Find { },h h h hpκ κ κ κ∈ ×v V P  such that  

( )[ ]( )( )
( )[ ]( ) ( )

( ) ( )
( ) ( ) ( )( )

{ }

F

FF

F F

FSN FSNF D

1
m

1

T 1 T

s

ˆGrad ,

ˆ ˆGrad , ,

ˆ ˆ,Grad : Grad ,

ˆ ˆ ˆ, , ,

ˆ ˆ0 ,

J

J

J J p

p

κ κ κ κ

κ κ κ κ κ κ

κ κ κ κ

κ κ κ κ κ κ

κ κ κ κ

ρ

ρ ρ

−

Ω

−
ΩΩ

− −

Ω Ω

ΓΓ Γ

−

+ −

+ +

− − + −

= ∀ ∈ ×

v v F v v

v F v v b v

T F v F v

t v t v v v v

v



V P

 (48) 

where F  and J  are as given in (5) and (6), and, for 
the linearly viscous, incompressible fluids considered in 
this work, the Cauchy stress κT  is as given in (20). 

Problem 3 (Mesh sub-problem)  
Find m m

h h∈u U  such that  

( ) ( )( )

( )( )
FSD

F

m m m m s mF

T
m m m m

m m

ˆ ˆDiv ,Div ,

ˆGrad Grad ,Grad

ˆ0 .

λ

µ

Ω Γ

Ω

+ −

+ +

= ∀ ∈

u u u u u

u u u

u U

    (49) 

Solving (49) using spatially constant material proper- 
ties mλ  and mµ  can can result in poor quality meshes 
if the solid displacement is large enough3. To prevent this, 
an artificial stiffness is imposed on the mesh, using 

( )m mλ λ= X  and ( )m mµ µ= X , in a manner such that 
it is stiffer near the interface and less stiff away from the 
interface. This propagates the distortion caused by the 
solid displacement throughout the entire mesh, instead of 
it being localized at the interface.  

The global FSI problem is a direct sum of Problems 1, 
2, and 3.  

Problem 4 (Global FSI problem)   
F ind  { }s s m s s m, , , ,h h h h h h h h h hpκ κ κ κ∈ × × × ×u v v u U V V P U   

such that (47), (48), and (49) are simultaneously satis- 
fied.  

The individual sub-problems are coupled solely via the 
boundary conditions on the FSI interface FSΓ . The glo- 
bally defined system in Problem 4 is a fully coupled non- 
linear system of equations. We have employed the New- 
ton-Raphson method to solve these equations, including 
all non-linear sub-problems that arise. We present some 
of the details in Appendix 9 since the calculations can be 
daunting, especially for the monolithic method. 

5. FSI Algorithms 
The numerical solution of Problem 4 is the focus of our 
study. We examine three different types of solution pro- 
cedures: partitioned, monolithic, and quasi-direct. These 
are often referred to as FSI coupling methods, although 
they can also be thought of as a family of algebraic 
solution methods to solve the fully coupled Problem 4. 

One of the key features of our study is that all three 
solution algorithms are implemented within the same 
software package (deal.ii). This feature allows us to use 
the same finite element assembly routines for all FSI 
coupling types, ensuring that computational cost differ- 
ences between the methods studied is not due to different 
implementations. Furthermore, the convergence criterion 
chosen are applied in exactly the same manner for each 
FSI algorithm, as described in Section 7.2. 
3A poor quality mesh satisfies its boundary conditions but contains cells 
that are extremely distorted, such as cells with nearly parallel adjacent 
sides. 
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The global solution procedure of the three coupling 
types is the same. After a setup procedure and applica- 
tion of initial conditions, a time loop advances the solu- 
tion with a prescribed time step size until the final simu- 
lation time is reached. For each time step, the three FSI 
coupling algorithms solve Problem 4 in different man- 
ners. We refer to the non-linear solution procedure within 
a single time step as FSI iterations. 

5.1. Partitioned Coupling 
The partitioned coupling method couples Problems 1, 2, 
and 3 in a sequential fashion to solve the global FSI 
problem. This coupling method is also referred to as Di- 
richlet-Neumann coupling, due to the way constraints are 
imposed on the FSI interface. There are other types of 
partitioned coupling, but we choose Dirchilet-Neumann 
coupling as it is by far the most common type used in 
practice: used by Turek et al. [2], Degroote et al. [6], 
Küttler et al. [23], and Campbell et al. [24], amongst 
many others. The FSI iterations for the partitioned me- 
thod involve solving the fluid, solving the solid, and 
solving the mesh; this process is iterated until conver- 
gence is attained. The partitioned algorithm is detailed in 
Figure 3(a). 

We solve (48) with prescribed velocities on 
DFSΓ . As 

such, we enforce Dirichlet conditions on 
DFSΓ  and 

define 
NFSΓ =∅ . The corresponding change to our 

finite dimensional vector spaces requires us to replace 
(39) and (44) with  

( ){ }
D FSf D

1
F s: , ,h h h h hHκ κ κ κ κ κΓ Γ

= ∈ Ω = =v v v v v vV  (50) 

( ){ }D FSf D

1
Fˆ ˆ ˆ: , ,Hκ κ κ κ Γ Γ

= ∈ Ω =v v v


0V     (51) 

respectively. The strong enforcement of the velocity 
coupling is achieved in our implementation through the 
use of deal.ii’s constraint tools [1]. Newton-Raphson 
iterations are used to solve the non-linear fluid sub- 
problem. 

Once a fluid solution is obtained, Problem 1 is solved 
over the solid domain using the fluid traction as the 
driving force on the FSI interface. That is, 

DFSΓ =∅  
and the applied traction on 

NFSΓ  is computed as  

[ ]
( )( )

s

1 T T T
f= Grad Grad ,p J

κ κ κ

κ κ κ κµ − − −

= − = −

 − +  

t t T n

I v F F v F n
 

(52) 
which comes from (35) and (20). The function space 
definitions on SΩ  do not need modification for the 
partitioned method. Due to the geometric non-linearities 
in Problem 1, a Newton-Raphson method is used to solve 
for the solid displacements and velocities. 

If the change in position of FSΓ  is non-trivial (see 
Section 7.2 for discussion of this criterion), we deem it 
necessary to update the mesh position by solving Prob- 
lem 3. Before solving for the mesh displacement, it is 
well known [23] that the interfacial displacements should 
be under-relaxed to ensure convergence. The solid dis- 
placements and velocities are relaxed as  

( )s, 1 s, 1 s, 1 s, ,h h h h
i i i i iω+ + += + −u u u u       (53) 

( )s, 1 s, 1 s, 1 s, ,h h h h
i i i i iω+ + += + −v v v v       (54) 

where the subscript i  denotes the iteration count and 
the superposed tilde denotes the non-relaxed solution 
from solving Problem 1. We find it beneficial (or, at a 
minimum, non-detrimental) to relax the entire solid solu- 
tion, rather than just the degrees of freedom whose sup- 
port is on FSΓ . 

 

 
Figure 3. Flowcharts demonstrating the partitioned (a); quasi-direct (b); and monolithic (c) FSI algorithms. 
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The scalar relaxation parameter 1iω +  can be chosen 

to be constant, but it has been shown [23] that allowing it 
to change between iterations can accelerate convergence. 
Aitken’s 2δ  convergence acceleration method seems to 
be the most popular algorithm for choosing ω , and we 
have used it in this work. The position of the fluid-solid 
interface is viewed as a set of fixed points for the 
partitioned FSI iterations, and the secant method is used 
to extrapolate the expected position of the interface. The 
result is the recursive formula for computing the relaxa- 
tion factor 

( )1
1 1 , 1 ,2

1

, ,i i i
i i i s i s i

i i

ω ω +
+ + +

+

⋅ −
= − = −

−

r r r
r d d

r r
    (55) 

and the discrete vector sd  consists of the nodal values  
from 

FS
s
h
Γ

u . The Euclidean inner product and norm are  

used for the discrete vector. For the first FSI iteration of 
each timestep a relaxation factor of 0.75 is used. 

Once the solid solution has been relaxed, we update 
the mesh displacements by solving Problem 3. The 
function space definitions (41) and (46) are augmented as  

 

( ) ( ){ }
FS FSD Nf f

1
m m m F m m s: , 0, ,h h h h h hH κ Γ ΓΓ Γ

= ∈ Ω ⋅ = =u u u n u u


U                     (56) 

( ){ }D N FSf f

1
m m m F mˆ ˆ ˆ: , ,H

Γ Γ Γ
= ∈ Ω =u u u

 

0U                           (57) 

 
respectively, to account for enforcing a Dirichlet condi- 
tion on the fluid-structure interface. Unlike the fluid and 
solid sub-problems, the mesh motion is governed by a 
linear system of equations and only requires a single 
algebraic solve. 

5.2. Quasi-Direct Coupling 

The second algorithm of our study for quasi-direct 
coupling, as first performed by Tezduyar [25], is detailed  

in Figure 3(b). The algorithm solves Problems 1 and 2 
monolithically, and an iterative procedure is used to 
couple with Problem 3 to fully solve the complete FSI 
Problem 4. For each time step, we solve the coupled flu- 
id-solid system, update the mesh displacements, and ite- 
rate on these two solves until convergence is reached. 

The quasi-direct algorithm does not use the Dirichlet- 
Neumann coupling scheme that the partitioned method 
uses. Rather, we construct a conforming velocity field 
over the entire reference domain Ω  as  

 

( ){ }
D S F

1
s: , , , ,h h h h h h h hH κΓ Ω Ω

= ∈ Ω = = =v v v v v v v vV                      (58) 

( ){ }
D S F

1
sˆ ˆ ˆ ˆ ˆ ˆ ˆ: , , , .0H κΓ Ω Ω

= ∈ Ω = = =v v v v v v vV                        (59) 

 
The consequence of this choice is that (34) is strongly 

satisfied, which implies that  

( ) ( ) ( )
FSFS FSNN N

s s R sˆ ˆ ˆ ˆ, , , 0,κ κ κΓΓ Γ
− − = − =t v t v t v v   (60) 

after enforcing (35) and recognizing that the velocity 
weighting functions are chosen from the same function 
space. Another way to recognize that the tractions on 

FSΓ  do not contribute to the weak form is that 
DFS FSΓ = Γ  

and 
NFSΓ =∅  by construction of a conforming (conti- 

nuous) velocity space. Therefore, the traction continuity 
is implicitly satisfied and does not enter the quasi-direct 
(or monolithic) equations [26]. 

The solution from the fluid-solid does not need to be 
relaxed as it was for the partitioned algorithm. The relax- 
ation procedure is only used for iterative Dirichlet- 
Neumann coupling schemes for stability. Our only re- 
quirements on the mesh motion are the same as for the 
partitioned case. Namely, m

hu  is computed using the 
function spaces given in (56) and (57). 

5.3. Monolithic Coupling 
The full monolithically coupled solution procedure is the 
third algorithm of our study and is detailed in Figure 
3(c). Problem 4 is solved as a single non-linear system, 
with no FSI iterations necessary. We use the conforming 
velocity space given in (58) and (59) to strongly couple 
the fluid and solid domains. 

The displacement fields s
hu  and m

hu  can be com- 
bined into a single conforming field, but doing so raises 
some computational challenges. Unlike the fluid-solid 
domains which are two-way coupled (they affect each 
other mutually), the solid-mesh displacement fields are 
one-way coupled. That is, solving Problem 3 for the 
mesh displacements should not directly influence the 
displacement field of the solid, while the solution of 
Problem 1 provides the driving boundary condition for 
the mesh solution. Thus, constructing a typical conform- 
ing finite element space over the entire domain has the 
detrimental affect of allowing the artificial mesh ‘stiff- 
ness’ to limit the motion of the solid structure. 
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We have used a simple and efficient method to 
strongly enforce (33) while avoiding the artificial stiff- 
ness phenomena. We solve Problem 4 using function 
spaces defined by (37), (40), (41), (42), (45), (46), (58), 
(59). The Newton-Raphson method is used to compute 
the solution, and we provide details of the linearization in 
the Appendix. Within each Newton-Raphson iteration, 
we weakly enforce the displacement continuity constraint 
within Problem 3. At the end of the iteration, the nodal 
mesh displacements on the interface are set to be equal to 
the solid displacement. In our numerical computations, 
we have found that weakly enforcing continuity yields 
mesh values that are relatively close to those computed 
for the solid. Also, modifying the mesh solution at the 
end of each Newton-Raphson iteration does not seem to 
affect the convergence characteristics of the method. 

6. Code Verification 
Verification of the discretized equations of motion, and 
the software in which it is implemented, is performed via 
the method of manufactured solutions (see, e.g., [27,28]). 
We perform the following sequence of analysis for the 
solid and fluid solvers separately: 1) choose an exact 
solution for the governing equations, 2) substitute this 
solution in the equations to obtain analytical expressions 
for the corresponding forcing functions and boundary 
conditions, 3) implement these into the code, and 4) 
compute an approximate solution. The error between the 
exact and approximate solutions is then computed 
according to some norm, and the process is repeated for a 
sequence of uniformly refined meshes. 

Figure 4 shows the results of this process for several 
iterations of mesh refinement. The Figure 4(a) shows the 
individual components of the elastic displacement and 
velocity error declining as mesh size decreases, with a 
linear rate of 1 3p + =  under the 2L  norm when using 
bi-quadratic 2Q  tensor-product elements for all fields. 
The Figure 4(b) shows the analogous situation for the 
velocity and pressure fields in the fluid solver, where the 
difference in convergence rate is due to the Taylor-Hood 

2Q  − 1Q  tensor product elements used for the velocity 
and pressure, respectively. 

Overall, this simple verification exercise demonstrates 
that the individual components of the FSI solver are 
functioning correctly. We will evaluate the correctness of 
the coupling implementation in the next section; more 
details regarding verification of the solvers can be found 
in Sheldon [29]. 

7. Model Validation 
An FSI benchmark was proposed by Turek and Hron [2] 
for the purpose of facilitating comparison between dif- 
ferent FSI modeling approaches and algorithms, regard- 
less of coupling types or discretization schemes. This  

 
(a) 

 
(b) 

Figure 4. Error convergence plots for the two-field elasticity 
formulation (a) and Navier-Stokes formulation (b). In each 
case, the expected rates of error convergence are achieved, 
with respect to the L2-norm. This demonstrates that each 
component of the FSI solver is functioning correctly. 
 
benchmark consists of a numerical experiment involving 
laminar incompressible channel flow around a bluff body, 
which subsequently sheds vortical structures that excite a 
flexible tail until it reaches a state-state flow induced 
oscillation. Data were provided by Turek and Hron for 
the tip displacement of the elastic structure, hereafter 
called the flag (see Figure 5), and the drag and lift about 
the combined boundary of the flag and the cylinder to 
which the flag is attached. We used this benchmark as a 
means to validate the FSI model developed in this work, 
via direct comparison of our model’s predictions to that 
of Turek and Hron, and as a baseline for comparing the 
coupling strategies to one another. 

7.1. Numerical Experiment Definition 
The problem domain is depicted in Figure 5, where the 
channel, rigid cylinder, and elastic flag are noted. Flow is 
from left to right, with the cylinder slightly offset in the 
channel. Relevant dimensions are reproduced for the 
reader in Table 1. We will present our analysis of repro- 
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Figure 5. Turek and Hron [2] FSI benchmark domain with 
expanded view of cylinder and flag. 
 
Table 1. Turek and Hron [2] FSI benchmark domain di-
mensions and material properties. 

Parameter Symbol Value [m]  Property Value 

Channel length L  2.5  3

kg
msρ
 
  

 10,000 

Channel height H  0.41  sν  0.4 

Cylinder center C  (0.2, 0.2)  sE  [e6 2

kg
ms

] 5.6 

Cylinder radius r  0.05  3

kg
mκρ
 
  

 1000 

Flag length l  0.35  
kg
msκµ
 
  

 1 

Flag height h  0.02  
m
s

U  
  

 1 

Reference point A  (0.6, 0.2)    

Reference point B  (0.15, 0.2)    

 
ducing the “FSI2” case of Turek and Hron, as it involves 
the largest structural deformations, and is therefore the 
most intense test for our solver. The material properties 
for this simulation are also reproduced for the reader in 
Table 1, where ρ  is the density, ν  is the Possion’s 
ratio, µ  is the viscosity, E  is the Young’s modulus, 
and U  is the mean inflow velocity. As before, the s  
and f  subscripts indicate solid and fluid properties, 
respectively. Figure 6 shows an example of the flow 
field and solid deformation, using results from FSI2 after 
16.5 simulation seconds, to help in visualizing the 
benchmark. 

The boundaries of the computational domain are 
labeled in Figure 7, which also shows the mesh we used 
for our calculations. The boundary conditions are as 
follows: a parabolic fluid velocity inflow on 1Γ :  

( )
( )
( )

1

2*
1.5

,2
0

v
y H y

U
y H

Γ

 − 
 

=  
 
 

        (61) 

a no-slip fluid velocity on 2Γ , 4Γ , and 6Γ : 

 
Figure 6. Visualization of the velocity magnitude and flag 
deformation at t = 16:5 [s]. Solid displacement and fluid 
velocity are shown with their own color scales. The flag is 
shown as a wireframe to distinguish it from the fluid and 
the rigid cylinder. 
 

 
Figure 7. Turek and Hron [2] FSI benchmark mesh with 
labeled boundaries and domains. 
 

2,4,6
0,κ Γ

=v               (62) 

a constant fluid pressure on 3Γ , which is prescribed to 
be zero:  

3
0,pκ Γ

=                (63) 

a fixed solid displacement and velocity on 5Γ :  

5 5s s 0,
Γ Γ
= =u v             (64) 

the interface conditions given in (33) and (34) on FSΓ , 
and the mesh displacement condition given in (29) on 

1Γ , 2Γ , 3Γ , 4Γ , and 6Γ . 
All fields are initially zero. For the first two seconds 

the fluid inlet velocity is subject to a smooth increase 
defined by  

( ) 11

1

*

*

1 Cos
2 2.0, .2

2.0

t
ty t

t

κ ΓΓ

Γ

 π −     <= 


≥

vv

v

    (65) 

A timestep size [ ]0.0025 st∆ =  was used in all cases 
to satisfy the Courant-Friedrichs-Lewy (CFL) condition 
[30], computed from a maximum flow velocity and 
minimum cell diameter of approximately  

[ ]max 2.2 m sv =  and [ ]min 0.011 mx∆ = , respectively. 
As in Section 6, all subsequent results in the section 

were computed with 2Q  elements for the solid dis- 
placement and velocity, Taylor-Hood 2Q  − 1Q  ele- 
ments for the fluid velocity/pressure, 2Q  elements for 
the mesh displacement, and the Crank-Nicholson method 
for the time discretization. For consistency in comparison 
of the timing results, all simulations were performed on 
the same computer. Linear algebraic solves were done 
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with the sparse direct solver UMFPACK [31]. 

7.2. Convergence Criterion 
The FSI coupling strategies that we have employed in 
this work all require some sort of sub-iteration at each 
time step in the simulation process. For the partitioned 
schemes, we make fixed-point iterations between the 
solver components to converge the solution, while for the 
monolithic approaches we use Newton-Raphson itera- 
tions. Consistency in defining convergence criteria for 
the global coupled FSI solution, that is applicable to both 
the partitioned and monolithic approaches, is a key point 
of this work. If this metric is not chosen consistently, we 
will not be able to say that the solutions are similarly 
converged to the same level of error, and therefore be 
unable to make comparisons regarding the wall clock 
time. 

For the global FSI solution, the convergence criterion 
[23,32] is given by 

( )

( )

2
FS

2
FS

1
s s

FSI ,1

i i
L

L

ε
+

Γ

Γ

−
<

u u
         (66) 

where 1
s
i+u  and s

iu  refer to the solid displacement at 
the current and previous FSI iteration, whether that 
iteration is fixed-point (partitioned) or Newton-Raphson  
(monolithic). Here, ( )2

FSL Γ
⋅  is the standard 2L  norm  

over the fluid-solid interface, and FSIε  is some 
convergence tolerance, which we typically defined to be 
1 E−10, for all coupling methods. For the partitioned 
method, we perform this solution check after every 
instance where the solid displacement is solved, while for 
the monolithic approaches, we perform this check after 
each Newton Iteration. In all coupling approaches, once 
this criterion is satisfied, we exit the sub-iteration loop 
and move on to the next time step. 

7.3. Computations 

In Turek and Hron’s FSI2 simulation benchmark, the 
system starts at rest and the speed of the inflow grows 
until it levels off to some steady value. After this initial 
transient period, which is approximately the first twelve 
seconds of simulation time, the solution reaches a steady 
state of oscillation. All results over a given periodic 
interval after this time are interchangeable, and as such 
we have normalized the comparison time interval on all 
forthcoming images. 

We were able to reproduce the results given by Turek 
and Hron, for the x- and y-displacement of point A, at the 
mid-point of the tip of the tail, and the lift and drag gen- 
erated about the combined surface of the flag and cylind- 
er. Our calculations are nearly indistinguishable whether 

using the partitioned, quasi-direct, or monolithic coupl- 
ing, as seen in Figures 8 and 9. Table 2 provides nu- 
merical values for the maximum and minimum of the 
displacement, drag, and lift from both Turek and Hron’s 
work and our own, along with the percent error between 
our solutions and the validation data. The maximum 
deviation from the validation data for any quantity is 4%, 
with the three coupling methods each being the most 
accurate for some quantities and the least for others. 
Overall, the visual and numerical results demonstrate the 
coupling methods are all within an acceptable deviation 
from the validation data, and can be confirmed to func- 
tioning correctly. Even more so, we have demonstrated 
that using the same convergence criterion for the global 
FSI problem has resulted in three solutions that are quite 
similar to each other. 

Finally, Figure 10 plots the wall clock runtime of the 
three coupling techniques over 20 seconds of simulation 
time. The noticeable change in slopes at approximately 7 
simulation seconds aligns with the time at which the flag  
 

 
(a) 

 
(b) 

Figure 8. The x- and y-displacement of point A on the flag 
tip. Our monolithic and quasi-direct schemes show nearly 
identical results to Turek and Hron [2], while our parti-
tioned scheme is slightly different. 
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Table 2. Maximum and minimum values for the x- and y-displacements of point A, and the lift and drag generated about the 
combined surface of the flag and cylinder. The results from Turek and Hron [2] are presented alongside ours, and our per- 
cent error from theirs is calculated. 

Quantity Turek & Hron Partitioned % error Quasi-Direct % error Monolithic % error 

max x-disp [E−3 m] −2.14 −2.05 4.00% −2.12 1.05% −2.05 2.23% 

min x-disp [E−3 m] −27.02 −26.75 0.99% −27.40 1.41% −27.26 0.89% 

max y-disp [E−3 m] 81.83 81.21 0.76% 82.40 0.69% 82.18 0.43% 

min y-disp [E−3 m] −79.37 −78.97 0.50% −80.15 0.98% −79.93 0.71% 

max drag [N] 282.58 277.92 1.65% 284.58 0.71% 282.71 0.05% 

min drag [N] 135.08 130.56 3.35% 130.25 3.58% 130.25 3.58% 

max lift [N] 235.08 231.67 1.45% 239.43 1.85% 231.81 1.59% 

min lift [N] −233.32 −229.20 1.77% −237.39 1.74% −236.75 1.39% 

 

 
(a) 

 
(b) 

Figure 9. The drag and lift generated about the combined 
surface of the flag and cylinder. All three of our schemes 
show larger minimum values than Turek and Hron [2] do 
when calculating the drag, with otherwise good agreement. 
Our monolithic and quasi-direct schemes capture the com- 
plex shape of of Turek and Hron’s lift results [2], while our 
partitioned scheme matches the global maximum and 
minimum values but not all local the minimums and max- 
imums in-between. 

 
Figure 10. Time study for partitioned, quasi-direct, and 
monolithic coupling over 20 simulation seconds (8000 time-
steps). Our partitioned coupling scheme required over twice 
the amount of CPU time per time step compared to our 
quasi-direct coupling scheme, which in turn required ap-
proximately twice that of our monolithic coupling scheme. 
 
oscillations began to be significant, thus requiring more 
sub-iterations of the FSI algorithm. As can be seen, for 
this benchmark case the partitioned scheme requires over 
twice the amount of CPU time to solve any given time- 
step compared to the quasi-direct scheme, and the mono- 
lithic scheme requires even less CPU time than that. 
Given that we have held each solver to the same conver- 
gence criterion, and given that all other aspects of the 
simulation are held constant, we can state that for this 
problem, the monolithic scheme is certainly more effi- 
cient. 

8. Summary and Conclusions 
A methodology has been presented for comparing FSI 
coupling algorithms in the most fair and unbiased man- 
ner we could conceive. We developed a numerical ALE 
framework that allows for different FSI coupling algo- 
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rithms to be evaluated for accuracy and efficiency in a 
quantitative manner. By holding constant many of the 
usually confounding factors, such as the grid, mesh mo- 
tion, discretization approach, and solver tolerances, we 
were able to compare three different coupling strategies. 
These include a Dirichlet-Neumann partitioned coupling 
method, a monolithic coupling method, and quasi-direct 
coupling method. Each of these is tightly-coupled and 
uses the same convergence criterion to define when the 
global FSI solution is converged during a given time step. 
All three coupling methods use the same software infra-
structure, system of equations assembly code, algebraic 
solver, and parameters. Other than their inherent differ-
ences in methodology, they are identical. 

The benchmark proposed by Turek and Hron [2] was 
used to test the FSI coupling strategies developed in this 
work. We were able to achieve results which accurately 
reproduce those provided by Turek and Hron to within 
four percent at worst, generally within two percent. For 
this case, our results show that monolithic coupling and 
quasi-direct coupling are slightly more accurate, with 
respect to the validation data, than partitioned coupling 
and slightly better at capturing fine details along the in- 
terface. We also found that monolithic coupling and qua- 
si-direct coupling are significantly faster than partitioned 
coupling when held to tight coupling tolerances. This 
substantiates Michler’s hypothesis discussed earlier, that 
monolithic schemes can outperform partitioned schemes 
when held to the same tolerances [9], at least for the spe- 
cific problem consider herein. 

While this work aims to present a methodology for 
proper comparison between ALE FSI coupling algo- 
rithms, we acknowledge that the benchmark example 
considered is neither exhaustive nor addresses many of 
the other practical simulation issues. In the weak-coupl- 
ing limit, we might expect that a partitioned or quasi- 
direct approach would be more efficient than a mono- 
lithic approach. Large three-dimensional problems may 
also change the comparison results: as the number of 
degrees of freedom grows quickly, the cost of solving a 
large linear system becomes the main computational cost 
and scalability needs to be addressed. The choice of li- 
near algebraic solvers could also greatly sway the study, 
as extremely efficient methods for solving each subprob- 
lem exist, but cannot be applied to the monolithic system 
of equations. The governing equations and the choice of 
discretization scheme will also undoubtedly affect any 
sort of computational cost comparisons. Finally, there 
exist numerous other ALE partitioned coupling methods 
(e.g. Robin-Robin coupling rather than Dirichlet-Neu- 
mann) that may be more accurate and efficient than the 
methods we investigated. These aspects of the ALE FSI 
solution can be studied within our numerical framework, 
and we leave them as future research efforts. 
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Appendix 
Linearization 

Problems 1, 2, and 4 are non-linear systems of equations 
which we have chosen to solve numerically via the 
Newton-Raphson (NR) method. Problem 3 is linear, but 
we formulate the solution via the NR method for consis- 
tency. For the partitioned and quasi-direct algorithms, the 
mesh solution is obtained with a single NR iteration. 
Given an initial solution estimate (computed from the 
previous time step or initial conditions) iterate over the 
following problem until convergence is reached: 

Problem 5 (Newton-Raphson iterate) 
Given a solution vector iU , compute 1i+U  via  

( ) ( )1 , ,i i i i i iδ δ+  = − = U U U J U U R U    (67) 

where the vector R  is the residual vector, J  is the 
Jacobian matrix, and iδU  is the solution update vector.  

The solution and residual vectors are  

s

s

f

f

m

u
s

vs

vf

f p

m u

,

           = =               

RU
RV
RU RV

P R
U R

        (68) 

The sub-vectors within U  correspond to the nodal 
values of the solid, fluid, and mesh component blocks of 
the solution. The individual components of the residual  

vector are  

( ) ( )s S SS S
u s s s sˆ ˆ, , ,k kΩ ΩΩ Ω
= −R u u v u      (69) 

( ) ( )
( ) ( )

( ) ( )( )

s S S

S NS

FS FSN D

v s s s R s

s s s s s

s s s s

ˆ ˆ, ,Grad

ˆ ˆ, ,

ˆ ˆ, , ,κ

ρ

ρ
Ω Ω

Ω Γ

Γ Γ

= +

− −

− + −

R v v T v

b v t v

t v v v v



   (70) 
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( )[ ]( )
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   (71) 

( )f F

1 T
p ˆ: Grad , ,J pκ κ

−

Ω
=R F v       (72) 

( )( )
( )( ) ( )( )

m
F

F FSD

T
u m m m m

m m m m s m

ˆGrad Grad ,Grad

ˆ ˆDiv ,Div , .

µ

λ
Ω

Ω Γ

= +

+ + −

R u u u

u u u u u
  (73) 

The Jacobian matrix is formed by taking the the 
derivative of the residual vector with respect to the nodal 
unknowns:  

∂
=
∂

RJ
U

                 (74) 

In the most general form, the discrete equations for the 
monolithic system are written as  

 

s s s s s f s f s m s

s s s s s f s f s m s

f s f s f f f f f m f

f s f s f f f f f m f

mm s m s m f m f m m

u u u v u v u p u u u
s

v u v v v v v p v u vs

v u v v v v v p v u vf

fp u p v p v p p p u p

m uu u u v u v u p u u

                =                

J J J J J RU
J J J J J RV
J J J J J RV

PJ J J J J R
U RJ J J J J

.






                  (75) 

 
Although this system seems daunting, application of 

the residual vector components, from (69), (70), (71), 
(72), and (73), to the Jacobian definition in (74) shows 

that many of the terms are zero for all coupling 
algorithms, reducing the system to 

 

s s s s s

s s s s s f s f s m s

f s f f f f f m f

f f f m f

m s m m m

u u u v u
s

v u v v v v v p v u vs

v v v v v p v u vf

fp v p u p

mu u u u u

0 0 0

0 .
0 0 0

0 0 0

                 =                    

J J RU
J J J J J RV

J J J J RV
PJ J R

UJ J R

                    (76) 
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Discrete Monolithic Equations 
When discretized monolithically, (76) is further 
simplified due to the conforming velocity fields given in 
(58) and (59). As shown in (60), these velocity fields  

lead to the tractions on the fluid-solid interface not 
contributing to the monolithic (or quasi-direct) equations.  
This eliminates 

s fv vJ , 
s fv pJ , 

f sv vJ , and 
s mv uJ  from  

(76), resulting in  
 

s s s s s

s s s s s f s

f s f f f f f m f

f f f m f

m s m m m

u u u v u
s

v u v v v v vs

v v v v v p v u vf

fp v p u p

mu u u u u

0 0 0

0 0

0 ,
0 0 0

0 0 0

                 =                    

J J RU
J J C RV

C J J J RV
PJ J R

UJ J R

                    (77) 

 
where the terms marked by C  arise due to the con- 
forming velocity space in (58).  

Discrete Quasi-Direct Equations 
The quasi-direct discretization of (76) is similar to the 
monolithic discretization in that the tractions do not con- 
tribute on the interface. This results in the same terms 
being eliminated as were in the monolithic case. Fur- 
thermore, as the quasi-direct approach only solves Prob- 
lems 1 and 2 monolithically, and iterates their solution 
with that of Problem 3, (76) can be separated into two 
smaller systems which reflect the coupled fluid-solid and 
seperate mesh:  

s s s s s

s s s s s f s

f s f f f f f

ff f

u u u v us

v u v v v v vs

fv v v v v p v

f pp v

0 0

0
,

0

0 0 0

             =                

J J RU
J J C RV

VC J J R
P RJ

 (78) 

m m mu u m u .     =       
J U R        (79) 

Discrete Partitioned Equations 
With partitioned coupling, Problems 1, 2, and 3 are all 
solved sequentially. This allows for (76) to be simplified 
into three independent smaller systems for the solid, fluid, 
and mesh:  

s s s s s

s s s s s

u u u v us

sv u v v v

,
    
   = 
        

J J RU
VJ J R

     (80) 

f f f f f

f f f

v v v p vf

fp v p

,
0

    
   = 
        

J J RV
PJ R

      (81)

[ ]
m m mu u m u .   =      

J U R           (82) 

Jacobian Component Calculations 
The actual Jacobian calculations are simply derivatives 
of the residuals presented previously, and so they have 
been ommited. When evaluating the Jacobians, the fol- 
lowing tensor calculus identities from Gurtin [12] are 
useful:  

( )1tr ,J J −′ ′= F F               (83) 

( ) ( )
T

T 1 ,− − ′=  
 

F F             (84) 

( )1 1 1.− − −′= −F F F F             (85) 

In our calculations, we approximate the mesh (fluid 
domain) velocity within each time step as  

( ) ( )m 1 m m
m m

1

, , ˆ
,

h h
n n

n n

t t
t t t
+

+

−
′≈ ⇒ =

− ∆
u X u X uv v     (86) 

Because it is not one of our primitive variables. 
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