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ABSTRACT 
Previous reports have suggested that hypothalamic urocortin 1 (Ucn1) exerts inhibitory control on energy meta-
bolism as direct paraventricular nucleus injections dose-dependently decrease the respiratory energy exchange 
ratio (RER). Other evidence indicates that Ucn1 injections into the lateral septum may alter metabolic function. 
Consequently, the present study was designed to further characterize the effects of lateral septal Ucn1 signaling 
on eating and energy metabolism of adult Sprague-Dawley rats. Ucn1 was infused at the onset of the nocturnal 
cycle at doses of 10 - 100 pmol. In both females and males the peptide elicited a reliable suppression of food in-
take and significantly lowered RER over a 4 h postinjection period. The decrease in RER is consistent with en-
hanced lipid oxidation. Overall these findings suggest that, similar to the paraventricular nucleus, the lateral 
septum is a critical site of action in mediating the effects of Ucn1 on food intake and energy substrate utilization. 
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1. Introduction 
The mammalian peptide urocortin 1 (Ucn1) shares a 45% 
sequence identity with corticotropin-releasing hormone 
(CRH) and binds with high affinity to CRH1 and CRH2 
receptor subtypes [1-5]. Ucn1, with its 40 amino acid 
sequence, is expressed in many areas of the rat nervous 
system, including but not limited to the Edinger-West- 
phal nucleus, hypothalamus, brainstem, and pituitary [2- 
4]. Along with urocortin 2 (Ucn2) and urocortin 3 (Ucn3), 
Ucn1 has been implicated in the control of stress and 
anxiety, specifically when injected into the basolateral 
amygdala and associated limbic structures [6-12]. Indeed 
the central distribution of the urocortins, as well as their 
discrete action and affinity for CRH receptor subtypes, 
suggests the peptides act in a localized manner as impor- 
tant regulators in the neurohormonal control of stress 
[9,13,14]. 

All three Ucn peptides have been associated with 
adaptive changes in energy metabolism including lipid 

mobilization. For example, Ucn1 dose-dependently inhi- 
bits food intake and lowers the respiratory exchange ratio 
(RER), a measure of metabolic function [15-17]. The im- 
pact on RER is observed when injected directly into hy- 
pothalamic nuclei. RER is utilized to assess substrate oxi- 
dation via indirect calorimetry and reflects respiratory 
quotient, the volume of carbon dioxide produced divided 
by the volume of oxygen consumed at the cellular level 
[18]. With respect to food intake, the anorexigenic ef- 
fects of Ucn1 have been observed after injection into the 
supraoptic nucleus and the paraventricular nucleus (PVN) 
of the hypothalamus [16,17,19]. The latter region is ex- 
tensively implicated in homeostatic function [20-22]. The 
dorsal raphe nucleus appears to be similarly responsive 
to urocortin as microinjection of Ucn1 into this brain 
region elicits significant reductions in the amount of food 
consumed and in body weight gain [23]. These findings 
are in agreement with other work showing that ventricu-
lar administration of Ucn1 induces alterations in meta-
bolic control, and in particular, via thermoregulatory me- 
chanisms [24]. In addition, gastric emptying or the motil- *Corresponding author. 
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ity of the gastrointestinal tract may also be affected by 
central urocortin transmission [25]. While species dif-
ferences exist, the overall consistent finding is that Ucn1 
is a catabolic signal [15,16].  

In the present study we examined the impact of Ucn1 
on eating and substrate oxidation following direct injec- 
tions into the lateral septum. Given an earlier report sug- 
gesting that lateral septal Ucn1 is anorexigenic in food- 
restricted rodents [26], we hypothesized that Ucn1 would 
suppress spontaneous eating occurring during the noc- 
turnal period. We further hypothesized that the peptide 
would reduce measures of RER, consistent with its action 
in the PVN, thereby promoting enhanced lipid oxidation. 
Finally, we examined eating and RER effects in both 
male and female rats, as sex-dependent responses have 
not yet been investigated. 

2. Materials and Methods 
2.1. Animals 
Adult female and male Sprague-Dawley rats (N = 32, 
Harlan) were used in both experiments. Animals were 
individually housed post-surgery in polypropylene cages 
with free access to food and water. The colony room was 
maintained on a 12 h light/dark cycle (lights off at 1400 h) 
and with an ambient temperature of 22˚C ± 2˚C. Testing 
was conducted during the active nocturnal period. Expe- 
riments were executed in accordance with the Institu- 
tional Animal Care and Use Committee guidelines of 
Reed College. 

2.2. Stereotaxic Surgery 
Animals were anesthetized with pentobarbital sodium 
(50 mg/kg IP) and then placed into a Kopf stereotaxic 
apparatus with the incisor bar set to 3.5 mm below the 
interaural line. Stainless steel guide cannulae (22 gauge; 
Plastics One) were unilaterally implanted 1 mm dorsal to 
the lateral septum. Stereotaxic coordinates relative to 
bregma were anterior 0.7 mm, lateral ±0.4 mm, and ven-
tral 4.2 mm [27]. Each cannula was fitted with a stainless 
steel inner stylet. Behavioral and metabolic testing began 
following a postoperative recovery period of 14 days. 

2.3. Apparatus 
An OXYMAX Lab Animal Monitoring System meas- 
ured oxygen (O2) consumption and carbon dioxide (CO2) 
production via open-circuit calorimetry (Columbus In- 
struments). Detectors measured O2 and CO2 sequentially 
across each test chamber. Concentrations of the gases 
were recorded in ml/kg body weight/min. The analysers 
were calibrated prior to each test using primary gas stan- 
dards of high purity (Praxair). RER was calculated as the 
volume of CO2 produced (VCO2) divided by the volume 

of O2 consumed (VO2), providing an estimate of respira- 
tory quotient. Lower RER values in the range of 0.7 - 
0.85 are indicative of fat metabolism whereas higher 
values represent a shift in favour of carbohydrate oxida- 
tion [16,18]. 

2.4. Experimental Design 
In feeding tests, groups of female (n = 8) and male (n = 8) 
rats were implanted with cannula aimed at the lateral 
septum. Ucn1 was dissolved in sterile isotonic saline and 
injected unilaterally into the lateral septum with a 
28-gauge microinjector (Plastics One). The injector ex-
tended 1 mm beyond the end of the indwelling cannula. 
A total volume of 0.2 µl was delivered over a two-minute 
period with the injector left in place for an additional two 
minutes to permit the diffusion of the peptide into brain 
tissue. Doses of Ucn1 ranged from 10 - 100 pmol and 
were injected at the start of the nocturnal period. Under 
control conditions, rats received saline vehicle treatment. 
Food intakes were measured at 2 and 4 h postinjection. 
All rats received each dose of peptide administered in a 
randomized order. At least 4 days separated successive 
testing. Similar injection procedures were followed for 
metabolic testing using separate groups of female (n = 8) 
and male (n = 8) rats. Again, Ucn1 was injected at dark 
onset at doses of 10 - 100 pmol. RER was measured over 
a 4-h period and testing began immediately after the rats 
were placed into the apparatus. Food and water were not 
available during this time in order to eliminate any alte-
ration of RER measures associated with spontaneous 
energy consumption. 

2.5. Statistical Analyses and Histology 
Data were analyzed using two-way (treatment × time) 
analyses of variance for repeated measures followed by 
post hoc Tukey tests to probe group comparisons. The 
criterion for statistical significance was p < 0.05. Guide 
cannula placements were confirmed through histological 
examination. Tissue sections were examined by light mi- 
croscopy and viewed relative to the stereotaxic atlas of 
Paxinos and Watson [27]. All rats reported here were 
observed to have injector tracks extending into the lateral 
septum. 

3. Results 
As shown in Figure 1, Ucn1 administration suppressed 
food consumption at 2-h and 4-h intake measures in fe- 
male rats (F(2,14) = 5.8, p < 0.01). The effect was dose- 
dependent with each of the two doses producing reliable 
reductions in intake. Similarly, as illustrated in Figure 2, 
these same doses of Ucn1 decreased food intake in male 
rats at both time points (F(2,14) = 10.7, p < 0.002). 
Again, the effect was dose-dependent. In metabolic test-  



A. I. FIMMEL  ET  AL. 

OPEN ACCESS                                                                                       JBBS 

101 

 
Figure 1. Ucn1 injection into the lateral septum suppressed 
food intake in female rats (n = 8) at 2 and 4 h postinjection. 
Values represent mean intakes ± S.E.M. *p < 0.05 compared 
to vehicle (Veh). 
 

 
Figure 2. Microinjection of Ucn1 into the lateral septum 
decreased food intake in male rats (n = 8) at 2 and 4 h 
postinjection. Values represent mean intakes ± S.E.M. *p < 
0.05 compared to vehicle (Veh). 
 
ing, Ucn1 treatment lowered RER values in female 
(F(48,336) = 34.1, p < 0.003; Figure 3) and male 
(F(48,336) = 93.6, p < 0.0001; Figure 4) rodents. Sig- 
nificant reductions in RER were evident within 40 min of 
injections and were sustained over the remainder of the 
4-h test period. While both doses of Ucn1 lowered RER, 
the higher dose of 100 pmol elicited a maximal impact 
on this metabolic measure. 

4. Discussion 
In the present study direct lateral septum administration 
of Ucn1 suppressed food intake in free-feeding male and 
female rats. Ucn1 also lowered RER indicating an action 
specific to lipid oxidation. Since the change in RER oc- 
curred under test conditions where food was not availa- 
ble, the observed alteration in substrate utilization is ar- 
guably independent of the peptide’s anorexigenic effect. 
Our findings are consistent with other research examin- 
ing the impact of hypothalamic PVN Ucn1 treatment in 
male rodents [15-17]. In these studies PVN Ucn1 pro- 
moted lipid utilization [15,16] similar to the effect ob- 
served here. While the precise circuitry through which 

 
Figure 3. Lateral septum administration of Ucn1 signifi-
cantly lowered the respiratory exchange ratio (RER) of 
female rodents (n = 8) within 40 min of treatment and the 
suppression of RER was maintained over the remainder of 
the 4-h test. The decrease in RER is consistent with en-
hanced oxidation of lipid. Values are represented as mean ± 
S.E.M. *p < 0.05 compared to vehicle (Veh). 
 

 
Figure 4. Administration of Ucn1 into the lateral septum of 
male rats (n = 8) reliably decreased the respiratory ex-
change ratio (RER) within 40 min of injection. The reduc-
tion of RER was maintained for the remainder of the 4-h 
postinjection period. Such a reduction is consistent with 
enhanced lipid oxidation. Values are represented as mean ± 
S.E.M. *p < 0.05 compared to vehicle (Veh). 
 
septal Ucn1 alters metabolic activity is not fully unders- 
tood, earlier work has implicated orexin A signaling. 
Ucn1 injections into the lateral septum have been shown 
to reduce the feeding effect of orexin A administered into 
the lateral hypothalamus and pretreatment with the CRH 
receptor antagonist, alpha-helical CRH, blocks the inhi- 
bitory effect of Ucn1 on orexin A-stimulated eating [26]. 
Moreover, high levels of Ucn1 peptide and expression of 
CRH type 2 receptors have been reported in the lateral 
septum and this brain region has anatomical connec- 
tions with the hypothalamus [28-30]. Interestingly the 
anxiogenic or stress response elicited by Ucn1, a well- 
documented finding [6,12,31], is also partly mediated by 
orexin A transmission [32]. 



A. I. FIMMEL  ET  AL. 

OPEN ACCESS                                                                                       JBBS 

102 

Another possibility is that Ucn1 inhibits eating through 
an interaction with central serotonin (5-HT). One pre- 
vious report suggests that the anorexigenic effect of lat- 
eral septal Ucn1 is mediated via the activation of 5-HT2c 
receptors [33]. Hypothalamic serotonergic mechanisms 
have been extensively implicated in energy metabolism. 
For example, exogenous PVN serotonin administration 
suppresses the effects of ghrelin and neuropeptide Y 
(NPY) on eating and energy metabolism [34,35]. The 
inhibitory effect of 5-HT appears to be mediated through 
5-HT2a/2c receptors since PVN injection of the 5-HT2a/2c 
agonist DOI attenuates the effects of either peptide on 
food intake and substrate oxidation. Both orexigenic pep- 
tides have been reported to increase RER resulting in 
enhanced carbohydrate oxidation and the preservation of 
lipid stores [18,32,35,36]. The action of DOI is in turn 
reversed by pretreatment with ketanserin or spiperone 
[35]. 

The effects of Ucn1 on food intake and energy meta- 
bolism are in direct contrast to those observed following 
NPY or ghrelin treatment. Again, hypothalamic NPY and 
ghrelin are potently orexigenic and both peptides elicit 
increases in RER, contrasting with the reduction in food 
intake elicited by Ucn1 and the robust decreases in RER 
[18,35,36]. It is interesting to note that similar to PVN 
5-HT, local infusion of Ucn1 suppresses the eating and 
RER effects of either NPY or ghrelin [15]. Additionally, 
ventral tegmental ghrelin injection has been reported to 
alter ethanol consumption [37] and recent research has 
confirmed a positive correlation between increased etha- 
nol intake and Ucn1 levels in the Edinger-Westphal nuc- 
leus where urocortinergic neurons project to the lateral 
septum [38-40]. Such findings are consistent with emerg- 
ing evidence implicating ghrelin and Ucn1 in reward- 
related signaling of the mesotelencephalic system [41, 
42]. 

While previous reports have implicated urocortin-re- 
lated peptides in the regulation of energy homeostasis, 
both Ucn1 and CRH have been shown to act centrally to 
alter energy balance and inhibit food intake in various 
models of hyperphagia, including NPY and ghrelin-sti- 
mulated eating as described above [15,18,43]. These ef- 
fects are in addition to other evidence showing that uro- 
cortins and CRH contribute to the integration of auto- 
nomic, neuroendocrine and behavioral responses to stress 
and aversive stimuli [44,45]. Again, Ucn1 binds with 
high affinity to CRH receptors and decreases food intake 
in food-deprived and free-feeding animals [3,15,26]. Our 
present results confirm however that the anorexigenic 
and metabolic responses of Ucn1 are not limited to hy-
pothalamic neurons but that such effects are mediated, at 
least in part, via the lateral septum. Overall, these find-
ings are in agreement with other work showing that Ucn1 
suppresses appetite through an action on CRH receptors, 

which is independent of adrenocorticotropin function 
[44]. Given that CRH type 2 receptors are expressed in 
high concentrations within the PVN and lateral septum 
[1], this suggests that the effects of Ucn1 on eating and 
energy metabolism, observed in the current study, are 
likely mediated by local type 2 receptors. 

5. Conclusion 
In summary, microinjection of Ucn1 into the lateral sep- 
tum suppresses food intake and decreases the respiratory 
exchange ratio of both female and male rodents. These 
findings are consistent with evidence from hypothalamic 
mapping studies [15-17] demonstrating that Ucn1 exerts 
control over energy metabolism by inhibiting food intake 
and promoting lipid, but not carbohydrate, substrate oxi- 
dation. Our findings further suggest that the lateral septal 
region is critically involved in Ucn1 homeostatic control 
mechanisms. 
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