
Engineering, 2013, 5, 570-574 
http://dx.doi.org/10.4236/eng.2013.510B117 Published Online October 2013 (http://www.scirp.org/journal/eng) 

Using Ultrasonic Spectrometry to Estimate the Stability 
of a Dental Implant Phantom 

Hamed Hamid Muhammed, Satya V. V. N. Kothapalli 
School of Technology and Health STH, Royal Institute of Technology KTH Alfred Nobels Alle 10, 

Stockholm, Sweden 
Email: hamed.muhammed@sth.kth.se, satya.kothapalli@sth.kth.se 

 
Received 2013 

ABSTRACT 
A challenging problem in dental implant surgery is to evaluate the stability of the implant. In this simulation study, an 
experimental phantom is used to represent a jawbone with a dental implant. It is made of a little pool filled with 
soft-tissue equivalent material and a disc of fresh Oakwood with a metal screw. Varying levels of contact between 
screw and wood are simulated by screwing in or out the screw. Initially, the screw is screwed in and fixed firmly in 
wood. Thereafter, the screw is screwed out, a half turn each time, to increase the gap gradually between wood and 
screw. Pulse-echo ultrasound is used and the power spectra of the received echo-signals are computed. These spectra 
are normalized then analyzed by using the partial least squares method to estimate the corresponding implant stiffness 
grade in terms of number of turns when beginning from the initial tight-screw state then screwing out the screw. A 
coefficient of determination R2 of 96.4% and a mean absolute error of ±0.23 turns are achieved when comparing real 
and estimated values of stiffness grades, indicating the efficiency of this approach. 
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1. Introduction 
Nowadays, dental implant surgeries are common among 
female, male, young and elderly patients. In general, 
these surgeries are performed in four different phases. 
The most critical phase is the second one, called os-
seointegration [1], where the integration of implant into 
living jawbone occurs. Depending on many factors, in-
cluding age, gender, bone tissue density and pathological 
condition of the patient, the osseointegration process may 
take a longer or a shorter time period. 

Therefore, it is important to have a non-destructive, 
risk-free and mobile clinical routine to measure the fixa-
tion of the implant. Fitting and Adler [2] suggested the 
use of ultrasonic spectral analysis for non-destructive 
testing. By using this technique, which can be optimized 
to fulfill the requirements mentioned above, it sounds 
promising to test the hypothesis that ultrasonic spectral 
measurements can be performed to evaluate the biome-
chanical stability or the stiffness of the bone-implant 
interface which is proportional to the osseointegration 
grade. 

Recently, Shiu-Fen Lin et al. [3] as well as Pan and 
Ying [4] proposed and used resonance frequency analysis 
(RFA) to evaluate the grade of osseointegration. They 
found that the resonance frequency of the bone-implant  

interface or structure was proportional to implant me-
chanical stability. The frequencies considered were in the 
range of 60 - 120 Hz to be able to study the vibration of 
the whole implant imbedded into Bakelite (a gypsum 
model). The results presented were rather binary, only 
showing if the grade of stiffness was high or low. 

Valderrama et al. [5] showed that the recently intro-
duced magnetic RFA device could give comparable re-
sults as the original electronic variant. However, Pattijnet 
al. [6] showed that the energy of the signal measured by 
the RFA technique was angle and displacement depen-
dent and could change considerably when performing the 
measurements at different parts of the implants and from 
different directions. 

De Almeida et al. [7] introduced a new approach, 
called quantitive ultrasound (QUS), where a transmission 
ultrasound technique was used to inspect a phantom 
made of a metal threaded piece (representing the implant) 
imbedded into a metal block (corresponding to the bone). 
A 1 MHz central frequency ultrasonic transducer was 
used in this study. The results showed that the mean val-
ue of detected time signal was proportional to the stiff-
ness of the structure of this phantom. 

Mathieu et al. [8] performed an ex vivo study and 
showed that the QUS technique could be used to com-
pute a quantitative parameter which was significantly 
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sensitive to the amount of bone (rabbit femur was used) 
in contact with a cylindrical titanium dental implant. The 
transducer used in this study had a central frequency of 
10 MHz to allow for distinguishing different echoes ori-
ginating from different implant interfaces. Furthermore, a 
long-enough signal duration (25 times longer that used 
by de Almeida et al. [7]) was used to retrieve more in-
formation from the implant and compute the indicator. 

The new approach, proposed by this work, aims at 
evaluating the stability of the dental implant screw in 
bone and soft tissues. For this purpose, a proper phantom 
is designed and used. Ultrasonic spectral analysis is uti-
lized to detect differences or changes in the shape of the 
curve of the power spectrum of the ultrasonic echo-sig- 
nals reflected from the phantom representing an implant 
imbedded into a jawbone. An automatic statistical-mod- 
eling method is developed and utilized to estimate (based 
on analyzing the shape of ultrasonic power spectra) the 
contact and the stiffness grade between the implant and 
the jawbone. 

However, in statistical modeling, two common prob-
lems are usually encountered: 1) Large number of va-
riables and few observations. 2) Explanatory and depen-
dent variables are collinear. These two problems can be 
solved by, at first, preprocessing and normalizing the 
data in an efficient way, then using a suitable Partial 
Least Squares (PLS) algorithm to achieve the desired 
results. 

2. Materials and Methods 
2.1. Phantom and Experimental Setup 
A disc of fresh Oakwood was used to simulate a jawbone. 
The speed of sound in Oakwood is about 3800 m/s [9], 
which is close to the speed of sound in bone tissue, 
which is about 3750 ± 250 m/s. The spongy microstruc-
ture of wood tissue is also similar to bone tissue making 
it efficient to produce and use wood-based bone-implants 
[10]. A metal screw was screwed into this wooden disc to 
simulate an implant, as shown in Figure 1(a). This disc 
was immersed into a pool filled with water and a 

soft-tissue equivalent material; a black-colored mixture 
composed of 4% graphite, 3% agar and 93% water [11]. 
An ultrasonic transducer was mounted at 21 mm distance 
from the edge of the wooden disc as shown in Figure 
1(b). The central or fundamental frequency of this single- 
crystal piezoelectric ultrasonic transducer was 2 MHz, 
and the frequency band was ranging from 1.8 MHz to 2.2 
MHz. 

A pulse generator with an amplifier was used to excite 
the transducer to make it emit an ultrasonic pulse, then 
receive the echo signal and transfer it through the am-
plifier to an oscilloscope. A power spectrum of the re-
ceived signal was generated by the oscilloscope by using 
the fast Fourier transform (FFT). This spectrum was 
transferred to a personal computer (PC), where it was 
analyzed. 

2.2. Dataset 
A set of 30 power spectra was acquired by the pulse-echo 
ultrasound system described previously. Each power 
spectrum corresponded to a certain contact level and a 
certain stiffness grade between the metal screw and the 
wooden disc. The contact level was measured in number- 
of-turns when screwing the screw out or into the disc. 
Initially, the screw was screwed in firmly in the wooden 
disc. Thereafter, it was screwed out, a half turn each time, 
to increase the gap between wood and screw gradually 
until reaching 5 turns. Then it was screwed into the disc 
again with a half turn each time until reaching the tight- 
screw state again. 

Finally, it was screwed out again exactly as before un-
til reaching 5 turns. By this way, 10 different contact and 
stiffness grades (linearly distributed between 0.5 and 5 
turns) were simulated three times and the corresponding 
power spectra were measured. Hence, the dataset availa-
ble for this work consisted of 30 power spectra and the 
corresponding numbers of turns. 

2.3. Methodology 
1) Partial Least Squares (PLS): PLS is a multivariate 

 

 

Figure 1. (a) Metal screw screwed into a wooden disc. (b) The experimental setup where the phantom, labeled with (1) and 
presented in Figure 1(a), is immersed into a pool filled with water and a soft-tissue equivalent material, labeled with (3). An 
ultrasonic transducer, labeled with (2), is mounted 21 mm away from the edge of the phantom.   
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statistical framework which includes a wide class of me-
thods and is used for processing, interpreting and ana-
lyzing data, measurements and observations in a wide 
range of fields and applications. An overview of PLS is 
presented by Rosipal and Kramer [12]. 

The pioneering work of introducing PLS was mainly 
done by Herman Wold in 1966 [13] and 1975 [14]. Since 
then, PLS has received great attention in many research 
fields. The basic principle of this method is to find and 
use a small number of uncorrelated variables (known as 
components or latent variables) to explain as much cova-
riance as possible between the two blocks of explanatory 
X and dependent Y variables; where each column of the 
X- and Y-matrices contains one variable. 

At first, the X- and Y-variables are preprocessed to 
make their distributions fairly symmetrical. The nth root 
transformation (where n is a real number) can be used to 
compress the dynamic range of these variables so that the 
result of dividing the mean value by the standard devia-
tion (of this variable) will be around one. After that, a nor- 
malization technique called whitening [15] is performed 
to scale the data into zero-mean and unit-variance. 

The general PLS model is described as follows: 

, TX TP E Y TQ F= + = +            (1) 

where X is an nxm matrix of predictors, Y is an nxp ma-
trix of responses, T is an nxl matrix of factors, P and Q 
are mxl and pxl loading matrices (of weight coefficients), 
respectively, and matrices E and F contain error terms. 

There exist a number of PLS algorithms to estimate 
the factor and loading matrices T, P and Q. Most of these 
algorithms estimate the linear regression between X and 
Y as: 

Y = XB + N                   (2) 
where Y contains n cases and m dependent variables, X 
contains n cases and p independent variables, B contains 
pxm regression coefficients (reflecting the covariance 
structure between Y and X), and N is a noise term of the 
same size as Y. 

2) Using PLS analysis: There exist many different 
ways of performing PLS analysis. In this work the 
non-linear iterative partial least squares algorithm (NIP-
ALS; [14]) is used. The first step of the NIPALS algo-
rithm is to create two matrices E = X and F = Y, where 
the columns of X contain the measured ultrasonic power 
spectra (which are our independent variables), while Y is 
a vector contains the corresponding dependent variables 
that are desired to be estimated. 

The second step is to preprocess and normalize both X 
and Y. Each element of vector Y is transformed (by 
choosing an appropriate power value) so that the result of 
dividing its mean value by its standard deviation will be 
around one. After that, whitening is applied to Y. Matrix 

X is also whitened, but by employing two iterative nor-
malisation approaches, where a number of alternating 
spectral-wise (denoted as Sw and performed row-wise in 
matrix X) and band-wise (denoted as Bw and performed 
column-wise in matrix X) whitening operations are per-
formed, as described in [16]. When performing Sw-whi- 
tening, each spectrum (which corresponds to one row in 
matrix X) is whitened, while each column of X (which 
corresponds to one spectral band) is whitened when Bw- 
whitening is performed. In the first iterative normalisa-
tion approach, a series of alternating Sw- and Bw-whi- 
tening operations, beginning and ending with Sw-whi- 
tening operations, were performed. On the other hand, 
the second iterative approach started with a Bw-whiten- 
ing operation and ended with a Sw-whitening operation. 

After that, the PLS algorithm starts and a series of 
iterative operations are performed until convergence of 
the result is achieved. At this point, the whole set of la-
tent variables are calculated, as explained by Abdi [17]. 

In order to avoid over modeling, the number of latent 
variables to be included in the PLS model should be de-
termined. A rule of thumb is that each latent variable 
used in the final model corresponds to five or six inde-
pendent observations in the training dataset. (Rhiel et al. 
[18]).  

By this way, an upper limit for how many latent va-
riables to include has been defined. The remaining ques-
tion is how many of these latent variables are enough to 
include. A popular way to know that is by calculating the 
relative error value which is zero when perfect prediction 
is achieved. Otherwise, it is always a positive number. 
The PLS model is improved as long as adding more la-
tent variables lowers the relative error value. The optimal 
number of latent variables is found when the relative 
error value begins to increase [17]. 

3) Cross validation: To evaluate the usefulness and ef-
ficiency of the PLS model, cross validation is necessary. 
Leave-one-out cross validation is an efficient evaluation 
method when few observations are available. Only one 
pair of variables at a time is removed from the reference 
dataset and the excluded dependent parameter (which is 
desired to be estimated) is considered as unknown. The 
rest of the data samples are considered as a training da-
taset and the excluded measured spectrum is fed into the 
trained model to estimate the excluded dependent para-
meter. 

The estimated parameter values are finally compared 
to the real values, to evaluate the performance of the PLS 
model. Both of the relative error and the coefficient of 
determination R2 can be used as evaluation measure. 

3. Experimental Results 
The gap between the jawbone and the dental implant may 
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vary between zero and 0.1 mm, which is the initial gap 
size when inserting a screw-type dental implant [19]. The 
gap-size variation corresponds to a variation of the con-
tact and the stiffness grade between the implant and the 
jawbone. However, what is more interesting and impor-
tant to know is if the osseointegration process is com-
plete or not, and if this process is progressing towards 
obtaining a better intimate contact, between the bone and 
the implant, or not. An efficient way to simulate varying 
grades of osseointegration is to use the experimental se-
tup and the phantom described previously. 

The nonlinear propagation of the ultrasonic waves 
through the wooden disc, the metal screw and the wa-
ter-filled gap between them will gradually deform the 
shape of the waves. Therefore, in addition to the effect of 
Fourier transforming the time-signal received by the 
transducer, higher harmonic frequencies (defined as in-
teger multiples of the fundamental frequency of the ul-
trasonic transducer) appear in the power spectrum. The 
frequency of the peak of the first harmonic was shifted 
from 2 MHz down to 1.92 MHz. The second harmonic 
peak was at around 3.84 MHz, the third one was at 
around 5.76 MHz and so on, as shown in Figure 2. Low 
pass filtering was used to suppress the noise and get 
smoother spectra. 

It is essential to ensure the repeatability of the experi-
ments to validate the capability of an ultrasonic mea-
surement system. Therefore, the experiments were re-
peated using different initial conditions and the measured 
power spectra were compared. The resulting standard 
deviations, when comparing spectra corresponding to the 
same contact level, were mainly limited to 1%. 

Figure 2 shows a comparison between two power 
spectra; one corresponds to a tight screw and the other 
one corresponds to a loose screw. It is possible to ob-
serve differences between these spectra, at the higher 
harmonics. These differences are automatically utilized 
by the PLS algorithm to be able to estimate the corres-
ponding stiffness grade which is measured in num-
ber-of-turns when screwing the metal screw out or into 
the wooden disc. Before applying the PLS algorithm, the 
power spectra were preprocessed according to the guide-
lines mentioned previously. 

Figure 3 presents a comparison between real and es-
timated stiffness grades (measured in number-of-turns), 
with a coefficient of determination R2 of 96.4% and a 
mean absolute error of ±0.23 turns. 

4. Discussion and Conclusions 
Although the obtained results indicate the usefulness and 
efficiency of the used approach, the transducer was at-
tached to the phantom at approximately the same posi-
tion, angle and direction during the whole experiment.  

 
Figure 2. A comparison between two power spectra; a 
power spectrum of a tight screw and another one of a loose 
screw. 
 

 
Figure 3. A comparison between real and estimated num-
ber-of-tums when screwing the screw out, then in, then out 
again. Various number-of-turns correspond to various stiff- 
ness grades between the screw and wood. 
 
Minor changes occurred when trying to screw in or out 
the screw. The spectral measurements will change con-
siderably when measuring at different parts of the phan-
tom and from different directions or angles. However, it 
is possible to normalize these spectra and make them 
useable, since the method proposed and used in this work 
doesn’t rely on comparing amplitudes of one or several 
peaks found at certain frequency intervals. The new me-
thod makes instead use of the shape of the whole spec-
trum which makes it more efficient and practical so that 
it can be used outside the laboratory without the need for 
controlled measuring conditions. Furthermore, it is not 
necessary to manually identify the most useful spectral 
regions where most variations among the spectra are vis-
ible. The significance of the new method is that it is ob-
jective, non-invasive, fast, accurate, automatic and re-
producible. 
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