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ABSTRACT 
In this work, a nonlinear model predictive controller is developed for a batch polymerization process. The 
physical model of the process is parameterized along a desired trajectory resulting in a trajectory linearized 
piecewise model (a multiple linear model bank) and the parameters are identified for an experimental polymeri-
zation reactor. Then, a multiple model adaptive predictive controller is designed for thermal trajectory tracking 
of the MMA polymerization. The input control signal to the process is constrained by the maximum thermal 
power provided by the heaters. The constrained optimization in the model predictive controller is solved via ge-
netic algorithms to minimize a DMC cost function in each sampling interval. 
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1. Introduction 
Model predictive control (MPC), is a model based on ad- 
vanced process control (APC) technique that has been 
proved to be very successful in controlling highly complex 
dynamic systems. It naturally supports design for MIMO 
and time-delayed systems as well as state/input/ output 
constraints. MPC is generally based on online optimization 
but in the case of unconstrained linear plants, closed form 
solutions can be derived analytically. However, when 
there are constraints over the control inputs (i.e. actuators) 
and/or process states, which is often the case, an online 
(i.e. real-time) constrained optimization problem has to 
be solved in each sampling interval, even if the plant 
model is linear and time invariant. This online optimiza-
tion usually requires a high computational power; how-
ever, since chemical processes are typically of slow dy-
namics, such controllers have been designed and imple-
mented on various chemical plants with great success. 

Moreover, due to recent advancements of computa- 
tional hardware and software tools, the usage of MPC is 
rapidly expanding to other control domains including elec- 

trical machines, renewable energy, aerospace and auto-
motive control systems. 

In the past two decades, the effective control of po-
lymerization processes control has been studied by many 
authors [1-7]. Polymerization kinetic is usually complex 
due to the nonlinearity of the process. Therefore, the 
control of the polymerization reactor has been staying a 
challenging task. Due to its great flexibility, a batch reac-
tor is suitable to produce small amounts of special poly-
mers and copolymers. The batch reactor is always dy-
namic by its nature. It is essential to have a suitable dy-
namic model of the process. Rafizadeh [1] presented a 
review on the proposed models and suggested an on-line 
estimation of some parameters. His model consists of the 
oil bath, electrical heaters, cooling water coil, and reactor. 
Peterson et al. [2] presented a non-linear predictive strat-
egy for semi batch polymerization of MMA. Soroush and 
Kravaris [3] applied a Global Linearizing Control (GLC) 
method to controling the reactor temperature. Perform-
ance of the GLC for tracking an optimum temperature 
trajectory was found to be suitable. DeSouza et al. [4]  

http://www.scirp.org/journal/jilsa
http://dx.doi.org/10.4236/jilsa.2014.61004
mailto:masoud@ualberta.net
mailto:Reza.Solgi@sfi-phd.ch


Constrained Nonlinear Model Predictive Control of a Polymerization Process via Evolutionary Optimization 

OPEN ACCESS                                                                                      JILSA 

36 

studied an expert neural network as an internal model in 
control of solution polymerization of vinyl estate. In their 
study, they compared their neural network control with a 
classic PID controller. Clarke-Pringle and MacGregor [5] 
studied the temperature control of a semi-batch industrial 
reactor. They suggested a coupled non-linear strategy and 
extended Kalman filter method. Mutha et al. [6] sug-
gested a non-linear model based on control strategy, 
which includes a new estimator as well as Kalman filter. 
They conducted experiments in a small reactor for solu-
tion polymerization of MMA. Rho et al. [7] assumed a 
first order model plus dead time to pursue the control 
studies and estimated the parameters of this model by on 
line ARMAX model. Nonlinear predictive control of the 
batch reactor considered [8,9] via PCA and Wiener mod-
eling approaches, respectively. When MPC is formulated 
as a state feedback controller, the full state information is 
required which must be provided using state estimators 
in nonlinear H2 (e.g. EKF) or nonlinear H∞ paradigms 
[10-12]. Rafizadeh [13] designed a sequential lineariza-
tion adaptive controller for the solution polymerization of 
methyl methacrylate in a Batch Reactor. 

This paper presents a constrained model predictive 
control of an MMA reactor, based on the genetic algo-
rithm optimization. A previously developed mechanistic 
model of the process was used. The model is a sequential 
piecewise linearization along a selected temperature tra-
jectory. The piecewise linear model is used both for the 
plant output calculation through the prediction horizon 
and for the closed loop simulation of the controller, using 
a time-triggered switching mechanism. We are using an 
output feedback MPC, therefore, no state estimator is 
required, which is advantageous. The results of tracking 
the trajectory and eliminating noise and disturbances 
show a promising performance of the controller. 

2. Polymerization Mechanism 
Methyl methacrylate normally is produced by a free 
radical, chain addition polymerization. Free radical po- 
lymerization consists of three main reactions: initiation, 
propagation and termination. Free radicals are formed by 
the decomposition of initiators. Once formed, these radi-
cals propagate by reacting with surrounding monomers to 
produce long polymer chains; the active site being shifted 
to the end of the chain when a new monomer is added. 
During the propagation, millions of monomers are added 
to 1

oP  radicals. During termination, due to reactions 
among free radicals, the concentration of radicals decrea- 
ses. Termination is by combination or disproportionate 
reactions. With chain transfer reactions to monomer, ini- 
tiator, solvent, or even polymer, the active free radicals 
are converted to dead polymer. Table 1 gives the basic 

free radical polymerization mechanism [14]. 
The free radical polymerization rate decreases due to 

reduction of monomer and initiator concentration. How- 
ever, due to viscosity increase beyond a certain conver- 
sion there is a sudden increase in the polymerization rate. 
This effect is called Trommsdorff, gel, or auto-accelera- 
tion effect. For bulk polymerization of Methyl Methacry-
late beyond the 20% conversion, reaction rate and mo- 
lecular weight suddenly increase. In high conversion, 
because of viscosity increase there is a reduction in ter- 
mination reaction rate. 

3. Mathematical Modeling of Polymerization 
The polymer production is accomplished by a reduction 
in volume of the mixture. The volumetric reduction fac- 
tor is given by: 

p m

p

ρ ρ
ε

ρ
−

=                  (1) 

The instantaneous volume of mixture is given by: 

( )0 1
m

MV xε β
ρ

= − +               (2) 

The parameter β  is defined as: 

1
s

s

f
f

β =
−

                 (3) 

During the free radical polymerization, the cage, glass, 
and gel effects occur. For the cage effect, the initiator 
efficiency factor is used. The CCS (Chiu, Carrat and 
Soong) model is used in this study to take into considera- 
tion the glass and the gel effects. Therefore, propagation 
rate constant, pk , is changing according to: 

0

01 1
p

p pk k D
λ

θ= +               (4) 

0pk  is changing as Arrhenius function, and D  is 
given by equation: 

 
Table 1. Polymerization Mechanism. 
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Similarly, termination rate constant, tk , is given by 

0

01 1
t

t tk k D
λ

θ= +              (6) 

0t
k  is changing as Arrhenius function. pθ  and tθ  

are adjustable parameters related to propagation and ter-
mination rate constants, respectively. All other necessary 
parameters and constants for this model are given in [1, 
14,15]. 

Long Chain Approximation (LCA) and Quasi Steady 
State Approximation (QSSA) are used in this study. Equ- 
ations are highly nonlinear and, using Taylor expansion 
series, these equations were converted to linearized form. 
The linearized state space form is given by: 
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The molecular properties of the produced polymer are 
controlled by ensuring the reaction temperature is chang- 
ing according to a desired reference trajectory. This is a 
tracking control problem which we are solving using 
MPC. 

Figure 1 shows the result of model validation [14]. As 
it is seen, the model is a good representative of the proc-
ess. Equation (7) is converted to the transfer function for 
reaction temperature to input power: 

( )
( )

2
3 4 5

4 3 2
1 2 3 4 5

T s n s n s n
P s d s d s d s d s d
′ + +

=
+ + + +

       (8) 

The result of sequential linearization is 131 transfer 
functions along the temperature profile. See [13,14] for a 
more detailed description of the MMA polymerization 
dynamic modeling. 

4. Experimental Setup 
A schematic representation of the experimental batch 
reactor setup is shown in Figure 2 [14]. The reactor is a 
Buchi type jacketed, cylindrical glass vessel. A multi- 
paddle agitator mixes the content. Two Resistance Tem-
perature Detectors (RTDs) of PT100 type were used with 
accuracy of ±0.2˚C to measure the reactor temperature 
and the oil temperature in the oil bath. Methyl Methacry-
late and Toluene were used as monomer and solvent, 
respectively. Benzoyl Peroxide (BPO) was used as the 
initiator. The heater, heats the oil circulating the oil bath, 
which is pumped into the reactor. Cool water is circu-
lated in a coolant coil inside the oil bath through an elec-
tric on/off valve and acts as a safety feature to prevent 
the oil and consequently the reactor from overheating. 
The RTD outputs are converted into 0 - 10 VDC through 
a bridge and an instrument amplifier and are read by the 
data acquisition card A/D channels. The controller output 
is fed into a MOSFET-based power electronics switching 
circuit as PWM signals. The maximum heater power 
available is 1000 W, which is a constraint on the control 
signal. 

5. Model Predictive Control 
Due to its high performance, model predictive control 
method has received a great deal of attention to control 
chemical processes, in the last few years. Figure 3 shows 
block diagram of a model predictive controller. 

There are three main approaches to model predictive 
control, MAC (Model Algorithmic Control), which is 
based on system’s impulse response, DMC (Dynamic 
Matrix Control), which uses the process step response 
samples, and GPC (Generalized Predictive Control), which 
is based on the process transfer function. In practice, it is 
easier to obtain step response samples rather than im-
pulse response or a full transfer function, and therefore 
the DMC method is more popular. We use the DMC 
method in this research. The cost function is defined as: 

( ) ( )
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where P, M and N1 are prediction horizon, control hori-
zon and pure time delay, respectively. Matrices M MR ×  
and P PQ ×  are weighting matrices used in the weighted 
2-norms. 
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Figure 1. Model validation. 

 

 
Figure 2. Schematics of the experimental setup. 

 
( ) ( ) ( )

( ) ( ) ( )

d p

d m

e t i y t i y t i

y t i y t i d t i

+ = + − +

= + − + − +
    (10) 

where py  and my  are the process and model outputs, 
and d  is the difference between the process and model 
outputs, including noise, disturbance and model mis-
match. ( )dy t  is the desired output based on the refer-
ence input. If ( )spy t  is the reference input, the follow-
ing filtered form is used as the tracking trajectory: 

( ) ( ) ( ) ( )1 1  ;  1d d spy t y t y tα α α= − + − ≤ <   (11) 

The parameter α changes the place of the first order 
smoothing filter pole; the smaller α  the faster output 
will become. It has been shown that system robustness 
can be decreased by the reduction of α  and increment 
of the manipulated signal [16]. Expanding the summa-

tions and substituting the quadratic forms, the cost func-
tion in (9) can be rearranged in a matrix form as 

( ) ( )T T
m D m DJ Y D Y Q Y D Y U R U+ += + − + − + ∆ ∆  (12) 

There is no pure time delay in the model, therefore, 
1N  is zero, then: 
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In forming (14), if the future values of the set point are 
known, we get 
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which is called programmed MPC. If the future set 
points are unknown, dy  is assumed to be constant dur-
ing the prediction horizon, i.e.: 
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Figure 3. Block diagram of a model predictive controller. 

 
( ) ( ) ( )1d d dy t y t P y t+ = = + =  

which is called non-programmed MPC. For an LTI sys-
tem, without any constraints on output or control signal, 
the above optimization problem has the following closed 
form: 
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And, ig  is the step response samples. The matrix G+  
is a Toeplitz matrix, containing step response samples as 
shown in (19). There is no closed form solution for the 
formulated constrained optimization problem. Hence, an 
online optimization algorithm (a genetic algorithm) is 
applied to solve the problem, which will be discussed 
later. The model output is: 
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( ) ( ) T
1 1U u t u t N−∆ = ∆ − ∆ − +        (22) 

where N  is the number of system step response sam-
ples reaching to steady state or equivalent impulse re-
sponse steps which lead to zero; and Ng  is the system 
DC gain. 

( ) ( ) ( ) T
1 1NU u t N u t N u t N P= − − + − + −    

(23) 

6. The Modified DMC 
If the system has any poles close to the origin, the step 
response will be very slow and the required N  is very 
large. A system including integrator never reaches to the 
steady state (this case exists in the set of linearized mod-
els of the MMA reactor) and N  approaches infinity. 
Hence, instability occurs. This is one of the limitations of 
the standard DMC formulation, making it only applicable 
to open loop stable system [17]. To overcome this, one 
practical solution is as follows. We have 

m N NY G U G U g U+ + − −= ∆ + ∆ +         (24) 

Past PastN N mY G U g U Y G U Y
∆

− − + += ∆ + ⇒ = ∆ +    (25) 

where PastY  is the effect of past inputs on the future 
system outputs without considering the effect of present 
and future inputs. Consequently, PastY  can be calculated 
by setting the future u∆ s equal to zero and solving the 
model P steps ahead. 

PastmU Y Y+∆ = → =  

As seen in (15) and (19), G+  and U+∆  are inde-
pendent of N . The only thing determined by N is the 
dimension of G− , which is omitted now. Therefore, us-
ing this technique, DMC computations become inde-
pendent of N . This modified formulation can be used 
for marginally stable and unstable plants alike. 

As discussed in the previous section, we have used a 
piecewise linear model of the MMA polymerization 
process. In our application, since the valid model for fu-
ture time steps may change through the course of predic-
tions, in the computations of PastY , in order to predict the 
future model outputs, the corresponding valid models are 
used. In other words, the model used for output predic-
tion is scheduled through the prediction horizon, exploit-
ing the developed trajectory linearized model. This vir-
tual model switching is utilized to calculate the optimal 
control sequence in each time step. Apparently, another 
model switching is also applied through the course of 
time simulation of the closed-loop control system. 

Model Cost
Function

Constraints
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Reference 
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Furthermore, since the whole desired temperature pro-
file is known a priori, the programmed MPC is used, 
utilizing the known future desired temperature trajectory. 

7. Genetic Algorithm Optimization 
In general, there is no closed form solution for MPC, 
except the linear time-invariant unconstrained case. Oth-
erwise, the optimization problem should be solved nu-
merically. If the solution space is convex, sequential 
quadratic programming techniques (SQP) could be used. 
Otherwise, either the optimization problem should be a 
convexified through approximations and relaxation 
methods or a global optimization algorithm must be used.  

Genetic algorithms (GA), are randomized global sear- 
ching methods developed from the evolution rule in eco-
logical world (the genetic mechanism of survival of the 
fittest). They have internal implicit parallelism and better 
optimization ability. By the optimization method of prob-
ability, they can automatically obtain and instruct the 
optimized searching space and adjust the searching di-
rection autonomously [18].Genetic algorithms, first in-
troduced by Holland [19], are robust global random search 
methods. These methods are founded based on the Dar-
winian concept of natural selection and evolution [20], 
and have been used extensively in optimization and con-
trol [21-23]. 

Coding is essential for the GA optimization. Coding is 
a mapping from solution space to a finite length strings 
set. Binary coding is the most generally used method. In 
this method, each point of the solution space is coded as 
a binary string, which is a permutation of 0 and 1. Each 0 
or 1 is called a gene and the string is called a chromo-
some. Every potential solution, ( )U t+∆ , which is a 
point in the solution space, is coded as a binary word by 
length of uM N× . Each element of ( )U t+∆ , is a uN  
binary word, called a subchromosome. Figure 4 shows 
the binary coding of the U+∆  vector as a chromosome. 

At the beginning, an initial population that consists of 
some potential solutions is randomly selected. The final 
solution is concluded by an iterative method that leads 
the initial population to an evolutionary one. In each it-
eration, the next population is generated by applying the 
crossover and mutation operators to the selected indi-
viduals. Their offspring makes the next population. Their 
selection probability depends on their fitness function 
that is a measure of goodness. The encoding method and 
fitness function definition are the only links between the 
physical problem and GA optimization. The following 
fitness function is applied: 

( ) 1
1

F U
J+∆ =

+
              (26) 

1) Encoding 
Each element of U+∆  is assumed as a 12-binary 

word. In this way, each chromosome (candidate solution) 
is a 12 M×  binary word. 

2) Selection 
In this stage, pairs of the k-th population, kp , are se-

lected to reproduce their offspring. The tournament se-
lection strategy, which is a stochastic method, is applied 
to select each parent. In this method, two individuals are 
randomly selected and their best (according to their fit-
ness value) is the winner of the tournament, then, the 
parents are returned to kp . 

3) Crossover 
This operator crosses parents to produce the new off-
spring by gene interchanging. Crossover may occur in 
one or more positions in chromosomes. Researchers have 
suggested several crossover operators such as one point, 
multipoint and uniform crossover. In this study, a multi-
point crossover operator is used to interchange genes 
between subchromosomes of parents. Figure 5 shows the 
multipoint crossover genetic operator. The crossover sites 
are determined randomly. 

4) Mutation 
In this phase, a random gene from chromosome is se-

lected and its value will be changed. To do so, a random 
number between 0 and 1 is generated and compared with 
the predetermined mutation probability ( )mutation 0.6P = , 
to see whether the mutation should be done. 

5) Elitist Strategy 
Due to stochastic nature of genetic operators, the best 

individual of 1kP +  is not essentially better than the kP  
one’s. A copy of the best individual of current population 
is directly transferred to the next one to prevent deterio-
ration. 

The details of optimization algorithm are depicted in 
Figure 6. In the controller simulation, the optimization is 
conducted on a population of 50 chromosomes. 

 

 
Figure 4. Binary coding of ΔU+ as a chromosome. 

 

 
Figure 5. Multipoint crossover genetic operator. 
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As mentioned earlier, GA optimization belongs to the 
family of randomized search algorithms. It is worth men-
tioning that, in general, there are no theoretical proofs of 
the speed of convergence of randomized algorithms (con-
vergence within certain time frame, if any). However,  

 

 
Figure 6. Pseudo-code of the applied GA optimization. 

since the cost function is convex and the chemical 
processes are generally slow, allowing to have sampling 
periods in the order of tens of seconds, the speed of con-
vergence should not be a concern here, provided that the 
population size and the evolution parameters are selected 
properly. At the same time, premature convergence is 
avoided by ensuring good genetic variation. The genetic 
variation can be regained by using a large enough popu-
lation size and also by mutation [24]. On a separate note, 
in fast systems with millisecond sampling times, the op-
timization algorithm may not converge within the sam-
pling interval and the optimization computation might be 
halted. In such cases, especially in mission-critical and 
safety-critical applications, hybrid algorithms must be 
utilized using FSQP (Feasible SQP) solvers, to ensure 
feasibility (satisfaction of all constraints) of the optimizer, 
in each and every iteration even before convergence. 

8. Simulation Results 
The population is the foundation of evolution of a genetic  
algorithm. The character of the population decides the 
search capability of the genetic algorithm. The astrin-
gency of the genetic algorithm is determined by the as-
tringency of the population [25]. 

First, the effects of population size and the number of 
generations on controller performance are studied. As it 
is shown in the Figure 7, after some thresholds of popu-
lation size and number of generations, there is no signif- 

 

 
Figure 7. Effect of the number of generations and population size on controller performance. 
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icant improvement in controller performance, in com-
parison with the great growth deal of computations. The 
figure exhibits convergence of the GA-based optimiza-
tion. The sampling period is 30 seconds and other pa-
rameters are as follows: 

3 3 3 33, , 0.05 , 0.1, 12uP M Q I R I Nα× ×= = = = × = =  

Our several simulations show that the GA optimization 
algorithm converges well within the selected MPC sam-
pling period in all runs. 

Figure 8 shows the simulation results of controller 
performance with a population size of 50 and the number 
of generations equal to 750. The top plot shows the sys-
tems output verses the desired thermal trajectory and 
exhibits controller’s high performance. The middle plot 
is the control signal, which as seen in the plot, satisfies 
the constraint. The bottom plot is the tracking error, i.e. 
the difference between the actual and desired outputs. 
The DMC controller provides integral action, capable of 
rejecting step disturbance. The ability of controller to 
reject noise and disturbance is shown in Figure 9, in 
which a step output disturbance and a zero mean white 
Gaussian measurement noise with a variance of 0.1˚C  

(STD~0.3˚C) are applied. As seen, the controller has 
good disturbance rejection performance and the average 
absolute tracking error is less than 0.25˚C. Compared to 
the previous results, the adaptive PI control in [13] has a 
2˚C average error and the Generalized Takagi-Sugeno- 
Kang fuzzy controller proposed in [26] has a 1˚C average 
error; demonstrating the superior performance of the 
MPC. 

9. Conclusion 
A sequential piecewise linearized model based predictive 
controller based on the DMC algorithm was designed to 
control the temperature of a batch MMA polymerization 
reactor. Using the mechanistic model of the polymeriza-
tion, a transfer function was derived to relate the reactor 
temperature to the power of the heaters. The coefficients 
of the transfer function were calculated along the se-
lected temperature trajectory by sequential linearization. 
A genetic algorithm (GA) is applied to the cost function 
optimization DMC. The simulation result of controller 
performance shows that the tracking of the profile, noise 
and disturbances rejection is very good. 

 

 

 

 
Figure 8. The output, control signal and error. 
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Figure 9. The controller performance in the presence of noise and disturbance. 
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