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ABSTRACT 

There exist many automated unit test-generator tools for Java with the primary task of generating test cases, 
comprised of inputs and a corresponding oracle, each of which is explicitly paired with a specific supporting test 
implementation. The authors posit that this explicit pairing, or conflating, of test implementation with test case is 
unnecessary and counter-productive. The authors address this problem by separating the conflated concerns 
into two distinct tasks: 1) instantiating test implementations and 2) instantiating test cases. This paper focuses on 
automating the first task in support of the second with the goal of freeing the test engineer to concentrate on test 
case instantiation. The authors present a new open-source test-preparation tool Obsidian that produces robust, 
comprehensive, and maintainable unit test implementations. Obsidian, built on the JUnit framework, uses a set 
of context patterns and associated algorithms combined with information from the Java Reflection API to gen-
erate these unit test implementations from Java byte code. These context patterns guide Obsidian to prepare test 
implementations that guarantee compilation, support exception handling, enable multiple test cases when re-
quired, and provide a suitable location for assertions about the test case outcome(s). Obsidian supports regres-
sion testing and test-driven development through its novel audits of the testing process. 
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1. Introduction 

The software-process models extreme programming [1] 
and test-driven development [2] have inspired software 
test engineers to automate unit-testing tasks. There now 
exist many automated test-generator tools and most have 
the primary task of generating test cases comprised of a 
set of inputs and a corresponding oracle. The second task 
of these tools is to pair each of these generated test cases 
with a test implementation. We discuss the most popular 
such tools in Section 6. We posit that this pairing, or 
conflation, of implementation with test case is unneces-
sary and counter-productive. Furthermore, the generated 
test implementations may be hard to extend to other test 
cases due to their specialization, as suggested by Robin-
son [3]. We address this problem by separating the two 
conflated concerns into two tasks: 1) instantiating test 
implementations and 2) instantiating test cases. This pa-
per focuses on automating the first task in support  

of the second through the generation of robust and com-
plete test implementations in Java, thus freeing the test 
engineer to concentrate on test case instantiation. 

We present a new open-source test-preparation tool 
Obsidian, built on the JUnit framework, which produces 
comprehensive test implementations that are ready to 
support any test case. Obsidian uses the Java Reflection 
API [4] in concert with a set of context patterns, ab-
stracted from basic method signatures, to generate test 
implementations from Java byte code. These implemen-
tations support multiple test cases consisting of input and 
outcome data. These data can be generated by hand or by 
automation and then inserted into an Obsidian-prescribed 
location within the test implementation. 

Obsidian’s strategy for generating a method’s test im-
plementation uses Java Reflection to classify the method 
based on two Boolean conditions of its signature: 1) the 
presence of parameters, and 2) the presence of thrown  
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exceptions. Each classification maps to a context pattern. 
A context pattern specifies how to prepare the test im-
plementation to guarantee compilation, support exception 
handling, enable multiple test cases when required, and 
provide a suitable location for assertions [5] about the 
test case outcome(s). 

Obsidian also provides a prescribed ordering of method 
test invocations within the test structure for the class. 
This order is based on the classification of each method’s 
signature, using the bottom-up incremental approach pre-
scribed by Myers [6] so that each method’s test can de-
pend on previously tested methods to change or access 
class or object attributes. 

For every concrete class referenced in the class hier-
archy under test, Obsidian also provides a hierarchy of 
specialized object-equality methods. These methods exist 
in a hierarchy at the class, package, and global levels. 
The test engineer can use these methods to easily make 
and maintain assertions about class or object attributes. 
Initially, the lower-level implementations simply call the 
next higher implementation in the hierarchy. 

As the code base under test evolves, Obsidian can 
track and then report to the user that methods have test 
implementations and any class attributes that have been 
introduced since the last execution of Obsidian. 

The main contributions of this work are: 
 A set of context patterns to guide the generation of 

test implementations. 
 Obsidian as a new open-source test-preparation tool 

for Java that uses context patterns to automatically 
generate unit test implementations. 

 The creation of a novel abstraction for assertions as 
an equality method hierarchy; the implementation of 
accountability audits to manage the testing of attrib-
utes and methods over time; the generation of unit 
test implementations from byte code only. 

Section 2 presents the theoretical underpinnings for 
Obsidian’s approach, followed by a discussion of asser-
tion handling in Section 3. Then, in Section 4 we present 
our strategies for building method test implementations 
using Java Reflection. In Section 5 we present Obsidian’s 
workflow, followed by background material and related 
work in Section 6. Finally, we present our conclusions 
and future work in Section 7. 

2. Context Patterns 

Obsidian’s strategy for generating a method’s test imple- 
mentation begins with classifying the method to deter-
mine which of four context patterns will prescribe its test 
implementation. A context pattern provides structural 
requirements for the test implementation so it can proc-
ess one or more test cases, each of which consists of in-
puts, outcomes, and assertions about the outcomes. A 
context pattern also specifies how to guarantee exception 
handling and compilation. 

To determine the context pattern for a method, Obsid-
ian considers two boolean properties of a method’s sig-
nature: 1) whether the method requires parameters, and 2) 
whether the method explicitly throws exceptions. These 
two properties dictate the structural requirements of a 
method’s test implementation. When a method requires 
parameters, Obsidian’s test implementations must facili-
tate the definition and execution of one or more test cases. 
Likewise, in the presence of exceptions, Obsidian’s test 
implementations must support test cases where a thrown 
exception is expected as well as test cases where an ex-
ception is not expected. We define these as expected and 
unexpected exceptions, respectively. 

Table 1 presents a summary of the four context pat-
terns as conjunctions of the corresponding boolean prop-
erties “has parameters” and “throws exceptions”. Each 
context pattern provides a standardized template for gen-
erating method test implementations from a set of build-
ing blocks. The resulting code structure facilitates modi-
fication and maintenance by a test engineer. Furthermore, 
these standardized implementations provide a defined in-
sertion point for multiple test cases consisting of input 
and outcome data, which can be provided by hand or by 
a test-case generating tool. The basis of this standardiza-
tion is a sequence of building blocks of code that are in-
cluded or excluded based on the specific context pattern 
selected. 

The following subsection presents the building blocks 
for context patterns followed by a subsection for each of 
the four Obsidian context patterns, including illustrative 
code examples. 

2.1. Building Blocks for Context Patterns 

Table 2 lists the sequence of basic building blocks for  
 

Table 1. Obsidian’s four context patterns determined by method signature. 

Has Parameters Throws Exceptions Context Pattern Pattern Nick Name 

F F Call CALL 

F T Try-Catch TRY 

T F Test Case Iterator CASE 

T T Exception Test Case Iterator TRY-CASE 
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Table 2. Obsidian’s sequence of building blocks for context patterns. 

Context  
Pattern 

Basic Setup 
Expected 
Exception 

Blocks 

Array of 
Normal Test 

Cases 

Start Test 
Case Iteration

Start 
Try-Catch 
Construct 

Method Call
Close 

Try-Catch 
Construct 

Assertions 
End Test Case 

Iteration 

CALL          

TRY          

CASE          

TRY-CASE          

 
generating a method test implementation and shows when 
the block is used based on the context patterns. The 
common building blocks among all context patterns are 
Basic Setup, Method Call, and Assertions. The Basic 
Setup block includes code for Obsidian housekeeping 
and room for the test engineer to refine the setup, in-
cluding preparing the object’s state. The Method Call 
block includes code to support and call the method under 
test. These method calls follow the requisite signature 
relative to whether they are static, have a return type, or 
have parameters. The Assertions block includes asser-
tions when possible, as described in Section 3. However, 
this block may only provide the location for the test en-
gineer to place assertions. 

The remaining building blocks are presented with the 
explanations of the four context patterns below. 

2.2. Call Pattern (CALL) 

The CALL context pattern handles methods that do not 
require parameters and that do not throw exceptions. It 
uses the building blocks Basic Setup, Method Call, and 
Assertions. An example of this context pattern is pre-
sented in Figure 1. This example, as well as the follow-
ing examples illustrating the other context patterns, is 
from the Java 1.6 code base’s Java.lang.object. Note that 
this context pattern does not require any test case data as 
there are no parameters. 

This example is of an Obsidian-generated test imple-
mentation of the method public toString(). Obsidian uses 
JUnit’s attribute “@Test” at the beginning of each test 
implementation (line 1). Lines 3 - 5 contain Obsidian’s 
setup code, including a call to setTested of object me-
thodMap, which provides method accountability, as de-
scribed in Section 4.5. Line 8 is a placeholder for the test 
engineer to enter the expected result string. Line 11 pro-
duces the actual result from invocation, and line 14 pro-
vides the areEqual assertion, one of Obsidian’s object 
equality methods, as presented in Section 4.4. 

2.3. Try-Catch Pattern (TRY) 

The TRY pattern handles methods that do not require pa- 
rameters but that do throw exceptions. Obsidian surrounds 
the method call with a try-catch as specified in Table 2, 
which forces the test to fail if an exception is thrown,  

 

Figure 1. Obsidian-generated test code for context pattern 
CALL. 

 
while providing the test engineer a helpful report. Note 
that any thrown exception is unexpected since there are 
no parameters. 

An example of this context pattern is presented in 
Figure 2. This context pattern does not require any test 
case data as there are no parameters. This example is of 
an Obsidian-generated test of the method public Object 
clone() throws CloneNotSupportedException. In Line 14, 
result (initialized in line 11) gets a call to method clone(). 
Line 17 forces the test to fail if there is the unexpected 
exception CloneNotSupportedException. 

2.4. Test Case Iterator Pattern (CASE) 

The CASE context pattern handles methods that require 
parameters but that do not explicitly throw exceptions. 
With this context pattern and the TRY-CASE context 
pattern that follows, Obsidian provides support to the test 
engineer for multiple test cases within the same test im-
plementation. This is in contrast to the approach of the 
other tools discussed in Section 6. The problem con-
fronting users of these other tools is that in order to test a 
method using more than one test case, the user must du-
plicate the test implementation for each test case or build 
custom code to iterate through a set of test cases. JUnit 
solves this problem with “parameterized tests” that re-
quire, for any method test, a special method with the at-
tribute “@parameters” that enables the JUnit runner to  
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Figure 2. Obsidian-generated test code for context pattern 
TRY. 

 
iterate through a number of test cases. However, this so-
lution requires specialized, hand-coded, test-class con-
structors and special test-class fields for each parameter. 
Obsidian solves this problem by supplying the required 
code to store, execute, and evaluate a multi-dimensional 
object array of test case inputs and outcomes as an Ob-
sidian Test Case Iterator. 

An example of this pattern is presented in Figure 3 as 
an Obsidian-generated implementation of the method 
public void testEquals() that provides the multi-dimen- 
sional Object array placeholder for test cases at lines 7 - 
11, and an iterator for this array with a placeholder for 
assertions at lines 14 - 18. 

2.5. Exception Test Case Iterator Pattern 

The TRY-CASE context pattern handles methods that 
both require parameters and throw exceptions. As de-
scribed at the beginning of this Section, Obsidian’s me-
thod test implementations are designed to handle ex-
pected as well as unexpected exceptions. Unexpected 
exceptions, such as those handled in the TRY context 
pattern (above), are thrown when not intentionally pro-
voked by an input parameter. In the presence of parame-
ters, Obsidian allows the test engineer to provoke a me-
thod into throwing exceptions to verify proper exception 
handling inside the method. If an exception is thrown by 
any test case not designed to provoke an exception, Ob-
sidian considers this to be an unexpected ex- ception and 
therefore a test failure. 

Thus, there are two types of test cases for this TRY- 
CASE context pattern: 1) those designed to provoke de- 

 

Figure 3. Obsidian-generated test code for context pattern 
CASE. 

 
clared exceptions, and 2) those that are not so designed. 
To handle these test cases, Obsidian defines an Exception 
Test Case Iterator as a collection of specialized Test Case 
Iterators (defined in the CASE context pattern above). 
For test cases designed to provoke declared exceptions, a 
Test Case Iterator is specified for each type of declared 
exception. 

These Test Case Iterators are contained within Ex-
pected Exception Blocks (see Table 2). If the test case is 
designed to provoke a specific declared exception and 
the exception is then thrown, the test case passes. If a 
different exception, or no exception, is thrown, then the 
test case fails. Based on this clear distinction, Obsidian 
can generate Expected Exception Blocks with completed 
assertions and require only that the test engineer supply 
the test case inputs. For test cases that are not designed to 
provoke exceptions, Obsidian generates a final Test Case 
Iterator for normal test cases including a try-catch for 
unexpected exceptions. In this case, the test engineer 
must supply the assertions at the Obsidian-specified lo-
cation. 

An example of this pattern is presented in Figure 4 as 
an Obsidian-generated test of the method public void 
wait (long) throws Interrupted Exception. Lines 7 - 10 
initialize the test cases for the expected exceptions of 
type Interrupted Exception. Lines 12 - 23 automatically 
handle these test cases, as described in the previous sec-
tion. Lines 24 - 41 are in the form of a normal Test Case 
Iterator with the added lines 31 - 40 to handle normal test 
cases and to handle unexpected exceptions. Per previous 
examples, line 36 is a placeholder for assertions. 

3. Support for Assertions 

The Assertions Block of an Obsidian method test imple-  
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Figure 4. Obsidian-generated test code for context pattern 
TRY-CASE. 

 
mentation contains the least amount of automatically 
generated code of any building block and thus requires 
the most effort on the part of the test engineer. Obsidian 
attempts to generate simple assertions [5] for Construc-
tors and other methods that are determined to be Getters 
and Setters. It is the innate simplicity of these methods 
that allows Obsidian to generate effective assertions with-
in their test implementations. 

Testing the Constructors of a class is very important 
since almost every succeeding test will assume that the  

Constructors have no faults. The goal of a Constructor is 
to correctly instantiate the class. This means that each 
non-static field is either set to its default value or it is in 
some way transformed using the parameters of the Con-
structor. To handle Constructors, Obsidian generates an 
assertion for each non-static field that verifies that its 
expected value, held in a local Expected Value Field, is 
equal to the actual value discovered through Reflection. 
The expected value will either be the field’s default value 
or some transformation of one or more of the parameters. 
Obsidian generates a test-class field called a Default Value 
Field for each non-static field in the class. This allows 
Obsidian to automatically set a field’s expected value to 
its Default Value Field and to write an assertion compar-
ing the two. Therefore, once the test engineer has speci-
fied all of the default values, the assertions for fields not 
transformed using the parameters are complete. Note that 
Default Value Fields are initially set using the construc-
tion strings from Algorithm 1, as described in Section 
4.3, and often will not need editing. For fields that are 
transformed using the parameters, the test engineer must 
define the Expected Value Field for that field in terms of 
the test case input parameter. 

Testing Getters and Setters is much simpler. For Get-
ters, defined as non-static methods with no parameters 
that return a value, Obsidian generates an assertion that 
the field being accessed is equal to its default value or is 
defined in terms of the parameters of one or more of the 
constructors. If the field is not transformed using the pa-
rameters of the Constructors, the test engineer only needs 
to set an Expected Value Field equal to the Default Value 
Field of the field being accessed. If the field being ac-
cessed is transformed using the parameters of one of the 
Constructors, the test engineer must then write the Ex-
pected Value Field in terms of the input parameters to 
said Constructor. Obsidian presently cannot tell which 
fields are affected by Constructors and therefore the in-
puts previously mentioned as well as the call to the Con-
structor would have to be written by hand. Future work, 
in Section 7, includes plans to add this functionality us-
ing static analysis. 

For Setters, defined as non-static methods that have 
one parameter and do not return a value, Obsidian gener-
ates an assertion that the value of the field being modi-
fied is equal to in the input parameter to the Constructor. 
Obsidian supplies an Actual Result Field that the test 
engineer should set to the value of the field being modi-
fied by either calling a previously tested Getter or through 
Reflection. 

For the Assertions Block of all other public methods, 
Obsidian provides the test engineer only guidance. 

4. Strategies for Generation 

We seek to automate as much of unit test generation as  



Obsidian: Pattern-Based Unit Test Implementations 

OPEN ACCESS                                                                                        JSEA 

99

 

Algorithm 1. Build Construction String From Type. 
 

possible and to organize any remaining tasks in an effi-
cient manner. To do this, we evaluated each stage of the 
unit test generation process to find opportunities for re-
finement and automation. We developed and use several 
guiding strategies that inform our approach, each of which 
is made possible by the Java Reflection API. These strate-
gies are: 

 method test invocation ordering, 
 default object creation, 
 object equality by indirection, 
 method accountability, 
 field accountability 

We first present our use of Reflection and then explain 
these guiding strategies in the following sections. 

4.1. Java Reflection API 

Java provides an opportunity to developers with its Re-
flection API. Reflection allows a program to dynamically  

look inside itself or another program and get information 
about internal properties and state of the program. Re-
flection occurs during execution and is therefore de-
pendent on the Java Virtual Machine (JVM). Given a 
class object, reflection can return information about all of 
the class’ methods, constructors, and fields. For example, 
Reflection can return a method’s signature including its 
visibility, its parameter types, its return type, and what 
kind of exceptions it might throw. 

When Obsidian traverses a class hierarchy to generate 
test implementations, it uses Reflection to collect and 
organize information about methods, fields, types, and 
exceptions. With Reflection, Obsidian can generate unit 
tests from class interfaces only, allowing a test engineer 
to easily write unit tests for a component that supplies 
only compiled class files. This feature therefore supports 
test-driven development [2]. When they are available, 
Reflection also gives access to private methods and fields. 
In future versions, Obsidian will perform static analysis 
to generate additional refinements, based on these private 
methods and fields, to the test implementation code (see 
Section 7). Each of the five strategies described below 
depend on the information collected by Reflection. 

In addition to supporting code analysis, Reflection can 
be used directly inside test implementations to retrieve 
the values of an object’s fields during the execution of 
the program. This direct access to the values of fields 
without having to call accessor methods helps to reduce 
associations among method tests and therefore strength-
ens the method tests. 

4.2. Method Test Invocation Ordering 

As presented in the Introduction, Obsidian uses a specific 
execution ordering of method signature types to drive its 
production of test implementations: 1) Constructors, 2) 
Getters, 3) Setters, 4) public methods, and 5) private me-
thods (future work). 

This ordering uses the bottom-up incremental approach 
prescribed by Myers [6] so that each method’s test can 
depend on previously tested methods to change or access 
class or object attributes. Obsidian uses the information it 
collected during Reflection to classify all the methods of 
a class as members of this order and to then generate the 
method test implementations in the specified order. As 
described in the typical Obsidian workflow presented in 
Section 5, the test engineer is encouraged to build confi-
dence in the class by incrementally writing test cases 
using the method tests in this ordering. 

4.3. Default Object Creation 

The generation of unit tests requires the instantiation of 
objects for a variety of purposes, as for example, creating 
an instance of the class under test or creating instances of  
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a method’s parameters. Obsidian uses the information it 
collects through Reflection to build meaningful construc-
tion strings for instantiating objects. 

This approach to building construction strings is sum-
marized in the recursive Algorithm 1, called build Con-
struction String From Type. A construction string is the 
string that when written into the test code will, after 
compilation and execution, produce a new instance of the 
needed object. 

The algorithm uses a dictionary of default construction 
strings for primitive types (Data) and takes as input the 
object type and a working set of visited Constructors, VC. 
At lines 2 - 3 the algorithm tests whether type has an 
implementation, and if not, tries to find a suitable substi-
tution using the method get Concrete Substitution, which 
is not presented herein. 

At lines 4 - 5, the algorithm determines if type is a 
primitive and, if so, finds it in the dictionary and returns 
a default string such as “0” for type int. At lines 6 - 7, if 
type is an Array, the construction string becomes “new 
type[0]...” with the appropriate dimension. At lines 8 - 10, 
the algorithm double-checks to determine if a concrete 
substitution was found at line 3. If not, the algorithm sets 
the construction string to “null”. At lines 11 - 12 the al-
gorithm checks for constructors using Reflection and, if 
none exist, sets the construction string to “null”. 

Finally, at line 14, the algorithm proceeds to the gen-
eral case. At line 15 it retrieves a set of Constructors, Not 
Visited Constructors (NVC), for type excluding any al-
ready visited as tracked by VC. If there are no remaining 
un-visited Constructors for type, it sets the construction 
string to “null” at line 18. Otherwise, at line 20, the algo-
rithm chooses the Constructor from this set, NVC, with 
the fewest parameters and with parameter-count ties set-
tled by the order of implementation. Then, working re-
cursively, the algorithm walks the parameter list of the 
selected Constructor to compose construction strings for 
each parameter at lines 24 - 26. The construction string is 
finalized at line 28. At lines 32 - 33, the algorithm rejects 
the construction string if it contains any “null” elements 
by setting it to “null”. The construction string is returned 
at line 34. 

4.4. Object Equality by Indirection 

At the heart of unit testing is the use of assertions to 
compare two objects where one object is the outcome of 
a method call and the other is the expected value. JUnit 
has more than 25 flavors of assertion that the test engi-
neer must choose from and then configure for every use 
in any test code. These assertions rely on the equals() 
method of a class, which defaults to the equals() method 
of the Object class in the absence of a class-specific defi-
nition. The Object class comparison is equivalent to ref-

erence equality as expressed by the “==” operator. Ob-
sidian explicitly simplifies and automates the use of as-
sertions through indirection. 

Obsidian provides two binary and two unary assertion 
methods that are used in lieu of any of the 25 possible 
JUnit assertions. The binary assertion methods are Ob-
sidian’s equality methods that are are named areEqual 
and areNotEqual. The unary assertion methods are Ob-
sidian’s null test methods that are named isNull and is-
NotNull. All four methods behave as JUnit assertions in 
that their return type is void and they use the JUnit As-
sert.fail() method to throw exceptions. 

Obsidian creates a new class at the global level of the 
test-class hierarchy named Global Equality Methods and 
includes in it an areEqual equality method for each of the 
types found by Reflection in the class hierarchy. Every 
one of these areEqual methods uses the JUnit Assert.fail() 
method by default and thus the task for the test engineer 
is to proactively replace the Assert.fail() call with a defi-
nition of equality for the type. 

Obsidian provides pass-through implementations of 
the equality methods in a special class at each package 
called Package Equality Methods that each call the method 
in Global Equality Methods with the same signature. 
Similarly, within each test class another pass-through 
implementation calls the appropriate method in Package 
Equality Methods. This chaining provides a way for the 
test engineer to inject customized definitions at any level 
of the class hierarchy. Only those objects instantiated 
within the appropriate scope have associated equality 
methods at any given level of the hierarchy. Thus, the 
only required task here for the test engineer is to insert, 
in each Global Equality Method, a definition of equality 
for the specific type. A call within a method’s unit test 
implementation to areEqual (obj1, obj2) where obj1 and 
obj2 are instances of some Example Type will use indi-
rection and method overloading to invoke the correct 
equality method at the global level, unless an intervening 
package level or class level definition has been supplied. 

In the case of primitive types, Obsidian provides a 
complete implementation in Global Equality Methods of 
the equality methods that do not fail by default, as object 
equality for primitives is well-defined. 

4.5. Method Accountability 

Obsidian provides support for continuous test evolution 
and regression testing through the use of Method Ac-
countability. Method Accountability ensures that all cur-
rent methods in a class have been considered for unit test 
generation. The JUnit framework is only concerned with 
failed assertions, so it only reports whether or not each 
test passes. If no test exists for a method in a class, there 
is no warning and the test engineer may erroneously be-
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lieve that the class has been thoroughly tested. 
Obsidian solves this problem by modifying the JU-

nit-specified test method setUpClass to instantiate a spe-
cial class called Method Map. Method Map provides 
operations for managing a class’ methods based on the 
information collected during Reflection. Each method is 
labeled as hasUnitTest, hasNoUnitTest, or ignored. When 
the test suite is invoked, Obsidian uses reflection to de-
tect all the current methods in the class and initially la-
bels each as hasNoUnitTest. The engineer can choose to 
ignore methods by invoking the Method Map’s setIg-
nored() method with the method’s signature as the pa-
rameter. Currently, Obsidian considers all private meth-
ods to be ignored by default. As the test code is executed, 
a call to the Method Map object sets the method under 
test as hasUnitTest. Once all unit tests in a test class have 
executed, a method accountability audit checks for any 
methods still labeled hasNoUnitTest. This audit is im-
plemented as a special JUnit method annotated with 
@Test so that if any methods without unit tests exist, 
Obsidian forces a failure for the test class and produces a 
report to the test engineer with details of the missing test 
implementations. 

4.6. Field Accountability 

Obsidian also provides class field accountability simi-
larly to how it does for methods. If, since the last invoca-
tion of Obsidian, a new field has been introduced, then 
Obsidian will force an error and produce a report alerting 
the test engineer that a new field has been added to the 
code and that Obsidian should be executed again. 

5. Workflow 

We have defined a workflow for completing an Obsidian 
test class, to help test engineers understand Obsidian. 
The workflow, outlined below, consists of a sequence of 
tasks, each of which exists as a more precise directive 
written at the appropriate place in each test implementa-
tion with local detail to guide the test engineer. When 
appropriate, the test engineer will need to introduce spe-
cific meaningful test case data into the test implementa-
tions at the location specified by Obsidian. The test en-
gineer builds confidence in the class by gradually ac-
complishing this sequence of tasks and repeatedly run-
ning the appropriate tests. We recommend using the 
Netbeans or Eclipse IDE as they both support the JUnit 
framework and Obsidian produces a compatible test 
package containing the test class hierarchy. 

The Obsidian Workflow is defined as follows: 
1) Equality Methods 
2) Ignoring Methods 
3) Ensure Default instance is instantiated in setup 
4) Default Value Fields 

5) For each method: 
a) Expected Exception Test Cases (if needed) 
b) Normal Test Cases (if needed) 
c) Write Assertions as needed for: Constructors, 

Getters, Setters, and public Methods 
First, the test engineer defines any Equality Methods 

needed in the test class. It is recommended that this be 
done on the Global or Package level. Obsidian provides a 
comprehensive list of the needed Equality Methods at the 
end of each test class. 

Second, Method Accountability ensures that all meth-
ods have been considered for testing. As tests are exe-
cuted, methods are set to “tested”. At the end of the test 
class if “untested” methods are found, Method Account-
ability fails, and the user is notified. If a method is meant 
to be untested, it can be ignored by calling the setIgnored 
method. To do this, in the JUnit @BeforeClass method, a 
call is inserted to method Map.setIgnored() with the 
method name as the argument. By default, all private 
methods are set to ignore because Obsidian does not cur-
rently generate tests for private methods. 

Third, the test engineer must check that the default in-
stance of the class under test is initialized in the JUnit 
@Setup method. This is the instance of the class that 
Obsidian uses to invoke all non-static methods. Obsidian 
tries to create this instance by looking for a default con-
structor. If no default constructor is found, the instance is 
not created. If the test engineer finds that no default con-
structor was discovered, then they must identify a rea-
sonable substitute to be used throughout the test class. 

Fourth, the test engineer gives meaningful values to 
the Default Value Fields. For each non-static field in the 
class, Obsidian has created a test-class level Default Value 
Field. A comment preceding each Default Value Field 
supplies the respective field name. The test engineer then 
sets the Default Value Field appropriately. These values 
may be used while testing constructors, getters, or any 
other method where they are of use. Because Algorithm 
1 supplies default values for primitive types and uses the 
simplest Constructors found for a class, often the Default 
Value Fields are correctly initialized during test class 
generation. 

Finally, for each method, the test engineer must define 
the test cases. Each test case is comprised of the test case 
input and outcome data plus assertions. Obsidian pro-
vides specialized arrays to accept the input and outcome 
data and also specifies the location of the related asser-
tions. The test engineer, when instructed, provides these 
data for the Expected Exception Blocks and then for the 
Normal Test Cases. Assertions will be customized to the 
constraints of the different classifications of methods 
being tested, as described below. 

For Constructors, Obsidian generates an assertion ve- 
rifying that, for each non-static field in the class, an Ob- 
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sidian-generated Expected Result Field is equal to that 
field’s value after invocation of the Constructor. As ex-
plained above, Obsidian sets these Expected Result Fields 
to the field’s Default Value Field. The test engineer must 
modify these Expected Result Fields to reflect their rela-
tionship to the inputs. For example, if a field is trans-
formed using one of the inputs, the test engineer would 
set this field’s Expected Result Field equal to that trans-
formation of the input. 

For Getters, the test engineer sets the generated Ex-
pected Result Field to the accessed field’s Default Value 
Field. If the field accessed is transformed using the pa-
rameters of one or more of the Constructors, the test en-
gineer may choose to substitute one of these Construc-
tors. 

For Setters, the test engineer accesses the modified 
field after the invocation of the setter either by Reflection 
or by calling a previously-tested Getter. An Actual Result 
Field is generated by Obsidian for holding this value, as 
well as an assertion comparing the inputs to the Actual 
Result Field. 

For all remaining public method tests Obsidian pro-
vides assertion guidance after the method invocation. 
This assists the test engineer in writing appropriate asser-
tions about the state of the instance or static fields of the 
class using the supplied input data and the gathered out-
comes of method calls. 

6. Background 

Research into several automation techniques, such as 
random testing, has led to the development of a number 
of automated testing tools. Of these tools, some notable 
academic members are EvoSuite [7], Randoop [8], Pex 
[9], Jartege [10], CUTE [11], Jcrasher [12] and the com- 
mercial members include Agitator [13], and Jtest [14]. 
The focus of this research and these tools has been con-
centrated on the generation of test cases with little atten-
tion given to engineering the test implementations that 
support these test cases. 

We understand that many of these tools are purely 
academic and intended only to show the application of 
their guiding principles. However, the test implementa-
tions produced by many of these tools demonstrate the 
need for robust, managed, comprehensive test implemen-
tations like those generated by Obsidian. For example, 
when Agitator generates tests for a method that throws 
exceptions, a new method test implementation is gener-
ated for each type of exception. Each of these tests has a 
single test case hard-coded into the implementation. This 
is equivalent to a single expected exception test case 
without the ability of easily extending to additional test 
cases. 

An example of the conflation of test implementation 

with test case that inspires our approach is illustrated by 
Randoop. Randoop uses feedback-directed random test-
ing to find test cases that reveal faults. The nature of this 
technique requires that an amount of time be specified 
for Randoop to run, otherwise it could run forever. If no 
fault-revealing test cases are found before Randoop reaches 
its time limit then it generates empty test implementa-
tions for the methods under test. Thus, if the test engineer 
wanted to specify one or more test cases for these meth-
ods, they would have to build the implementations from 
scratch. 

These and similar issues are part of the landscape of 
test automation and state-of-the-art automation tools. 
Humans still play a large role in the completion and veri-
fication of test suites as described by Pachecho and Ernst 
[15]. Obsidian tries to make test suites, including gener-
ated test cases, more maintainable through standardized 
test implementation code structure. 

7. Conclusions and Future Work  

We presented Obsidian as a new testing tool for Java 
programs that automatically generates comprehensive 
unit test implementations built on the JUnit 4 framework 
and guided by a set of four context patterns. These con-
text patterns specify how to prepare the method test im-
plementation so as to guarantee compilation, support 
exception handling, enable multiple test cases when re-
quired, and to specify where assertions are needed about 
the test case outcome(s). We also presented a set of five 
strategies for generating these unit test implementations: 
test execution ordering, default object creation, object 
equality by indirection, method accountability, and field 
accountability. 

Obsidian makes a novel contribution by providing a 
structured way to separate the generation of test imple-
mentations from the generation of test cases. We have 
identified additional areas for research and improvement 
that will make Obsidian more robust and easier to inte-
grate into a test engineer’s workflow. 

First, Obsidian’s generated test implementations are 
based solely on information gathered about method sig-
natures through dynamic analysis. We will research to 
add static analysis techniques to Obsidian’s processes. 
For example, a powerful addition would have Obsidian 
statically determine associations between a method’s 
parameters and the fields of a class to inform the details 
of the test implementation and automation of assertion 
generation. Thus, in Getter test implementations where 
the field being accessed by the Getter is directly trans-
formed using the parameters of one or more of the con-
structors, we seek to have Obsidian build a test imple-
mentation that calls the associated constructor with pro-
vided test input data. 
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Second, we will develop front-end tools that support 
the test engineer in maintaining the testing code base by 
providing seamless assistance in inserting test case data 
and specifying the associated assertions. 

Third, we intend to research how to make Obsidian 
compliant with existing test case generators. One ap-
proach is an API which allows these generators to add 
their test case data and assertions to Obsidian implemen-
tations programmatically. Another is to define a stan-
dardized XML format that test case generators could 
produce and Obsidian could read. Furthermore, we in-
tend to customize how assertion failures are handled to 
support reporting of the pass/fail status of all test cases 
regardless of any intervening assertion failures. This 
change will make Obsidian compliant with the require-
ments of fault analysis and visualization tools such as 
Tarantula [16]. 

Fourth, due to the nature of Obsidian’s pattern-based 
generation technique many Obsidian unit test implemen-
tations are very similar to one another. This standardiza-
tion is good for maintainability but reveals that another 
layer of abstraction may be possible. We plan to research 
how to design and produce a set of generic and universal 
test implementations. 

Finally, we are continuing to develop an open source 
community with a web presence for Obsidian with a 
portal at www.ObsidianTest.org. Readers interested in 
obtaining the code can clone or fork it from  
https://github.com/johnnyLadders/obsidian. 
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