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ABSTRACT 
The evolution of the charge density distribution function is simulated for both the case of a uniformly charged 
sphere with zero initial conditions and for the case of a non-uniform charged sphere. For the case of a uniformly 
charged sphere, the comparison of a numerical result and an exact analytical solution, demonstrated the agree- 
ment between the results. The process of “scattering” of a charged system under the influence of its own electric 
field has been illustrated on the basis of both the particle-in-cell method and the solution of the Cauchy problem 
for vector functions of the electric field and vector velocity field of a charged medium. 
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1. Introduction 
The methods developed in non-equilibrium statistical me- 
chanics [1-3] are effectively applied while considering dif- 
ferent problems connected with the behavior of the sys- 
tems of various charged particles. Such is the case for 
consideration of the influence of the beam’s own electric 
field on the evolution of the charge density distribution 
function. Now, as the number of problems with an exact 
solution is not that big, different numerical methods have 
been widely disseminated [4,5]. A certain set of parame- 
ters is used during the simulation, and therefore it is im- 
portant to specify a path to perform physical problem 
adequacy testing of such a modeling approach. The ex- 
ample of such testing can be a comparison of the simula- 
tion results for a given set of parameters and the results 
drawn on the basis of an exact solution of a theoretical 
problem. 

In this paper, we consider the Cauchy problem for the 
evolution of the charge density distribution function for a 

spherically symmetric system with zero initial conditions 
for the velocity field ( ),p tv  and nonzero initial condi- 
tions for the electric field vector ( ),p tD . 
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where ( ),a b  denotes the scalar product of vectors a and 
b; ∇  denotes the nabla differential operator; 0ε  de- 
notes the dielectric constant of the vacuum and Θ  de- 
notes zero initial velocity vector. The variable p corres- 
ponds to spatial coordinates ( ), ,x y z , and the variable 
t  represents time. The constant q mα =  sets the ratio 
between the charge and the mass of the particles. Ω re- 
presents the area in which the solution of the system is 
being considered. This system, together with the initial 
conditions, leads to the formulation of the Cauchy prob- 
lem (1), the solution of which describes the evolution of  *Corresponding author. 
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the charge density distribution function under the influ- 
ence of its own electric field. 

It should be noted that the Cauchy problem (1) has an 
exact solution for the uniformly charged sphere, which 
has the form 
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where 0R  is the initial radius of the sphere; 0ρ  is the 
initial charge density in the sphere; the constant  

04
Qαγ
ε

=
π

, where Q is the total charge of the sphere. The 

function ( )tρ  indicates the charge density in the sphere 
at the moment of time t , which is associated with the 
electric field vector ( ),p tD  by Maxwell’s equation 
div ρ=D .  

2. Approximation of the Solution 
The solution of the problem (1) may be found in the form 
of expanding vector functions of the electric field 
( ),p tD  and vector functions of the velocity field 
( ),p tv  into series: 
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where the expansion coefficients in (3) can be expressed 
in terms of the derivatives of the initial conditions of the 
problem (1). Therefore, for the numerical solution of the 
problem (1), the approximation of the first two terms of 
the series (3) is to be considered. That is, for each time 
step, the approximation of the solution is obtained in the 
form of: 
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where 0,1, ,n N=  ; N is the total number of time steps; 
τ  is the step in the time t. The coefficients of the time 
τ  in the first power are expressed in terms of the deriv- 
atives of D  and v  of the previous step in time nt  by 
formulas:  
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As a result, the formulas (4), (5) can be used for the 
numerical solution of the problem (1).  

3. An Example of the Numerical Solution 
Let’s perform a numerical simulation of the Cauchy pro- 
blem (1). For this we solve the Cauchy problem (1) in two 
ways: by using the difference Schemes (4-5) and by us- 
ing the PP (Particle-to-Particle) method. The results are 
compared with the known analytical solution (2).  

So, due to the symmetry of the problem we use a sphe- 
rical coordinate system. 

We write the initial conditions for the case of a uni- 
formly charged sphere: 
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here we use the following notations: V is the initial vo- 
lume of the sphere; Np is the number of large particles for 
the simulation using PP (Particle-to-Particle) method; q 
is the charge of one particle-in-cell; NR is the number of 
computational mesh nodes along the radius; T is the time 
interval during which the evolution of the system occurs; 

TN  is the number of time steps. 
The numerical results are shown in Figures 1(a) and 

(b). Figure 1(a) shows the distribution of the charge den- 
sity ρ(r) along the radius. The solid line shows the distri- 
bution of the charge density, which corresponds to the 
problem (1). The bar chart shows the result which corre- 
sponds to PP method. The graphs shown in the figure 
represent the initial and final time. The dotted line shows 
the theoretical solution obtained by the formula (2). Fig- 
ure 1(b) shows the graphs of ρ(r)r2

.
 Figure 1(b) presents 

the distribution of the linear density along the radius, and 
shows the conservation of the curvilinear trapezoidal area, 
which corresponds to the total charge Q. 

The graphs in Figures 1(a) and (b) show that the dif- 
ference scheme in Equations (4) and (5) has a good agree- 
ment with the theoretical result. To illustrate the results ob- 
tained by PP method, the bar chart is used. At the origin, 
with a radius equal to zero the approximation of the den- 
sity function in the form of the bar chart has a characteri- 
stic feature in the graph: it shows the oscillation of the 
density function. This is due to the fact that if we want to  
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(a) 

 
(b) 

Figure 1. The initial and the final distribution of the charge 
density for a uniformly charged sphere. 
 
determine the charge density we need to divide two small 
quantities—charge by volume. They are small quantities 
because while moving to the origin, and with the decreas- 

ing radius, the volume of the spherical layer or the sphere 
decreases. Consequently, the amount of charge contained 
in such volume must also decrease because the charge 
density is constant. Thus, at short distances the graph has 
a characteristic feature in the form of oscillation. This is 
due to the large error in the bar chart of the charge densi- 
ty function in the numerical generation of particle coordi- 
nates for PP method. 

Figure 2 shows the evolution of the charge density 
distribution function. The solid line shows the theoretical 
graph and the dotted line shows the graph obtained nu- 
merically. It should be noted that the solution (2) doesn’t 
depend on the coordinates, only on time. Therefore, at 
every time step within the sphere the density is indepen- 
dent of the radius and remains constant, i.e., it depends 
only on time. Therefore, in Figure 2 there is no depen- 
dence on the coordinates, i.e. the value of density can 
correspond to any point within the sphere. As follows 
from the graph in Figure 2 there is a good agreement be- 
tween the theory and the numerical solution obtained by 
the schemes in Equations (4) and (5), which has a first 
order approximation in time. 

Figure 3 shows the configuration space for PP (Par- 
ticle-to-Particle) method. On the left we can see the dis- 
tribution of the particles at the initial time, and on the 
right—the final position of the particles. The figure shows 
the volumetric expansion of the sphere. 

Let us analyze the behavior of the system of charged 
particles in the case of a non-uniform charge density. Let 
us consider a charged sphere with charge density distri- 
bution function in the form of: 
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where ( )n rρ  is a normal logarithmic distribution; 

,σ µ  are constants. As initial conditions, we take the 
following values: 
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The solution of the problem will be sought in two 
ways: by the numerical solution of the Cauchy problem 
(1) using the algorithm (4-5) and by the PP (Particle-to- 
Particle) method. At the end of the calculations the two 
results are compared. 

Suppose there is a three-dimensional area in which the 
problem is to be solved. To define the area, we take a pa- 
rallelepiped with side lengths , 1,2,3

sxL s =  as the geo- 
metric shape of the area. In this area we set a rectan-  
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Figure 2. The evolution of the charge density distribution 
function for a uniformly charged sphere. 
 
gular mesh 
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sxN  is the number 

of partitions of 
sxL . We set a time mesh 0 1Tn N≤ ≤ −  

in increments of TT Nτ = , where T  is a period of  
time, in which the problem is to be solved. The system of 
difference equations (4) takes on the form: 
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where the expressions ( ) ( ) ( )

, , , , , , , , ,1 , 2 , 3s s sx x x
i j k n i j k n i j k nw w w  are de- 

rived from the velocity and are determined in accordance 
with the formulas: 
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(a)                           (b) 

Figure 3. The configuration space of the initial and final 
particle distribution for the model of a sphere with a con- 
stant density. 

 
Finding a solution is as follows. First, we set the initial 

distribution ( )
, , ,0

sx
i j kD  and ( )

, , ,0
sx

i j kV , where  
{ } { }1 2 3
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using the formulas (10) and (11) we define ( )
, , ,1

sx
i j kD  and 

( )
, , ,1

sx
i j kV  in the nodes of the mesh (9). Using the boundary  

conditions on the surface S  or the conditions of sym- 
metry of the problem, we find the missing values ( )
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and ( )
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mesh functions on 
the next layers while 1n > . 

The difference schemes in Equations (10) and (11) can 
be applied to the functions with a smooth front. In the 
case of a discontinuous front another difference scheme 
adapted to this case must be used. 

Figures 1(a) and (b) shows the initial and final charge 
density function distribution along the radius. The solid 
line shows the density function obtained by solving the 
problem (1) using the difference schemes in Equations 
(10) and (11). The bar chart shows the particle density to 
be calculated by PP (Particle-to-Particle) method. Figure 
4(a) shows the function ( )rρ , and Figure 4(b) shows 
the function ( ) 2r rρ . The area under the curve ( ) 2r rρ  
corresponds to the total charge of the system, which 
should remain constant.  

A comparison of the distributions in Figure 4 shows 
that the Cauchy problem (1) and PP method have similar 
nature of the evolution of the charge density distribution 
function. 

Figure 5 shows the evolution of the charge density 
distribution function at regular intervals for the Cauchy 
problem (1). We can see how the spreading of the spher- 
ical layer of the charge occurs. 

Figure 6 shows the spatial distribution of the charge 
density distribution function at the initial and final time 
in the median plane. 
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(b) 

 
(b) 

Figure 4. The initial and final distribution of the volume 
density of the particles for the model of the sphere with a 
normal logarithmic distribution of the charge density. 

4. Conclusion 
In this paper, we considered the model solution of the 
Cauchy problem (1), with the zero initial velocity, and 
without external fields for the uniform and non-uniform 
distribution of the charge density. The results of the com-  

 
Figure 5. The dependence of the distribution function of the 
charge density of the particles on time. 
 

 
(a) 

 
(b) 

Figure 6. The initial and final charge density distribution in 
the median plane. 
 
parison of the calculations made by using the Particle-to- 
Particle (PP) method with calculations derived from the 
numerical solution of the Cauchy problem (1) are shown. 
The comparison showed a good agreement between the 
results. Thus, we tested the parameters of the Particle-to- 
Particle method, which is used in the real problems asso- 
ciated with the calculation of the space charge effect, for 
example, in accelerating installations. It is shown that 
there is a good correspondence to the theoretical data for 
the uniform case, for which there is an exact solution. 
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