
Journal of Geographic Information System, 2014, 6, 59-69
Published Online February 2014 (http://www.scirp.org/journal/jgis)
http://dx.doi.org/10.4236/jgis.2014.61007

OPEN ACCESS JGIS

Transforming GML to Presentation Languages by
Extending XSLT

Sajjad Hassany Pazoky, Farshad Hakimpour
University of Tehran, Tehran, Iran

Email: shpazooky@ut.ac.ir, fhakimpour@ut.ac.ir

Received December 22, 2013; revised January 22, 2014; accepted January 29, 2014

Copyright © 2014 Sajjad Hassany Pazoky, Farshad Hakimpour. This is an open access article distributed under the Creative Com-
mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited. In accordance of the Creative Commons Attribution License all Copyrights © 2014 are reserved for SCIRP and the
owner of the intellectual property Sajjad Hassany Pazoky, Farshad Hakimpour. All Copyright © 2014 are guarded by law and by
SCIRP as a guardian.

ABSTRACT
Diversity of practices and methods in all fields is the basis of emerging standards in different areas. World Wide
Web Consortium (W3C) has standardized eXtensible Markup Language (XML) as a very convenient tool to
structure data for numerous purposes. OGC standardized Geography Markup Language (GML), which is an
XML-based language, to store and transport geospatial data. Despite the fact that it is a medium to separate geo-
referenced data from presentation, GML by itself is not intended to visualize geo-referenced data. One of the
solutions to visualize GML is to use eXtensible Style sheet Language Transformation (XSLT) as transformer to a
visualization language such as Scalable Vector Graphic (SVG). Unlike the usual procedure, the major advantage
of the proposed approach is that the transformation process is shifted to the client-side. XSLT as a median lan-
guage is a general-purpose transformation tool. As it is not specialized for map cartography, map making proc-
ess is very complicated using this primitive language. To facilitate transformation process, in this research,
XSLT is extended to meet cartography requirements. Furthermore, a graphical user interface (XCartoT) is de-
signed to set all the map properties interactively. XCartoT provides a user-friendly interface for cartographers
to automatically generate necessary XSL files for their intended maps. The goal of this research is to develop a
major step towards the geospatial Web.

KEYWORDS
Technology; Preference for Quality; Volume of Trade; Vertical Intra-Industry Trade

1. Introduction
The tendency towards geospatial services is incessantly
growing among people from all different walks of life
and becoming a non-detachable part of everyday life.
People do not need high skills to use an online map
whenever they enter a city for the first time. Furthermore,
spatial mobile and Web services have raised the expecta-
tion of people. Thus, developing services to fulfill the
requirements of all sorts of people from different back-
ground is an inevitable requirement that should be taken
into account by geospatial specialists.

Based on high interest of the public to geospatial ser-
vices, many specialists, organizations and institutes have
developed various methods, practices, software, data
formats, Web services, etc. in different fields of geospa-

tial sciences. To prevent this diversity leading to confu-
sion, standards play a pivotal role. The most dominant
standardization organizations and consortiums in the
field of geospatial Web services are International Organ-
ization of Standardization (ISO), World Wide Web Con-
sortium (W3C) and Open Geospatial Consortium (OGC).

On the other hand, Web has undergone many revolu-
tions compared to the existing one. The latest revolution
was introduction of “Web 2.0” as a new concept. Web
2.0 is associated with concepts such as data/information
sharing, interoperability, user-centered design and colla-
boration. Prior to this revolution, users were limited to
use the available content, whereas Web 2.0 sites allowed
the users to interact and collaborate in social networks
with user-generated content.

http://www.scirp.org/journal/jgis
http://dx.doi.org/10.4236/jgis.2014.61007
mailto:shpazooky@ut.ac.ir

S. H. PAZOKY, F. HAKIMPOUR

OPEN ACCESS JGIS

60

On this account, previously known standards such as
GML became more popular. GML is designed to trans-
port and store geo-referenced data [1]. It separates con-
tent from graphic presentation and does not contain any
information on how to visualize geo-referenced data.
Therefore, GML is not directly suitable for applications
that need visualization. Hence, it should be converted to
other forms based on the usage such as graphical visua-
lization, plain text or verbal output [2].

All the aforementioned possibilities can be imple-
mented. However, graphical visualization is the most
prominent way of communication. Geospatial science is
meant to show the spatial relationships between natural
features. Therefore, it is obvious that a graphical map is
far more useful than a textual or verbal one.

GML can be visualized using certain libraries like
Open Layers, certain GML viewer software, using XSLT
to convert GML to a presentation language like SVG or
X3D, etc. The focus of this research is on visualization of
GML by converting it to SVG by XSLT. XSLT is used
as the transformer of GML to SVG. Scalable Vector Gra-
phics, a W3C recommendation since 2001, is a markup
language for describing two-dimensional graphics appli-
cations and images, and a set of related graphics script
interfaces. SVG is an XML-based language and de-
scribes vector graphic both statically and dynamically.
As stated and discussed comprehensively in Peng &
Zhang [3], the future of Web maps depends on SVG,
GML and WFS. SVG has many features that make it the
best choice for Web-maps including [4-7]:
 An open standard compatible with other Web stan-

dards such as CSS, XSLT, XLink, XPointer;
 Providing rich graphical visualization features such as

scalability, vector display, animation, interactivity,
transparency, graphic filter effects and special visual
effects such as shadows, lighting effects and easy
editing;

 Facilitating fast response time for interactive query
requests;

 Providing efficient data interoperability over the net-
works;

 Supporting small wireless devices;
 Search ability.

SVG and GML are two complementary languages
which are highly compatible and can work in synergy.
Since GML plays a major role in geospatial Web, SVG is
currently the most promising format for vector graphics
display on the Internet [7,8].

Although this transformation is implemented several
times, the research has improved it in the following
ways:
 The transformation process is completely shifted to

client-side.

 XSLT is a general-purpose tool to reorganize XML
files andit does not have any special feature for map-
making [9]. Imagine a cartographer intends to draw a
legend for the map. Working with this primitive tool
is more like drawing with a vector drawing software
such as Auto Cad with the difference that user should
write some lines of codes instead of drawing with
drawing tools! In this research, XSLT is extended to
meet map making requirements of a cartographer to
convert GML to SVG. It is worth noting that the re-
search is not to produce a GML viewer, but an ad-
vanced tool for a cartographer to convert GML to
SVG.

 Since writing code in a somehow strange language
like XSLT may be bothersome for non-specialists, a
graphical user interface called XCartoT is designed
and implemented to facilitate map making process for
different classes of users. Using XCartoT, carto-
graphers can set all the specifications of their desired
map. XCartoT then generates XSLT file using ex-
tended functions. Choosing the GML file as the out-
put, the transformation process is run and the resul-
tant map in SVG format is displayed both textually
and graphically.

Geospatial Web is a new term, emphasizing geo-refer-
enced data anywhere and anytime. Mobile devices and
the Internet are the major devices to accomplish this goal
[10]. Therefore, the ultimate goal of this paper is to illu-
strate the essentiality for standardization organizations
and institutes to force Web browsers to provide users
with embedded capabilities to visualize geo-referenced
data on the browsers both on computers and mobile de-
vices.

2. Automatic Web Cartography
One of the major problems cartographers are facing to-
day is the enormous amount of raw data. Thus, it is im-
possible to spend a long time working on every single
sheet to produce a well-designed map. On the other hand,
people are less likely to buy papermaps. The change in
people’s attitude from papermaps to digital maps is
somehow a revolution.Development of telecommunica-
tion infrastructure such as wireless communication net-
works, spatial positioning methods such as Global Posi-
tioning Systems (GPS), radio frequency identification
(RFID), gyroscope, mobile computing systems such as
PDAs, tablets and smart phones has been the motive of
this revolution [2]. Along with many other applications
provided via telecommunication infrastructures and de-
vices, people expect much more from maps, including
availability and applicability in various devices anywhere
and anytime. According to the definition of ubiquitous
cartography, maps can be created and used anywhere and
anytime. Hence, it is not possible to have highly-skilled

S. H. PAZOKY, F. HAKIMPOUR

OPEN ACCESS JGIS

61

crafts people spend long hours to produce general pur-
pose maps, using traditional drawing methods like paint-
ing by hand [2]. Means of ubiquity are automatic and
Web cartography which are discussed in the next section.

Automatic Web Cartography Techniques
Apart from technical issues, all Internet GIS services can
be divided into two distinct categories based on the type
of data used. The initial category of services uses carto-
graphic data servers, while the other uses geodata serv-
ers.

Every Internet GIS service is constituted from data,
logic and presentation elements [11]. The first category
use data from a cartographic center, instead of raw geo-
data. Using this method, geodata is gathered, the map
features are selected and designed to form a seamless and
tiled map. Map providing procedure starts with a request
from a user. Then, the raster tiles related to the request
are searched and found in the cartographic database and
sent to the user. Therefore, there is no logic behind these
types of services. Although the method is very secure
and lightens the workload of the client; it has also some
serious disadvantages. The first disadvantage is that the
response time may grow very much due to heavy load on
the server. The second one is that the method needs high
network bandwidth because the data transmitted via the
network is usually very bulky. The architecture can only
be implemented using server-side approach and is shown
in Figure 1(a).

On the other hand, there are some other services that
have direct access to geodata. Instead of previously-
prepared raster tiles, the map is generated from raw geo-
data based on cartographic instructions provided by a

specialist. These methods should be categorized into
server-side and client-side approaches.

Server-side approaches have been implemented by two
distinct technologies. The first technology is Common
Gateway Interface (CGI) which is an interface for run-
ning external programs, software or gateways indepen-
dent from platform. The most important bottleneck of this
method is that if several CGI programs are operating
simultaneously, it places considerable workload on the
server. In addition, whenever a client makes any change to
inputs, the CGI program starts a new process thread,
consuming considerable computer resources [12]. The
CGI-based approach is thus not a suitable method for map
visualization on the Web [7]. Map Server is a software
package that uses this approach. There are some codes for
map presentation in the server-side. When the user sends a
request, the map is generated and sent to the user as im-
ages [13,14].

Another server-side approach is using Java Servlets
which is a program that runs on a Web server. Servlet
usually works much faster than CGI, since it stays resi-
dent in memory when running. Another advantage of
Java Servlets is its portability between operating systems
and also servers [7,13]. The architecture of server-side
methods is shown in Figure 1(b).

The other alternative is to transfer some of the respon-
sibilities of server to the client. There are two major me-
thods for this approach.

The initial method is Java applet. A Java applet is a
small program written in Java which runs on the client.
Java applets are platform independent similar to Java
Servlet. Running on the client side, developers can de-
sign user-friendly and interactive interfaces using Java

(a) (b)

Figure 1. How server-side Internet GIS services using (a) Cartographic database; (b) Geodatabase work.

S. H. PAZOKY, F. HAKIMPOUR

OPEN ACCESS JGIS

62

applets. However, if the program and also the data are
large, applet may overload the client and even paralyze
the client machine [7].

Another solution is using plug-ins to install in
client-side and add functionalities to the client’s Web
browser. Unlike Java products mentioned previously,
plug-ins are browser and platform dependent. They pro-
vide additional abilities for the browser to display and
process spatial data, so that the server’s workload can be
reduced. Since every computation required by every re-
quest is done on the requester machine, clients’ interac-
tions with the server can usually take place frequently
and efficiently [7]. The architecture of the method is
shown in Figure 2.

3. Proposed Approach
What shapes the foundation of this paper is that XSLT is
not designed to produce visual maps from GML. It is a
general-purpose language to reformat all types of XML
documents. Therefore, making a map with all the ingre-
dients using XSLT is very sophisticated. For example, in
most cartography software, legend is generated automat-
ically. But if users want to draw a complete legend on
their own, it would be more similar to drawing in vector
environment such as AutoCad or CorelDRAW. The dif-
ference is that instead of drawing tools provided in these
environments, the user should write XSLT or SVG codes,
which are very complicated and time-consuming. What
makes the situation even worse is that since the graphical
result of writing codes is not provided real-time, the
process will become a trial and error process. Extending
XSLT to meet cartographic requirements is the major
idea presented in this paper. The paper provides func-
tions, operators and ingredients for map cartography.

In this section, the investigator is to identify and de-
scribe the fundamental functionalities required to trans-
form geo-referenced data to a visualization format such
as SVG. In the next section, the functionalities are im-

Figure 2. How client-side Internet GIS services using geo-
database work.

plemented using XSLT and it is clarified how Web car-
tography specialists can use them.

As discussed earlier, client-side computing has many
advantages over server-side computing. In this paper, the
process of converting GML to a presentation language
like SVG is transferred to client-side using plug-in tech-
nology. Advantages of server-side approach are as fol-
lows:
 Higher security;
 Higher concealment;
 No need for the technologies to be widely approved.

On the other hand, advantages of client-side approach
can be listed as follows:
 Less data is transferred on the network.
 Less frequently the data is transferred on the network.
 Higher level of interaction.

In addition, advantages of client-side approach for the
discussed method are as follows:
 Separation of content from presentation;
 Reusability of XSLT file generated by the server;
 Possibility to make personal profiles for each client;
 Customizability of the resultant map both content-

wise and graphically.
Another difference of this research with the previous

ones is that XSLT is extended to visualize GML maps
with SVG. Extending XSLT requires first to identify
what needs to be added to current capabilities and then
implement them.

The most straight forward way to extend XSLT is by
extension functions. As a consequence, a set of functions
with appropriate input and output are determined. The
areas where functions should be considered are as fol-
lows:
 Introducing spaces;
 Transforming from real space to monitor space;
 Calculating scale;
 Drawing geospatial features with appropriate sym-

bology and texts;
 Drawing outer map features.

The above-mentioned areas are necessary ones to ex-
tend XSLT in a way to be able to make an elementary,
but complete map.

3.1. Introducing Spaces
The page that a viewer can see in a map is divided into
several parts including the following:
 browser space;
 user space;
 map space;
 geospatial features space;
 outer features space.

The hierarchy of the spaces is depicted in Figure 3.
Functions providing the user with different spaces are

mentioned below:

S. H. PAZOKY, F. HAKIMPOUR

OPEN ACCESS JGIS

63

Figure 3. Map spaces hierarchy.

“public static String view box (coords, margin, b

Space Width, b Space Height, Precision)”
The above function is responsible for calculating the

minimum bounding box and receiving some global pa-
rameters from user with parameters as follows: coords:
the coordinates of all the spatial features on the map;
margin: browser space margin; b Space Width: width of
the browser space; b Space Height: height of the browser
space; and Preciosion: precision of all the numbers gen-
erated in the application.

“public static String border (margin)”
The above function creates the border of user space

where margin is user space margin.
“public static void margin Set (margin, Umargin)”
The function creates the margin of map space using

the following parameters: margin: margin between user
space and geospatial features space; where Umargin:
upper margin between user space and geospatial features
space.

Another useful function of this category is to draw
neatline. Neatline is a rectangle surrounding geospatial
features space. The function is as follows:

“public static String neatline (hShift, vShift)”
Where hShift is horizontal shift of the geospatial fea-

tures space; and vShift is vertical shift of the geospatial
feature space.

3.2. Transforming Real Space to Monitor Space
There is a difference between coordinate system of real
space and monitor space as shown in Figure 4.

After calculating the appropriate transformation para-
meters between the two spaces, the function to perform
the transformation by using the above equation is as fol-
lows:

“private static String cords Change (coordPair)”
Where coordPair shows coordinate pairs to be trans-

formed from real space to monitor space.

3.3. Calculating Scale
To draw the map, the scale between real space and mon-

(a) (b)

Figure 4. Difference of coordinates systems of (a) Monitor
space; and (b) Real space.

itor space should becalculated. In order to achieve the
goal, two elements are required: Space available on the
monitor and actual ground space that accommodates real
features. Space available on the screen as described
above is asked from the user through “view box” function.
Real space comprises of sets of nodes of all selected fea-
tures. All the nodes in the GML file, which are intended
to be drawn on the map, are also introduced to the “view
box” function. Using maximum and minimum values of
northing and easting, scales in vertical and horizontal
directions are calculated using the following equations:

() ()
horizontal scale

max min
w

X X
=

−

() ()
vertical scale

max min
h

Y Y
=

−

where “w” is the width and “h” is the height of geospatial
features space.

Based on the geospatial features space, scales in the
two directions are different. To preserve the map from
horizontal or vertical elongation, a unique scale should
be chosen for both directions. As the geospatial features
space introduced before cannot be exceeded, the mini-
mum value of scales is chosen as the eventual map scale.
An important point to mention is that choosing the min-
imum value of the two scales causes the geospatial fea-
tures space to decrease in one direction. Thus, map de-
signer should be alert not to leave any empty space.

The function to calculate the scale based on aforemen-
tioned equations is as follows:

“private static double scale Detection (minE, maxE,
minN, maxN, gfsBounds)”

Parameters are as follows: minE: minimum easting;
maxE: maximum easting; minN: minimum northing;
maxN: maximum northing; and gfsBounds: geospatial
feature space bounds.

3.4. Drawing Geospatial Features with
Appropriate Symbology and Text

Geospatial features are categorized into three groups:
points, polylines, and polygons. For each of the groups,

S. H. PAZOKY, F. HAKIMPOUR

OPEN ACCESS JGIS

64

drawing, labeling and symbology is different. Therefore,
different functions should be considered for each cate-
gory.
 Points: Points are comprised of just two coordinate

values of easting and northing. Point symbols should
be defined in SVG file and the function refers to the
symbol. Furthermore, the size of the symbol is ad-
justable using the function. The function to draw
points with appropriate symbology is as follows:
“public static String stylePoint (coordPairs, sym,
fName, labelTag, symH, symW, labelStyle)”
Using the following parameters: coordPairs: coordi-
nate pairs representing a point; sym: reference to SVG
point symbol; fName: name of the feature group in
the legend; labelTag: tag to label features according-
ly; symH: symbol height; symW: symbol width; and
labelStyle: label styling.

 Polylines: Polylines are comprised of two sets of co-
ordinates. As there is no way to define linear symbols
in SVG, polyline symbols are implemented using
“style” which is a CSS reserved keyword. The text of
a linear feature should be written on it several times
with a certain interval. The function for drawing po-
lylines with appropriate styling is as follows:
“public static String stylePolyline (coordPairs, fName,
labelTag, labelInt, styling, labelstyle)”
Parameters are as follows: coordPairs: sets of coor-
dinate pairs representing a line; fName: name of the
feature group in the legend; labelTag: tag to label
features accordingly; labelInt: labels interval; styling:
defining linear symbols using CSS code; and label-
Style: label styling.

 Polygons: Polygons are also comprised of two sets of
coordinates. Like points, polygons can use externally
defined symbols. In addition, as polygons are sur-
rounded with lines, border lines can be styled by CSS
“style” keyword. Labels of polygons should be in the
middle of the polygon. The function for drawing po-
lygons is as follows:
“public static String stylePolygon (coordPairs, sym,
fName, labelTag, styling, labelStyle)”
With the following parameters: coordPairs: sets of
coordinate pairs representing a polygon; sym: refer-
ence to SVG polygon symbol; fName: name of the
feature group in the legend; labelTag: tag to label
features accordingly; styling: defining linear symbols
using CSS code for polygon borders; and labelStyle:
label styling

3.5. Drawing Outer Map Features
Outer map features are those which help map users un-
derstand the map better and include the followings:
 Map title: Map title is a short hugely-typed text on top

of a map to provide a clear indication on what the

map is displaying. Therefore, top of the map should
be left empty that is accomplished by setting different
margin value for top of the map when using “mar-
ginSet” function. The function designed for produc-
ing map title should suggest the best place for title.
Also, two parameters are needed that if the suggested
position is not acceptable for the users, they can move
it in two directions. The function which displays the
title is as follows:
“public static String title (text, hOffset, vOffset, styl-
ing)”
Parameters are as follows: text: title text; hOffset: ho-
rizontal offset of the title; vOffset: vertical offset of
the title; and styling: title text styling.

 Grid: Grid lines define locations on map using Carte-
sian coordinate system. Each grid line specifies one
coordinate horizontally or vertically based on its di-
rection. The function is as follows:
public static String grid (startingE, startingN, hInt,
vInt, dist1, hOffText, vOffText, textStyle)
Using the following parameters: startingE: the easting
of the first vertical grid line; startingN: the northing
of the first horizontal grid line; hInt: interval between
horizontal grid lines; vInt: interval between vertical
grid lines; dist1: distance of grid line texts from grid
lines; hOffText: horizontal offset of texts; vOffText:
vertical offset of texts; textStyle: texts styling.
Different parameters of grid function are depicted in
Figure 5(a).

 Legend: Legend is where all symbols used in the map
are gathered showing which feature they refer to. The
function declaration should be as mentioned below:
“public static String drawLegend (pX, pY, width, title-
Style, textStyle, borderStyle)”
With the following parameters: pX: X coordinate of
the position of the legend in outer features space; pY:
Y coordinate of the position of the legend in outer
features space; width: legend width; titleStyle: styling
of the titles of the legend; textStyle: styling of the text
used in the legend; and borderStyle: styling of the
border of the legend.
Different Parameters of legend function is depicted in
Figure 5(b).

 Scalebar: Scalebar is a graphical representation of
scale that helps users measure distances on a map.
Since scalebar is more complicated than other outer
map features and has more distinct elements, para-
meters of this function are more than previous ones.
The function declaration is as follows:
“public static String scaleBar (type, div, divLength,
subDiv, pX, pY, dist1, dist2, height, titleStyle, head-
Style, oddStyle, evenStyle, titleHOff headHOff)”
Parameters are as follows: type: scalebar type; div:
number of divisions; divLength: division length;

S. H. PAZOKY, F. HAKIMPOUR

OPEN ACCESS JGIS

65

(a) (b)

(c)

Figure 5. Different parameters of (a) “grid”; (b) “drawLegend”; (c) “scalebar” functions.

subDiv: number of subdivisions; pX: X coordinate of
the position of the scalebar in outer features space; pY:
Y coordinate of the position of the scalebar in outer
features space; dist1: distance of title from scalebar;
dist2: distance of heading from scalebar; height: sca-
lebar height; titleStyle: title styling; headStyle: head-
ing styling; oddStyle: scalebar styling odd parts;
evenStyle: scalebar styling even parts; titleHOff: title
horizontal offset; and headHOff: heading horizontal
offset.
Different Parameters of scalebar function is depicted
in Figure 5(c).

 North arrow: North arrow type is defined by symbols
in SVG directly and referenced in the function. The
function is as follows:
“public static northArrow (pX, pY, sym)”
Using the following parameters: pX: X coordinate of
the position of the north arrow in outer features space;
pY: Y coordinate of the position of the north arrow in
outer features space; and sym: reference to the symbol.

 Map metadata: Every map should contain production

information, otherwise it is not valid. The text is en-
tered by the user and ‘\n’ wild card should be used to
go to next line. The function is as follows:
“public static metadata (pX, pY, text, textStyle)”
With the following parameters: pX: X coordinate of
the position of the north arrow in outer features space;
pY: Y coordinate of the position of the north arrow in
outer features space; text: metadata text; and textStyle:
Text Styling.

4. Prototype Implementation
Required functions to extend general-purpose XML
Transformation language to a cartographic tool were in-
troduced in the previous section. In this section, most of
the functions are implemented to demonstrate how using
extension functions can facilitate GML to SVG conver-
sion on the client side with conditions described in pre-
vious sections. Furthermore, a graphical user interface
called XCartoT is designed to make the process more
user-friendly and also allow less professional users to

S. H. PAZOKY, F. HAKIMPOUR

OPEN ACCESS JGIS

66

produce well-designed maps using aforementioned tools.

4.1. Implementing Extension Functions
4.1.1. Data
The data used in the research consists of the following:
 Polygon features: parcels of 6 municipal regions;
 Polyline features: streets of the same regions;
 Point features: petrol stations, police stations and hos-

pitals of the same regions.

4.1.2. XSLT File
The first line of code to talk about is the opening <svg>
tag that is as follows:

‘<svg height="" width=" " viewBox="" version="1.1"
preserveAspectRatio="none">’

In this line, 3 parameters should be set. The height and
the width of the page which specifies browser space
should be entered by the user. The value of the “viewBox”
attribute is a list of four numbers <min-x>, <min-y>,
<width> and <height>, separated by whitespace and/or a
comma. This attribute determines a rectangle in user
space which should be mapped to the bounds of the
viewport established by the given element. It is notewor-
thy to mention that this attribute is mandatory and cannot
be left empty [4]. “viewbox” function described in the
previous section is used to calculate the value of this
attribute. This line of code runs “viewbox” function and
sets the output to a “viewbox” variable:

‘<xsl:variable name="viewbox" select="carto:viewbox

(//gml:posList,5,1260,600,2)" />’
Where ‘//gml:posList’ is an XPath expression input-

ting the coordinates of all spatial features.
After substituting values, SVG tag would be as follows:
‘<svg height="600" width="1260" viewBox= "{$view-

box}" version="1.1" preserveAspectRatio = “none”>’
Where “{$viewbox}” is the name of the variable to

store the output of “viewbox” function.
Next step is to call the “border”, “marginSet” and

“neatline” functions to determine the coordinates of dif-
ferent spaces which are depicted in Figure 6(a). The
functions may be called as follows:

‘<xsl:variable name="border" select="carto:border
(10)" />’

‘<xsl:value-of select="carto:marginSet (20,50)" />’
‘<xsl:variable name="neatline" select="carto:neat-

line (270,0)" />’
The user is also able to draw map border and neatline.

To do so, the result of these functions should be used to
draw rectangles using the SVG code lines below:

‘<polyline points="{$border}" style="fill:white;stroke:
black;stroke-width:2" />’

‘<polyline points="{$neatline}" style="fill:white;stroke:
black;stroke-width:1" />’

To draw geospatial features in the provided geospatial
feature space, different symbologies can be defined using
SVG capabilities which some samples are shown in Fig-
ures 6-8.

In the XSLT file, geospatial features are drawn one by
one. Thus, drawing should be inside a loop.

(a) (b) (c)

Figure 6. Sample point symbols for (a) Hospital; (b) Police department; and (c) Petrol stations.

Figure 7. Sample linear symbols.

Figure 8. Sample polygon symbols.

http://www.w3.org/TR/SVG/coords.html%23ViewBoxAttribute

S. H. PAZOKY, F. HAKIMPOUR

OPEN ACCESS JGIS

67

At this stage, outer map features are added to the map.

The ones which are implemented in this research are as
follows:
 map title
 grid
 legend
 scalebar

“title” function is called as follows:
‘<xsl:value-of select="carto:title('Sample Map',-350,

25,'font-family:Vernada;font-size:24pt')"/>’
The following line of code is to produce grid lines:
‘<xsl:value-of select="carto:grid(536000,3948000,1000,

1000,5,'stroke:rgb(99,99,99);stroke-width:1','font-family
:Vernada;font-size:7pt',-15,-15)" />’

The following line of code produces a legend:
‘<xsl:value-of select="carto:drawLegend(1050,50,130,

'font-family:Vernada;font-size:10pt','font-family:Vernada
;font-size:7pt','fill:white;stroke:black;stroke-width:1')" />’

And finally, the following line of code is used to pro-
duce a legend:

‘<xsl:value-of select="carto:scaleBar(1,3,600,5,990,
70,20,5,8,'font-family:Vernada;font-size:12pt','font-famil
y:Vernada;font-size:7pt','fill:#C0C0C0;stroke:black;stro
ke- width:1','fill:#9ACD32;stroke:black;stroke-width:1',-
80,-2)" />’

The final result with all the map surroundings is as de-
picted in Figure 9.

4.2. Developing a GUI for the Application
(XCartoT)

Using extension functions to facilitate map making from
geo-referenced data might confuse users unfamiliar with
geospatial and Web concepts. In other words, Web
car-tographers may find it difficult to learn and use
XSLT language as well as our extended functionalities.
To alleviate this problem and simplify map making
process, a user-friendly graphical user interface called
“XCartoT” is designed. XCartoT generates the necessary

Figure 9. Result map after adding geospatial features with
their symbology.

XSLT file automatically according to the cartographers’
requirements. In this section, XCartoT is introduced.
First view of XCartoT is shown in Figure 10.

XCartoT is made up of two parts: The menu bar and
some tabs. The hierarchy of the tabs is shown in Figure
11.

In ‘Map Generation Features’ tab, user should set all
the parameters required to produce a map. The parame-
ters are those described in Sections 5 and 6. For better
organization, these parameters are categorized into four
groups: Basic Parameters, Drawing Layers, Symbology
and Outer Map Features.

After setting all the parameters, XSLT file is produced
automatically using extension functions described in pre-
vious sections. Going to “Code” tab and choosing XSLT
nested tab, the user can view automatically-generated
XSLT file.

“GML” tab shows GML file after being introduced to
the application. GML fileshould be added to the applica-
tion using the menu bar. Having GML and XSLT files,
SVG file is produced by choosing “Transform” menu
item. Then, it is visualized by ajava SVG visualization
library called Batik and can be viewed in “SVG View”
tab as shown in Figure 12. Finally, the whole procedure
can be summarized in the following flowchart (Figure
13).

Figure 10. First view of the GUI.

Figure 11. The hierarchy of XCartoT tabs.

S. H. PAZOKY, F. HAKIMPOUR

OPEN ACCESS JGIS

68

5. Literature Review
This section is dedicated to introduce and compare work
of various other researchers in this area. The first re-
search was done by Mansfield, P and Fuller, D. [15]. The
authors introduce the idea of converting XML to SVG
via XSLT. XML data used in the research is not geospa-
tial and there’s no example of converting geospatial data
to SVG.
Another research is done by Taladoire, G. [16]. The au-
thor has explained the problem well and described all the
details. The input data used is GML, but a complete
conversion from GML to SVG is not shown. The author
has used CSS for styling, but the resultant map is not
interactive.

Another research is done by Neumann, A. and Winter,
A.M. [17]. The authors demonstrate that vector graphic

Figure 12. SVG view generated after producing SVG code
in “SVG View” tab.

Figure 13. The whole procedure of map production using
the proposed method.

has higher quality than raster graphic. Then, languages
for vector graphics are introduced and compared. These
languages include: SVF, DWF, Flash, PDF, PGML,
WebCGM, HGML, DrawML, VML, Java2D and XML.
The conclusion of the comparison leads to the fact that
SVG is the best choice to present the maps on the Web.
The major advantage of this research is that the maps are
completely interactive.

A very efficient conversion of GML to SVG is done
by Tennakoon, W. [18]. The author has converted a com-
plete GML file to SVG using XSLT code.

Another attempt is done by Spanaki et al. [19] in
Athens, Greece. The difference between this paper and
the previous attempts is that the conversion is done in the
internet browser of the client.

Bonati et al. [20] have also researched in this area.
Their approach is exactly similar to the previously cited
papers, but the generated map is completely interactive.
The user can pan, zoom, and change symbols and much
more.

A paper assembled by Ron in Galdos Systems Inc. is
somehow similar to the idea mentioned in this research.
The difference between this research and previously cited
papers is that the author introduces the idea of extension
functions in XSLT. This function should be implemented
in the XSLT engine to work as is done in this research.
However, there is no implementation of extension func-
tions in this research.

6. Conclusions
Emerging various methods, practices, software, etc has
caused standards to be the necessities of today’s life.
GML as a standard, which is recommended by OGC, is a
language to store and to transport geospatial data. Having
no information on how to visualize the data graphically,
GML is a means to separate geospatial content from
graphical presentation. Therefore, there are several ways
to visualize the textual geo-referenced data. A straight-
forward method is to convert GML to a graphical lan-
guage like SVG, using a convertor like XSLT. Although
the process has been implemented several times by dif-
ferent scientists, the research has improved the current
approaches inseveral aspects:
 Transformation process is completely transferred to

client-side. Using the proposed approach, the user has
access to geodata, as well as an appropriate visualiza-
tion of the data. Another advantage is that geodata
transferson the network much faster than raster im-
ages. Furthermore, geodata is transferred once and
can be visualized many times without any need to
connect to the server. Unlike server-side approaches,
there is not much load on the server, since it just pre-
pares and sends geo-referenced data and sometimes
XSLT file needed for presentation. The next advan-

S. H. PAZOKY, F. HAKIMPOUR

OPEN ACCESS JGIS

69

tage is that there is no need to install any special
software on the computer or mobile device except fo-
ra mere internet browser of any vendor because the
required plug-ins are pre-installed on all major inter-
net browsers, although the quality of the resultant
maps might have slight differences in special condi-
tions such as animation.

 The next important contribution of the paper is that
XSLT as a general-purpose transformation language
is extended to meet cartographic requirements of
map-making. Required functions are recognized, de-
signed and implemented. Although several functions
can be thought of to be added to XSLT, the research
focuses on the most important ones.

 The final contribution is developing a GUI called
XCartoT to further facilitate users in map-making
process through this method. XCartoT allows users to
set all the parameters of a map and the XSLT file is
generated automatically using extension functions.
Then, after introduction of GML file, conversion is
executed and the resultant SVG file is available for
the user both textually and graphically.

 Geospatial Web is a concept in information era to
provide access to maps anywhere and anytime using
the Internet and mobile devices. The goal of the re-
search is to prepare the required steps towards the
geospatial Web. Furthermore, the investigator sug-
gests that standardization organizations and consor-
tiums such as W3C oblige Web browsers for both for
computers and mobile devices to support geospatial
services.

REFERENCES
[1] Open Geospatial Consortium (OGC), “Geograpy Markup

Language (GML),” 2007.
http://www.opengeospatial.org/standards/gml

[2] G. Gartner, D. A. Bennet and T. Moritta, ‘Towards Ubi-
quitous Cartography,” Cartography and Cartographic
Information Science, Vol. 34, No. 4, 2007, pp. 247-257.
http://dx.doi.org/10.1559/152304007782382963

[3] Z. Peng and C. Zhang, “The Roles of Geography Markup
Language (GML), Scalable Vector Graphic (SVG), and
Web Feature Service (WFS) Specifications in the Devel-
opment of Internet Geographic Information Systems
(GIS),” Journal of Geographic Systems, Vol. 6, No. 2,
2004, pp. 95-116.
http://dx.doi.org/10.1007/s10109-004-0129-0

[4] World Wide Web Consortium (W3C), “Scalable Vector
Graphics (SVG) 1.1 (Second Edition),” 2011.
http://www.w3.org/TR/SVG/

[5] A. Neumann and A. M. Winter, “Time for SVG—To-
wards High Quality Interactive Web-Maps,” Proceedings

of the 20th International Cartographic Conference, Bei-
jing, 6-10 August 2001, pp. 2349-2362.

[6] B. Jenny, A. Terribilini, H. Jenny, R. Gogu, L. Hurni and
V. Dietrich, “Modular Web-Based Atlas Information Sys-
tems,” Cartographica, Vol. 41, No. 3, 2006, pp. 247-256.
http://dx.doi.org/10.3138/2773-Q553-0483-NP77

[7] X. Yao and L. Zou, “Interoperable Internet Mapping: An
Open Source Approach,” Cartography and Geographic
Information Science, Vol. 35, No. 4, 2008, pp. 279-293.
http://dx.doi.org/10.1559/152304008786140560

[8] M. Kramis, C. Gabathuler, S. I. Fabrikant and M. Wal-
dovogel, “An XML-Based Infrastructure to Enhance Col-
laborative Geographic Visual Analytics,” Cartography
and Geographic Information Science, Vol. 36, No. 3, 2009,
pp. 281-293.
http://dx.doi.org/10.1559/152304009788988305

[9] World Wide Web Consortium (W3C), “XSL Transforma-
tions (XSLT) Version 2.0,” 2007.
http://www.w3.org/TR/xslt20/

[10] A. Scharl and K. Tochtermann, “The Geospatial Web:
How Geobrowsers, Social Software and the Web 2.0 Are
Shaping the Network Society,” Springer, London, 2007.
http://dx.doi.org/10.1007/978-1-84628-827-2

[11] Z. R. Peng and M. H. Tsou, “Internet GIS,” Wiley, Ho-
boken, 2003.

[12] S. Gundavaram, “CGI Programming on the World Wide
Web,” O’Reilly Associates, Sebastopol, 1996.

[13] B. Huang and M. F. Worboys, “Dynamic Modelling and
Visualization on the Internet,” Transactions in GIS, Vol.
5, No. 2, 2001, pp. 131-139.
http://dx.doi.org/10.1111/1467-9671.00072

[14] B. Kropla, “Beginning MapServer: Open Source GIS De-
velopment,” Springer-Verlag, New York, 2005.

[15] P. Mansfield and D. Filler, “Graphical Stylesheets Using
XSLT to Generate SVG,” Proceedings of XML Confer-
ence.

[16] G. Taladoire, “Geospatial Data Intergration and Visuali-
sation Using Open Standard,” 7th EC-GI & GIS Work-
shop, Potsdam, 13-15 June 2001.

[17] W. T. M. S. B. Tennakoon, “Visualization of GML Data
Using XSLT,” Diploma Thesis, International Institute for
Geo-Information Science and Earth Observation, En-
schede, 2003.

[18] M. Spanaki, B. Antoniou and L. Tsoulos, “Web Mapping
and XML Technologies: A Close Relationship,” 7th
AGILE Conference on Geographic Information Science
Heraklion, 29 April-1 May 2004.

[19] L. P. Bonati, L. Fortunati and G. Fresta, “SVG Explorer
of GML Data,” Proceedings of SVG Open, Vancouver,
13-18 July 2003.

[20] R. Lake, “Making Maps for the Web with GML,” Galdos
Systems, Inc.

http://www.opengeospatial.org/standards/gml
http://dx.doi.org/10.1559/152304007782382963
http://dx.doi.org/10.1007/s10109-004-0129-0
http://www.w3.org/TR/SVG/
http://dx.doi.org/10.3138/2773-Q553-0483-NP77
http://dx.doi.org/10.1559/152304008786140560
http://dx.doi.org/10.1559/152304009788988305
http://www.w3.org/TR/xslt20/
http://dx.doi.org/10.1007/978-1-84628-827-2
http://dx.doi.org/10.1111/1467-9671.00072

