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ABSTRACT 
Most of the classical self-similar traffic models are asymptotic in nature. Therefore, it is crucial for an appropri-
ate buffer design of a switch and queuing based performance evaluation. In this paper, we investigate delay and 
loss behavior of the switch under self-similar fixed length packet traffic by modeling it as CMMPP/D/1 and 
CMMPP/D/1/K, respectively, where Circulant Markov Modulated Poisson Process (CMMPP) is fitted by equat-
ing the variance of CMMPP and that of self-similar traffic. CMMPP model is already the validated one to emu-
late the self-similar characteristics. We compare the analytical results with the simulation ones. 
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1. Introduction 
An effective traffic model has, at least, to reproduce the first and second order statistics of the original traffic 
trace. The second order statistics play an important role in traffic modeling, because traffic correlation is an im- 
portant factor in packet losses due to buffer and bandwidth limitations. However, the first two order statistics 
may not be sufficient to characterize real data traces that are known to be bursty and spiky in nature. It has been 
shown through experimental evidence that network traffic may exhibit properties of self-similarity and/or long 
range dependence (LRD) [1-3]. Self-similar traffic shows identical statistics’ characteristics over a wide range of 
time scales, which have significant impact on network performance. Therefore, it is important to make frequent 
measurement of packet flows and to decide them through appropriate traffic models. Characterizing the statis- 
tical behavior of traffic is crucial for proper buffer design of switch in the network traffic to provide the quality 
of service (QoS). Various stochastic models have been proposed to emulate the statistical nature of self-similar 
network traffic over certain range of time scales. Traffic models such as Fractional Brownian Motion (FBM), 
Fractional Auto Regressive Integrated Moving Average (FARIMA) and Chaotic maps are proposed to charac- 
terize the self-similarity. These models describe the self-similar behavior in a relatively simple manner. Al- 
though these processes have less number of parameters, they are less effective in the context of queuing based 
performance evaluation. Traditional traffic models, such as Markovian models, can still be used to model traffic 
exhibiting LRD. In [4-7], Markovian arrival process (MAP) is employed to model the self-similar behavior over 
the desired time scales. These fitting models equate the second order statistics of self-similar traffic and super- 
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position of several 2-state Interrupted Poisson Processes (IPPs). The said models hold well for voice traffic as 
IPP consists of two states talkspurt and silence. On the other hand, the Circulant Markov Modulated Poisson 
Process (CMMPP) is a Poisson process, the rate of which is changed according to circulant Markov chain [8]. 
The Circulant Markov Modulated Poisson Process is characterized by circulant stochastic transition matrix Q 
and non-negative vector λ. In the case of two states Circulant Markov Modulated Poisson Process (2-CMMPP) 
which is Switched Poisson process (2-state MMPP), two states are active unlike IPP and it is good model for ar- 
rival process in Internet traffic. The MMPP and CMMPP both are model classes which can be incorporated in 
queuing analysis. The CMMPP has several advantages over MMPP in terms of computational complexity [9,10]. 
The steady state probability distributions of this process are the normalized null vector of its generator matrix. 

In addition to traditional data services, multimedia and real-time applications are becoming indispensable ser- 
vices offered by the best-effort Internet. The future Internet is expected to offer a certain QoS guarantee to some 
important applications, which are the best effort today. As is well understood, packets may suffer some delay 
and loss at the network nodes during their traversal across a packet-switched network. Therefore, packet loss 
and end-to-end delay are two crucial performance metrics for Internet QoS. In the present paper, we investigate 
delay and loss behavior of the resultant CMMPP/D/1/K queueing system and compare with that of simulation 
results. 

The paper is organized as follows. In Section 2, we first overview the fundamentals of self-similar process 
and Circulant Markov modulated Poisson process. In Section 3, the generalized fitting procedure is given. In Sec- 
tion 4, Queuing systems and numerical results are presented. Finally, some conclusions are made in Section 5. 

2. Self-Similar Process and Circulant Markov Modulated Poisson Process (CMMPP) 
In this section, we first overview the definition of the exact second order self-similar process and summarize 
some characteristics of CMMPP and then, we make some remarks. 

2.1. Self-Similar Process 
The definition of exact second-order self-similar processes is given as follows. If we consider X  as a second 
-order stationary process with variance 2σ , and divide time axis into disjoint intervals of unit length, we could 
define { }1,2,3 .tX X t= =   to be the number of points (packet arrivals) in the tht  interval. A new sequence  

( ) ( ){ },m m
tX X= where ( )

( )1
1

1 , 1, 2,3,
m

m
t t m i

i
X X t

m − +
=

= =∑   , is the average of the original sequence in m non-  

overlapping blocks. Then the process X  is defined as an exact second order self-similar process with the Hurst 
parameter, 1 2H β= − , if 

( )( ) 2Var , 1.mX m mβσ −= ∀ ≥                                  (1) 

2.2. Circulant Markov Modulated Poisson Process (CMMPP) 
CMMPP is a doubly stochastic process in which arrival rate is given by [ ],tJλ  where , 0tJ t ≥  is an m -state 
Markov process. The arrival rate can therefore take on only m  values, namely 1 2, , , mλ λ λ . It is equal to jλ  
whenever the Markov process is in the state ,1 .j j m≤ ≤  The CMMPP is fully parameterized by the infinitesimal 
generator Q  (Circulant Markovian) of the Markov process and the vector ( )1 2, , , mλ λ λ λ=   of the arrival rates. 
Let Λ  be the diagonal matrix with ,jj jλΛ = 1 .j m≤ ≤  In the case of two state CMMPP, Q  and Λ  are given 
as follows: 

1 1 1

1 1 2

0
, .

0
c c

Q
c c

λ
λ

−   
= Λ =   −   

                               (2) 

The mean and variance of tN  can be deduced from that of MMPP [7]. The mean arrival rate λ  of CMMPP is 
given by eλ = Λπ , where π  is the stationary probability vector of Q, i.e. 0, 1Q e= =π π  and e  is an all 1 
column vector with designated dimension. If we let tN , 0t ≥ , be the number of arrivals in (0, t], 

The mean, 

( ) 1 2 .
2tE N tλ λ+

=                                            (3) 

The variance of tN  is given as follows 
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[ ] ( ) ( )
1

2 2
1 2 1 2 21 2

2
1 1

Var 1 e
2 4 8

c t
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c c
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Since the index of dispersion for counts (IDC) is defined as 

( ) [ ]
[ ]

Var t

t

N
IDC t

E N
=  

From (3) and (4), we can obtain  

( ) ( )
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2
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We then could obtain the following remarks: 
1) ( ) 1,IDC t →  as 0t →  , that is, CMMPP tends to a Poisson process. 

2) ( ) ( )
( )

2
1 2

1 1 2

1 ,
2

IDC t
c
λ λ
λ λ
−

→ +
+  

a constant , as .t →∞  

3) ( )IDC t  is monotonic increasing over a finite time interval and is bounded. 

4) Steady state distribution of 2-state CMMPP is 1 1,
2 2

 
 
 

 and is independent of transition rates. 

The first and second order statistics of Nt in the case of MMPP and CMMPP are listed in the following table. 
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3. Generalized Variance Based Fitting Procedure 
Generalized variance-based fitting method is a procedure to find out the traffic model parameters, that match the 
variance of self-similar and that of model traffic [4-6,11]. The fitted model emulating self-similar traffic consists 
of a superposition of 'd  2-CMMPPs and one Poisson process. We describe the ith 2-CMMPP as follows. 

1

2

0
, .

0
i i i

i i
i i i

c c
Q

c c
λ

λ
−   
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                                  (6) 

Superposition of above ' 'd CMMPPs  and a Poisson process is a transition rate matrix and is determined by 

1 2 1 2,d d pQ Q Q Q λ= ⊕ ⊕ ⊕ ∧ = ∧ ⊕∧ ⊕ ⊕∧ ⊕                       (7) 

In (7), ⊕  means the Kroneker’s sum and pλ  is the arrival rate of the Poisson process. The whole arrival 
rate, λ , is then given by 

1 2

1
.

2

d
i i

p
i

λ λ
λ λ

=

+
= +∑                                     (8) 

Let , ,,t i t pN N  be the number of arrival packets from the ith CMMPP and Poisson process, respectively, dur- 
ing the tth time slot, and let ( )

,
m

t iN  and ( )
,
m

t pN  be the number of arrival from the averaged processes of ith 
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CMMPP and Poisson process, respectively. 
Put 

( ) ( ) ( )
, ,

1
.

d
m m m

t t i t p
i

X N N
=

= +∑                                      (9) 

Using (4), we obtain the variance of the ith CMMPP as 
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Also 
( )( ),Var pm
t pN

m
λ

= .                                       (11) 

From (9)-(11) and using the fact that superposition of independent sub-processes preserves the variance, we 
obtain 
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Using (1) and (12), we can match the variance at ' 'd  different points mi, 1, 2,3, , .i d=   Let [ ]min max,m m  
( )min maxm m m≤ ≤  be the time interval over which we want the process to express self-similarity of the original 
process, then im  is given by 

1
min , 1, 2,3, , ,i

im m a i d−= =                                (14) 
where 

1
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                                    (15) 

Now, we assume the following relations between ic  and im  

( )1 .i im c const i d= ≤ ≤  

That is, ic  can be determined using 

1
1, 1, 2, , .i

i

mc c i d
m

= =                                     (16) 

There are due to the fact that a Self-similar process takes the same in any time scale. Because of this assump-
tion, we can reduce the number of parameters to be determined. That is, if we determine ic , we can obtain the 
values of ( )2ic i d≤ ≤  by using (16). Furthermore, we can obtain pλ  from (8) if we determine 1 2,i iλ λ . The 
parameters we need to find are only 1 2,  and  i i ic λ λ . 

4. Queuing Systems and Numerical Results 
In this section, synchronous input traffic of fixed length h (in time units) is modeled as CMMPP/D/1queuing 
system. In CMMPP/D/1 system, the packets of fixed length arrive according to CMMPP. The performance me-
trics in this case involve m m×  irreducible matrix ( )ijG G=  if CMMPP of m  states [12], where ijG  is the 
probability that a busy period starting with the CMMPP in state i  and ends in state .j  The matrix G is a key 
ingredient in obtaining mean waiting time. The mean waiting time (MWT) could be computed by the formula 
[11]. 

( )
( ) ( )( )( ) 121 2 2 1

2 1 totMWT h h g h Q eρ λ ρ π π λ
ρ

− = + − − + Λ + −
                 (17) 

where ,h  and ( )2h  first and second moments of service time distribution, and here second moment ( )2 0.h =  
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The steady state vector g of G satisfies , 1.gG g ge= =  For the packet loss probability, the switch is modelled 
as finite buffer queueing system CMMPP/D/1/K [6,12]. Packet loss probability against traffic intensity is com- 
puted using the procedure [6,12]. We have fitted CMMPPs for the traffic parameters H = 0.7, H = 0.8, H = 0.9, λ 
= 1, σ2 = 0.6 over the time scales [102, 106] [102, 107] [102, 108]. In all the above cases, the number of two state 
CMMPPs, d, is equal to 4. Numerical calculations are performed using the MATLAB and the results are shown 
in the Figures 1-6. Figure 1 depicts the mean waiting time against traffic intensity for the case of H = 0.7 and 
the different time scales [102, 106], [102, 107] and [102, 108]. In this case, analytical results are validated with that 
of simulation. From this figure, it is clear that, the mean waiting time increases as the traffic intensity increases. 
Figure 2 depicts the mean waiting time against the traffic intensity for the case H = 0.8, and the time scales [102, 
106], [102, 107], and [102, 108]. From the figure, it is clear that mean waiting time decreases as the time increases. 
Figure 3 depicts the mean waiting time against the traffic intensities for the case H = 0.7, H = 0.8, H = 0.9, over 
the time scale [102, 108]. From this we infer that the mean waiting time increases as H increases. Figure 4 de- 
picts the packet loss probability against the traffic intensity for the case of H = 0.8 over the time scales [102, 106], 
[102, 107], and [102, 108]. From this figure, we conclude that packet loss probability increases as the traffic in- 
tensity increases. Figures 5-6 depict the packet loss probability against the traffic intensitiesfor the cases of H =  
 

 
Figure 1. Mean waiting time of the resultant CMMPP/D/1 queue with d = 4, H = 0.7, λ = 1, σ2 = 0.6. 

 

 
Figure 2. Mean waiting time of the resultant CMMPP/D/1 queue with d = 4, H = 0.8, λ = 1, σ2 = 0.6. 
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Figure 3. Mean waiting time of the resultant CMMPP/D/1 queue with d = 4, λ = 1, σ2 = 0.6 over the time scale [102, 
108]. 
 

 
Figure 4. Loss probability of the resultant CMMPP/D/1/K queues with d = 4, λ = 1, H = 0.8, and K = 10. 

 

 
Figure 5. Loss probability of the resultant CMMPP/D/1/K queues with d = 4, λ = 1, and K = 10 over the time scale [102, 
106]. 
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Figure 6. Loss probability of the resultant CMMPP/D/1/K queues with d = 4, λ = 1, and K = 10 over [102, 107]. 

 
0.7, H = 0.8, H = 0.9, over the time scales [102, 106], and [102, 107], respectively. From these figures, we con- 
clude that packet loss probability decreases as the time scale increases, and packet loss probability decreases as 
the Hurst parameter decreases. 

5. Conclusion 
Most of the parsimonious self-similar traffic models proposed earlier are asymptotic in nature, therefore, they 
are less effective in the context of queuing based performance evaluation. Markovian models emulating self- 
similar traffic are proposed, as they hold well for queueing theory. These models are based on second order sta-
tistics. In this paper, we investigated queuing delay and loss behavior over different time scales and for different 
Hurst parameters. It is found from the numerical results that self-similar can be well represented by the proposed 
model. Our numerical results reveal that time-scale does have impact on packet loss probability. Packet loss 
probability increases as H and ρ increase. Based on the analysis presented in this paper, one could select the ap-
propriate time-scale in the generalized variance based fitting method to meet the QoS requirement. This kind of 
analysis is useful in dimensioning the switch under self-similar input traffic. 
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