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ABSTRACT 
Numeric algorithms for solving the linear systems of tridiagonal type have already existed. The well-known 
Thomas algorithm is an example of such algorithms. The current paper is mainly devoted to constructing sym-
bolic algorithms for solving tridiagonal linear systems of equations via transformations. The new symbolic algo-
rithms remove the cases where the numeric algorithms fail. The computational cost of these algorithms is given. 
MAPLE procedures based on these algorithms are presented. Some illustrative examples are given. 
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1. Introduction 
Linear systems of equations of tridiagonal type arise in solving problems in a wide variety of disciplines includ- 
ing physics [1,2], mathematics [3-8], engineering [9,10] and others. Many researchers have been devoted to 
dealing with such systems (see [11-27]). When a system of linear equations has a coefficient matrix of special 
structure, it is recommended to use a tailor-made algorithm for such systems of equations. The tailor-made algo-
rithms are not only more efficient in terms of computational time and computer memory, but also accumulate 
smaller round-off errors. As a matter of fact, many problems arising in practice lead to the solution of linear 
system of equations with special coefficient matrices. The current paper is mainly devoted to developing new 
algorithms for solving linear system of equations of tridiagonal type of the form: 
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[ ]T1 2, , , nx x x=x   and [ ]T1 2, , , .nf f f=f   

The coefficient matrix T  in (2) can be stored in 3n  memory locations by using three vectors: 
[ ]1 2, , , ,na a a=a 

 [ ]1 2, , , ,nb b b=b 
 and [ ]1 2, , , ,nd d d=d 

 with 1 0.na b= =  This is always a good habit 
in computation in order to save memory space. 

Of course, the non-singularity of the coefficient matrix should be checked firstly to make sure that the system 
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(1) has a non-trivial solution. The DETGTRI algorithm [28] can be used efficiently for this purpose. 
Definition 1.1 [29]. The symmetric matrix ( ) , 1

n
ij i j

A a
=

=  is called positive definite if and only if 

T 0, for all , 0.nA x x> ∈ ≠x x 
 

Theorem 1.2 [29]. The symmetric matrix n nA ×∈  is positive definite if and only if any of the following 
conditions is satisfied: 

1) A  has only positive eigenvalues. 

2) 
11 1

1

0, for 1,2, , .
k

k

k kk

a a
F k n

a a
= > =



  



 

In particular, the author in [30] proved that for the tridiagonal matrix (2), it is true that  
1, 1, 2, , ,k k kF c F k n−= =   provided that 0 1.F =  Thus the tridiagonal matrix (2) is positive definite if and only 

if 0, 1,2, , .ic i n> =   This is an easy way to check weather a tridiagonal matrix is positive definite or not. 
3) A  can be written as: TA B B=  for a non-singular matrix .n nB ×∈  
Definition 1.3 [29]. An n n×  matrix A  is called diagonally dominant if 

1,
, 1 ,

n

ii ij
j
j i

a a i n
=
≠

≥ ≤ ≤∑  

and strictly diagonally dominant if 

1,
, 1 .

n

ii ij
j
j i

a a i n
=
≠

> ≤ ≤∑  

The current paper is organized as follows. In Section 2, new algorithms for solving linear systems of 
equations of tridiagonal type via transformations are given. In Section 3, concluding remarks are given. MAPLE 
procedures are given in Section 4. Illustrative examples are presented in Section 5. 

Throughout this paper, the word “simplify” means simplifying the expression under consideration to its sim- 
plest rational form. 

2. Main Results 
In this Section, we are going to consider the derivation of new algorithms for solving linear systems of equations 
of tridiagonal type (1) via transformations. For this purpose it is convenient to introduce three vectors 

[ ]1 2, , , ,nc c c=c 
 [ ]1 2, , , ny y y=y 

 and [ ]1 2, , , nz z z=z 
 where 
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               (3) 

By using the vectors c, y and z, together with the suitable elementary row operations (ERO’s), we see that the 
system (1) may be transformed to the equivalent linear system: 
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                           (4) 
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The transformed system (4) is easy to solve by backward substitution. Consequently, the linear system (1) can 
be solved using the following algorithm: 

 
Algorithm 2.1. Numeric algorithm for solving tridiagonal linear system. 

To solve the linear system of the form (1), we may proceed as follows: 
INPUT: Order of the matrix n  and the components, , , , , 1,2, , ,i i i ia d b f i n=   ( )1 0 .na b= =  

OUTPUT: The solution vector [ ]T

1 2, , , nx x x= x . 
Step 1: Use the DETGTRI algorithm [28] to check the non-singularity of the coefficient matrix of the system (1). 
Step 2: If ( )det 0T = , then Exiterror (‘”No solutions”) end if. 

Step 3: Set 1 1,c d=  1
1

1

ay
c

=  and 1
1

1

.fz
c

=  

Step 4: For 2,3, , 1i n= −  do 
Compute and simplify: 

1,i i i ic d b y −= −  

,i
i

i
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c

=  

( )1

1 .i i i i
i

z f b z
c −= −  

End do. 
1.n n n nc d b y −= −   

( )1

1 .n n n n
n

z f b z
c −= −  

Step 5: Compute the solution vector [ ]T

1 2, , , nx x x= x  using 

,n nx z=  

For 1, 2, ,1i n n= − −   do 

1i i i ix z y x += −  
End do. 

 
The Algorithm 2.1, will be referred to as TRANSTRI-I algorithm. The cost of the algorithm is 5 4n −  

multiplications/divisions and 3 3n −  additions/subtractions. 
Note that the algorithm TRANSTRI-I works properly only if 0ic ≠  for all { }1,2, , .i n∈ 

 
At this point, it should be mentioned that if the coefficient matrix, T  of the system (1) is positive definite or 

diagonally dominant, then the numeric algorithm TRANSTRI-I will never fail. 
The following symbolic version algorithm is developed in order to remove the cases where the numeric 

algorithm TRANSTRI-I fails. The parameter “s” in the algorithm is just a symbolic name. It is a dummy 
argument and its actual value is zero. 

 
Algorithm 2.2. Symbolic version algorithm for TRANSTRI-I algorithm. 

To solve the linear system of the form (1), we may proceed as follows: 
INPUT: Order of the matrix n  and the components, , , , , 1,2, , ,i i i ia d b f i n=   ( )1 0 .na b= =  

OUTPUT: The solution vector [ ]T

1 2, , , nx x x= x . 
Step 1: Use the DETGTRI algorithm [28] to check the non-singularity of the coefficient matrix of the system (1). 
Step 2: If ( )det 0T = , then Exiterror(“No solutions”) end if. 

Step 3: Set 1 1.c d=  If 1 0c =  then 1c s=  end if. 

Set 1
1

1

ay
c

=  and 1
1

1

.fz
c

=  

Step 4: For 2,3, , 1i n= −  do 
Compute and simplify: 

1.i i i ic d b y −= −  If 0ic =  then ic s=  end if. 

,i
i

i
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=  
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( )1

1 .i i i i
i

z f b z
c −= −  

End do. 
1.n n n nc d b y −= −  If 0nc =  then nc s=  end if. 

( )1

1 .n n n n
n

z f b z
c −= −  

Step 5: Compute the solution vector [ ]T

1 2, , , nx x x= x  using 

,n nx z=  

For 1, 2, ,1i n n= − −   do 

1i i i ix z y x += −  
End do. 

Step 6: Substitute 0s =  in all expressions of the solution vector , 1,2, , .ix i n=   

 
The Algorithm 2.2, will be referred to as TRANSTRI-II algorithm. 
In a similar manner, we may consider three vectors [ ]1 2, , , ,ne e e=e 

 [ ]1 2, , , nY Y Y=Y 
 and  

[ ]1 2, , , nZ Z Z=Z 
 where 
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            (5) 

in order to develop a new algorithm. 
We are going to focus on the symbolic version only. As in Algorithm 2.1, by using the vectors e, Y and Z, 

together with the suitable ERO’s, we see that the system (1) may be transformed to the equivalent linear system: 
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The transformed system (6) is easy to solve using forward substitution. Therefore the linear system (1) can be 
solved using the following algorithm: 

 
Algorithm 2.3. Symbolic version algorithm for solving tridiagonal linear system. 
To solve the linear system of the form (1), we may proceed as follows: 
INPUT: Order of the matrix n  and the components, , , , , 1,2, , ,i i i ia d b f i n=   ( )1 0 .na b= =  

OUTPUT: The solution vector [ ]T

1 2, , , nx x x=x  . 
Step 1: Use the DETGTRI algorithm [28] to check the non-singularity of the coefficient matrix of the system (1). 
Step 2: If ( )det 0T = , then Exiterror(“No solutions”) end if. 

Step 3: Set .n ne d=  If 0ne =  then ne s=  end if. 

n
n

n

bY
e

=  and .n
n

n

fZ
e

=  

Step 4: For 1, 2, ,2i n n= − −   do 
Compute and simplify: 

1.i i i ie d a Y += −  If 0ie =  then ie s=  end if. 

,i
i

i

bY
e

=  
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( )1

1 .i i i i
i

Z f a Z
e += −  

End do. 
1 1 1 2.e d a Y= −  If 1 0e =  then 1e s=  end if. 

( )1 1 1 2
1

1 .Z f a Z
e

= −  

Step 5: Compute the solution vector [ ]T

1 2, , , nx x x= x  using 

1 1,x Z=  

For 2,3, ,i n=   do 

1i i i ix Z Y x −= −  
End do. 

Step 6: Substitute 0s =  in all expressions of the solution vector , 1,2, , .ix i n=   

 
The Algorithm 2.3, will be referred to as TRANSTRI-III algorithm. 
Corollary 2.1. Let T̂  be the backward matrix of the tridiagonal matrix T  in (2), and given by: 
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Then the backward tridiagonal linear system 

[ ]T1 2
ˆ , , , nT u u u = f                                   (8) 

has the solution: 1 , 1,2, , ,i n iu x i n+ −= =    where k   is the floor function of k and [ ]T1 2, , , nx x x  is the 
solution vector of the linear system (1). 

Proof. Consider the n n×  permutation matrix P  defined by: 

0 0 1
1 0

.
0 1
1 0 0

P
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 
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For this matrix, we have: 
1 T .P P P− = =                                    (10) 

Since 

T̂ TP=                                       (11) 

Then using (10) and (11), the result follows. 
Corollary 2.2. The determinants of the coefficient matrices T  and T̂  in (2) and (7) are given respectively 

by: 

( )
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det
n n
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r r
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= =

= =∏ ∏                                 (12) 

and 

( ) ( )
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ˆdet 1 1 ,
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T c e
− −

= =

= − = −∏ ∏                         (13) 
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where 1 2, , , nc c c  and 1 2, , , ne e e  satisfy (3) and (5). 

3. Conclusions 
There are many numeric algorithms in current use for solving linear systems of tridiagonal type. The Thomas 
algorithm is the well known numeric algorithm for solving such systems. However, all Thomas and Thomas-like 
numeric algorithms including the TRANSTRI-I algorithm of the current paper, fail to solve the tridiagonal linear 
system if 0ic =  for any { }1,2, , .i n∈ 

 For example, all these numeric algorithms fail to solve the linear system: 

1

2

3

1 1 0 3
1 1 2 9 ,
0 3 4 18

x
x
x

    
    =    
        

 

since 2 0,c =  although its coefficient matrix is invertible and its inverse is the following matrix 

1 2 1
3 3 3
2 2 1 .
3 3 3
1 1 0
2 2

 − 
 
 − 
 
 −
  

 

The symbolic algorithms TRANSTRI-II and TRANSTRI-III of the current paper are constructed in order to 
remove the cases where the numeric algorithms fail. These are the only symbolic algorithms for solving linear 
systems of tridiagonal type. Consequently, we are not going to compare them with numeric algorithms. 

4. Computer Programs 
In this Section, we are going to introduce MAPLE procedures for solving linear system of tridiagonal type (1). 
These procedures are based on the algorithms DETGTRI, TRANSTRI-II and TRANSTRI-III. The procedure 
of Program 1, alters the contents of the vectors ,d  a  and .f  Eventually, the contents of the vectors ,c  y  
and z  are stored in ,d  a  and ,f  respectively. The procedure of Program 2, alters the contents of the 
vectors ,d  a  and .f  Eventually, the contents of the vectors ,e  Y  and Z  are stored in ,d  b  and 

,f  respectively. 
 

Program 1. A MAPLE procedure for solving linear system of tridiagonal type. 

> restart: 
tritrans := proc(d::vector, a::vector, b::vector,f::vector,n::posint) 

local i: 
global x,T: 
x:= vector(n): 
if d[1] = 0 then d[1]:=s fi: 
a[1]:=simplify(a[1]/d[1]): f[1]:=simplify(f[1]/d[1]): 
for i from 2 to n-1 do 

d[i] := simplify(d[i]-a[i-1]*b[i]); 
if d[i] = 0 then d[i] := s; fi: 
a[i] := simplify(a[i]/d[i]); 
f[i] := simplify((f[i]-f[i-1]*b[i])/d[i]); 

od: 
d[n] := simplify(d[n]-a[n-1]*b[n]); 
if d[n] = 0 then d[n] := s; fi: 
f[n] := simplify((f[n]-f[n-1]*b[n])/d[n]); 

#To compute the determinant of the tridiagonal matrix# 
T := simplify(subs(s =0,simplify(product(d[r],r= 1..n)))): 
if T = 0 then 

error(“Singular Matrix”) 
else 
# To compute the Solution of the system X. # 
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x[n]:=simplify(f[n]); 
for i from n-1 by -1 to 1 do 
x[i]:=simplify((f[i]-a[i]*x[i+1])); 
od; 
eval(x); 

fi: 
end proc : 

 
Program 2. A MAPLE procedure for solving linear system of tridiagonal type. 

Based on the algorithm TRANSTRI-III, a MAPLE procedure for solving the linear system of tridiagonal type (1) is given 
below. 
> restart: 

tritrans := proc(d::vector, a::vector, b::vector,f::vector,n::posint) 
local i: 
global x,T: 
x:= vector(n): 
if d[n] = 0 then d[n]:=s fi: 
b[n]:=simplify(b[n]/d[n]): f[n]:=simplify(f[n]/d[n]): 
for i from n-1 by -1 to 2 do 

d[i] := simplify(d[i]-b[i+1]*a[i]); 
if d[i] = 0 then d[i] := s; fi: 
b[i] := simplify(b[i]/d[i]); 
f[i] := simplify((f[i]-f[i+1]*a[i])/d[i]); 

od: 
d[1] := simplify(d[1]-b[2]*a[1]); 
if d[1] = 0 then d[1] := s; fi: 
f[1] := simplify((f[1]-f[2]*a[1])/d[1]); 

#To compute the determinant of the tridiagonal matrix# 
T := simplify(subs(s =0,simplify(product(d[r],r= 1..n)))): 
if T = 0 then 

error(“Singular Matrix”) 
else 
# To compute the Solution of the system X. # 

x[1]:=simplify(f[1]); 
for i from 2 to n do 
x[i]:=simplify((f[i]-b[i]*x[i-1])); 
od; 
eval(x); 

fi: 
end proc : 

5. Illustrative Examples 
All results in this section are obtained by executing the MAPLE procedures of Program 1 and Program 2 pre- 
sented in the previous section. 

Example 5.1. Solve the tridiagonal linear system 

1

2

3

4

5

6

7

6 0 0 0 0 0 0 0
1 4 1 0 0 0 0 1
0 1 4 1 0 0 0 2
0 0 1 4 1 0 0 6
0 0 0 1 4 1 0 2
0 0 0 0 1 4 1 1
0 0 0 0 0 0 6 0

x
x
x
x
x
x
x

    
    
    
    
    = −    
    
    
    
        

                           (14) 

Solution: We have 

7,n =  [ ]T0,1,1,1,1,1,0 ,=a  [ ]T6,4,4,4,4,4,6 ,=d  [ ]T0,1,1,1,1,1,0 ,=b  
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and [ ]T0,1,2, 6,2,1,0 .= −f  
By applying the TRANSTRI-I algorithm, we get 

• 15 56 209 7806,4, , , , ,6 .
4 15 56 209

 =   
c  

• ( )
7

1
det 28080.i

i
T c

=

= =∏  

• The solution vector is given by: [ ]T0,0,1, 2,1,0,0= −x . 
Note that the coefficient matrix T  in (14) is positive definite. 
By applying the algorithms TRANSTRI-II and TRANSTRI-III, we obtain the same solution vector. 
Example 5.2. Solve the tridiagonal linear system 

1

2

3

4

5

6

7

8

9

10

2 1 0 0 0 0 0 0 0 0 1
1 3 2 0 0 0 0 0 0 0 2
0 1 3 1 0 0 0 0 0 0 6
0 0 7 2 6 0 0 0 0 0 34
0 0 0 6 2 1 0 0 0 0 10
0 0 0 0 3 4 3 0 0 0 1
0 0 0 0 0 8 1 5 0 0 4
0 0 0 0 0 0 6 2 7 0 22
0 0 0 0 0 0 0 5 4 3 25
0 0 0 0 0 0 0 0 4 5 3

x
x
x
x
x
x
x
x
x
x

  
  
  
  
  
  
  
   =
  
  
  
  
  
  
     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

Solution: Here, we have 

10,n =  [ ]T1,2,1,6,1,3,5,7,3,0 ,=a  [ ]2,3,3,2,2,4,1,2,4,5 ,Τ=d  

[ ]T0,1,1,7,6,3,8,6,5,4 ,=b  and [ ]T1,2,6,34,10,1,4,22,25,3 .=f  

By applying the TRANSTRI-I algorithm, we get 

• 5 11 13 422 1649 8479 66428 31053 3174672, , , , , , , , , .
2 5 11 13 422 1649 8479 66428 10351

− − − =   
c  

• ( )
10

1
det 952401.i

i
T c

=

= = −∏  

• The solution vector is given by: [ ]T1, 1,2,1,3, 2,0,4,2, 1= − − −x . 
By using the algorithms TRANSTRI-II and TRANSTRI-III, we obtain the same solution vector. 
Example 5.3. Solve the tridiagonal linear system 

1

2

3

4

5

6

7

8

9

10

1 1 0 0 0 0 0 0 0 0 4
1 1 10 0 0 0 0 0 0 0 14
0 7 1 2 0 0 0 0 0 0 26
0 0 2 11 1 0 0 0 0 0 25
0 0 0 2 3 7 0 0 0 0 0
0 0 0 0 3 1 2 0 0 0 2
0 0 0 0 0 1 2 2 0 0 1
0 0 0 0 0 0 2 1 1 0 3
0 0 0 0 0 0 0 5 2 4
0 0 0 0 0 0 0 0 1 5

x
x
x
x
x
x
x
x
x
x

  
  
  
  
  
  
  
   =
  
  −   
  
  
  
     

10
8

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

                    (15) 
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Solution: Here, we have 

10,n =  [ ]T1,10,2,1,7,2,2,1,4,0 ,=a  [ ]T1,1,1,11,3,1,2,1,2,5 ,=d  

[ ]T0,1,7,2,2,3, 1,2,5,1 ,= −b  and [ ]T4,14,26,25,0,2,1,3,10,8 .=f  

The numeric algorithm TRANSTRI-I fails to solve the linear system (15) since 2 0.c =  Applying the 
TRANSTRI-II algorithm, it gives: 

• 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

70 7 110 19 2170 16 8 875 109 118301 11, , , , , , ,
70 7 110 19 2170 8 8 875

147 110 839 91490 3607 3927701, , .
109 11830 147 110 839 91490

s s s s s
s

s s s s s

s s s
s s s

 − × − × − − × × − × −
= × ×

− − × − × −
− × − × − × −

× 
× − − × − 

c

 

• ( ) ( )
10

0
1 0

det 7214 785540 785540.i s
i s

T c s
=

= =

 = = × − = − 
 
∏  

• The solution vector is given by: 

( )
( ) ( )

( )
( )

( )
( )

( )
( )

( )
( ) ( )

2 7214 196385 2 60719 196385 4 3457 1963851178310, , , ,
3607 392770 3607 392770 3607 392770 3607 392770

593 392770 5 841 78554 2394 1512, , ,
3607 392770 3607 392770 3607 392770 3607

s s s
s s s s

s s s s
s s s

 × × − × × − − × × +−
=  × − × − × − × −

− × + × × + × ×
× − × − × −

x

( )

( )
( )

( )
( )

[ ]

T

0
T

,
392770

3 1507 392770 31 157 12670
,

3607 392770 3607 392770

1,3,1,2,1, 1,0,0,3,1 .
s

s

s s
s s

=

× −

× × − × × −


× − × − 

= −

 

Using the TRANSTRI-III algorithm, it gives the same solution vector. 
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