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ABSTRACT

In this work, the HB method is extended to search for similarity reduction of nonlinear partial differential equa-
tions. This method is generalized and will apply for a (2 + 1)-dimensional higher order Broer-Kaup System.
Some new exact solutions of Broer-Kaup System are found.
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1. Introduction

In the past few decades, there has been the noticeable progress in the construction of the exact solutions for
nonlinear partial differential equations, which has long been a major concern for both mathematicians and
physicists. The effort in finding exact solutions to nonlinear differential equation, when they exist, is very
important for the understanding of most nonlinear physical phenomena. For instances, the nonlinear wave
phenomena observed in fluid dynamics, plasma and optical fibers are often modelled by the bell shaped sech
solutions and the kink shaped tanh solutions.

We consider the following a (2 + 1)-dimensional higher order Broer-Kaup system:

U +4(Uy, +u° —3uu, +3uw+3p) =0, 1)
v, + 4(vXX +3vu® +uv, +3vw) =0, 2
w, -V, =0, 3

p)’ —(UV)X =0. (4)

which is obtained from the Kadomtsev-Petviashvili (KP) equation by the symmetry constraint [1].

The systems (1)-(4) were given by Li et al [2] solving it via a transformation and tanh-function method to
obtain many new exact solutions. Jain et al. [3] reduced a system to a simple (1 + 1)-dimensional nonlinear
evolution equation through a simple transformation, and by using the new generally projective Riccati equation
expansion method to explore many families of soliton-like and periodic solutions for it. Recently, Li et al. [4]
have obtained some new types of multisoliton solutions for the systems (1)-(4) by using some simple
transformations as v = u,W=u, +a(xt),p=uu, + 4 and homogenous balance method.
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The homogenous balance (HB) method is a powerful tool to find solitary wave solutions of nonlinear partial
differential equations. Fan et al. [5] presented an improved HB method to obtain more other kinds of exact
solutions and introduced a continuation of [5] in [6]. The traditional method for finding similarity reduction of
nonlinear partial differential equations is to use classical Lie approach [7,8]. However, the method involves
tedious algebraic calculations and still can not be used to find all similarity solutions. Recently,Clarkson and
Kruskal devloped a direct and simple method to find more similarity solutions of nonlinear PDEs.

In this work, the HB method is extended to search for similarity reduction of nonlinear partial differential
equations. So, more solutions can be obtained by the improved HB method. This method is generalized and can
be applied to other nonlinear partial differential equations [9-15].

Similarity Reduction of Nonlinear Partial Differential Equations
We describe the main steps of our method. For a given PDE, say in three variables, say x,y,t
ut:K(u,uX,uy,uxx,uyy,---) (5)

we seek its similarity reductions in the form

a

u(x v,t)=;;a F(s)+ . (6)

where « is a constant to determine by balancing between the highest order derivative of the linear terms of u
and the nonlinear terms of u, where s,u, are regarded as undetermined functions.

Substituting from Equation (6) into Equation (5) and collecting all terms of f with the same derivative and
power. To make the associated equation be an ordinary equations of f and s, requiring ratios of their
coefficients being functions of s, we obtain a set of determining equations for s,u, and other undermined
functions, from which s and u, will be obtained.

To explain this method, we will apply for a (2 + 1)-dimensional higher order Broer-Kaup system (1)-(4), we
suppose their similarity solutions are of the form

aa’l aaz
u(x,y,t)=——"F(s)+uy, V(X y,t)=—g(s)+V,,
ox1 X2
« )
a 3 6(14
w(xy,t)= & h(s)+w,, p(x vy.t)= — k(s)+ po.

where
S=5(XY,t),Uy =Ug (X, ¥, 1),V = Vo (X, Y,1), Wy =W, (X, ,t), P = P(X, Y,t).

are determined functions. Balancing the highest order of linear term with the nonlinear terms in every equations
(1)-(4) to determining ¢, r,, 5, 2, , We obtain

oq=la,=a,=2,a, =3 (8)
the Equation (64) take the following form
u(x,y,t):aif(s)+u0:fSX+u0, 9)
X
62
v(X, y,t):yg(s)Jrv0 =9"s>+9's, +V,, (10)
62
w(xy,t) :Wh(s)+w0 =h"s? +h's,, +Ww,, (11)
83 ma3 n”, 7
p(x, y,t):?k(s)Jr p, =k"s] +3k’s,s,, +Kk's,, + P, (12)
X

Substituting Equations (9)-(12) into the original system (1)-(4) and collecting all terms of f,g,h,k with the
same derivative and power leads to
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(-12s,s

X TXXX

) 72 +(125,57 +36Uy5,5,, )" +(365%, +485,5,, )K" +12fh's,s

X TXXX

+(24u0u0xsX +12W,, S, +5,, +12U7s, +12wW,S,, — 24Uy, S, —12u,s +4SW) f! (13)

XX XXX

+(12U¢, S, +12UyS,, )N +12K's,,  + (12 Py, + Uy, +12u2U,, +12W,u, —1202 —12u,U,,, +4u0m) =0,
(24117 +121'2g" + 414" +120'g" +12g"" + 414"+ 49™") S5
+(4ugs; +40s7s,, ) 9" +(24ugst +28s]s,, ) F4" +(24u,s) +125]s,, ) 19"
+(24fyT"+60f"°g"+729"n" +12h'g" +:|.29'h"')333XX
2

+(s25, +1205S] +12WS; + AUy, 7 + 24UgS7S,, +60s, S, +40s]s,, ) 9"

s? +16s2s

XXX X TXXX

) fg"+(24sxsfx +125§sxx) f2g’
fSXXX)h’g”
gh"+ (24 FF"+12h")v,s2 (24u,V,s> +4v,,s> ) "
( )

+(24u,s?s, +4s’s

X TXX X TXXX

) 14"+ (365,87, +12s

+(365,52 +12s%s

XXX X TXXX

(
(
+(24Uy,; +96UySs,, +24s
(
(

(14
S, +36U7S,S,, +36W,S,S,, +12U,,S,S,, +12u,S; +16U,S,S

XXX X XXX

+(28UgUy, 57 +12W,, S} +25,

+405,,S,,, +205,5,,, ) 9"+ (12v0xsf +36V,8,S,, ) h”+ (12v0xsf + 24VOS><S><><) fr?
) 14"+ 245,59

XXX XX XXX X T XXXX

(28098, 5, + 28UgSE, +28UgS, Sy, + 45,55, +45,5

+(24VoUg, S, + 24U0V,S,, + 4V, S, ) f

( xS
(
(
(

+(24u,Vuy, +Vy, +1202v,, +12WoV,, + AUy, Vg, +12VW,, + AUV, + 4V, ) =0,

’

+(24u,u,, 8, +12w, S, +S,, +12uis  +12w,s

12Vy, Sy, +12VyS, )N’

0x=xx

+ 4u0x5xxx + 4u0 Sxxxx + 4Sxxxxx ) g

Xxt XXX

+

—=Q"s; +N"S7s, + (5,8, +25,5,, )N =30'5,5, +5,, N =5, 9"+ (Wy, —Vp, ) =0, (15)

xx Oy X xy
—(F9"+ £8")5) —(UneS? +3UpS, 5 ) 9" — (S5 +5,5,0 ) FU’

(8 Sy 35,5 +35,5, )K" —Vos7 7 +(35,5,5,, +355,, +575, )K"

(16)
- g’f ”+4fg")sfsxx —UOS§gW—(V S +VOSxx) f '_(u[stxx +uosxxx)g’

0x<x
+5xxxyk,+( pUy —VoUox —UgVoy ) =0.
To make Equations (13)-(16) be an ordinary differential equations of f,g,h and k only for s, the ratios

of the coefficients of different derivative and power of f,g,h,k must be functions of s. That is to say, the
following constrained conditions are satisfied

55, =S¢, (5) (17)

—12u,s; +24s?s,, =s,T,(s) (18)

24u,s; —60s7s,, =S5 (s) (19)

S8, +12U,S2 +12wW,S] +12s% — 24Uy, s7 —36U,S,S,, +165,S,, =5,T,(S) (20)
125, S7 +36U,5, S, =S¢5 (S) (21)

3652, +48s,s,, =5,T;(s) (22)

12Uy, S; + 24U,8, S, —1257, —125,5,,, = ;T (5) (23)

S, Sy =S¢5 (S) (24)
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12(wps, ), +12(u3s ) + 8 = 28U, S —12U8,.,, + 48,00, = SiT (5) (25)
1205, S, +12U4S,,, = S,T4 (5) (26)

Seox = Sx L1 (5) (27

12 g, + Ug, +12U5Ug, +12WylUy, —1207, —12UgUg,, + Agy, = SxT, (S) (28)
SeSs =5,T55(5) (29)

4uysy +40s}s, =Sy, (s) (30)

24,5, +28sSs,, =S5 (S) (31)

24u,sy +125]s,, = ;T (5) (32)

s2s, +12u7s +12w,S: + 4u,,SS +24u,s]s,, +60s,S2, (33)

525, =S¢, (5) (34)

—12u,s; +24s}s,, =T, (s) (35)

24u,5; — 60s7s,, = SyT5(s) (36)

S8, +12U,S% +12wW,S? +12s7 — 24Uy, s; —36U,S,S,, +165,S,, =5,T,(S) (37)
12U, 57 +36U,5,S,, = SyI'5(S) (38)

3652, +48s,s,, =5,T;(s) (39)

12Uy, S; + 24048, S, —1257, —125,5,,, = ;T; (5) (40)

S,y =S¢ 15 (S) (41)

12(wps, ), +12(ugs, )X + 8, — 24Uy, S, —12U,8,, +4s,. =i, () (42)
125, S,, +12UyS,,, = S,T0(S) (43)

Seox = S0 (S) (44)

12 Py, + Ugy +12U5Ug, +12WyUg, —1208, —12UgUo,, + AUgy, = SxT, () (45)
S8y = ST55 (S) (46)

4ugsy +40s}s, =S, (s) (47)

24u,s, +28sSs,, =T c(S) (48)

24uys;, +12s7s, = 5T () (49)

s?s, +12u2s® +12w,s + 4u,, s® + 24u,s’s,  +60s,s2, (50)
+40s2s,,s; =T, (s) (51)

24U,,S] +96U,S7S,, + 245,55 +1657s, =S5 (S) (52)

24s,s% +12s}s, =s;T4(s) (53)
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24u,52s,, +482s,, = ST (S)

X XX X TXXX

365,55, +12575,, =S, (5)

X XXX
VoSt = 5,1 (5)

24U0V,S; + 4V, S5 =531, (5)

36s, s +12s%s

X TXXX

= Sirﬂ(

w

24U,U,, 82 +12w,,S2 + 28,8, +36U72S, S, +36W,S,S,, +12U,,S,S,,
+12U,S5, +16U,S, S, +40S,,S,, + 205,50, = ST ()
12,5 +36V,5,5,, =315 (S)
12, 8% +24V,S, s, = S5T 5, (5)
24u,8,S,, + 24uos +24U0S,S, + 45, Sux + 48, Sex = sfrzg (s)

XX T XXXX

245,800 = ST 50 (S)
24V,Uy, S, +28UVoS,, +4Vy, S, = ST ()

12(u§sxx)x+ +12(WSyy ), +(4UgS ), + 450000 Sy = T3y (3)

xxt
12v, s +12v.s  =s°T (s)
0X~xx 0¥ xxx X+ 32

24UVUg, + Vo +12U5Vy, +12(WyV, ), +4(UgVoy ), + Vo = 5;T4(s)

X
—s5s, =53, (s)

~(548, +25,5, ) =T (5)

xx Oy X xy
3
BSXSXX = er36 S)

3
Xy = S><l—‘37 S)

(
s (
S XX 53F38 (S)
Vox =Woy = Sirsg (S)

Ugy Sy +3UpS, S, = Sy ()

0%x<xx

$2 +S.5, =Sy, s)

X TXXX

(8 Sy +35,8,, +35,8,,, ) =

4
(3SXSySXX +3s] S,y + s 38, )= 5T (s

(
VoSs = s;‘F43(S)
Sisxx = S:r45 (S)
uosf = S:F46( )
VoxSy + VoS =S¢ 47 (S)

4
qusxx + uOSxxx = S)(1—‘48 (S)

(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)
(69)
(70)
(71)
(72)
(73)
(74)
(75)
(76)
(77)
(78)
(79)
(80)
(81)
(82)

(83)
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OPEN ACCESS

A.S. AL-JOHANI

_Sxxxy = S:FAQ (S)

_( Poy —VoUox —UpVox ) = S:rso (S)

12 126" 112 f W —12ff " +12F "+ 4F"" +12K""

T, (s
1 (¢) 12( 17+t +41h")
12F2f"-12F" +12fh"—12Ff"+12Fh"+4f""+12K""
y(s)= o
12f2f" 12" +12fh" 12 Fff"+12fh" +4f"" +12k""
r3(s)= "
ff
1262F7_12F" +12F " —12fF " +12F A" + 4F " +12k""
r4 (S)= £
12F2f"-12fF" +12fh"—12Ff"+12Ffh"+4f"" +12K""
l—‘5 (S): h"
12F72fF7-12fF" +12fh"—12Ff"+12Fh"+4f"" +12K""
FG(S): K"
12F2F7_12F" 412" —12FF " +12F A" + 4F " +12k""
l—‘7 (S): 2
f
12fF2F"—12f" +12fh" 12 ff"+12fh" +4f"" +12k""
Ie(s)= -
12fh
12f2F"-12fF"2 +12fh"—12ff"+12Ffh" +4f"" +12K""
rg (S): fr
12fF2F"-12F"2 +12Fh"—12ff"+12Ffh" +4f"" +12K""
Flo (S)= h
12fF72F"-12F"2 +12Fh"—12ff"+12Ffh" +4f"" +12K""
Fll(s)z K’

Ty (s) =122 F" =126 +12fh"—12fF " +12F h" + 41" +12k""
24" +12'29" + 41" +12h"g" +129"h" + 4T 4" + 4"

I ()

24f4%"+60f?g"+729"h" +12h'g” +12g'h"
_24ff9"+121'29" +4fH" +12h"g" +129"h"+4§"" +49""

Iy (s)

g””
_24119"+121'29" +419" +12h"g" +129"h" + 414" + 49"

T (s)

fglﬂ
241197 +121'29" +41H" +12h"g" +129"h" + 41 §"" + 49"

I (s)

f!g”
_24119"+121'29" +4119" +12h"g" +129"h" +41§"" + 49"

I, (s)

gm
241197 +121'29" + 419" +12h"9" +129"h" + 414" + 49"

rlB (S) fg"

27

(84)
(85)
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2419 "+121'29" +419" +12h"g" +129"h" +4f§"" + 49"
Iy (S): f’zg'

241197 +121'29" +419" +12h"g" +129"h" +41§"" + 49"
- fIgV

24ff"+12f'29" +419" +12h"g" +12g"h"+ 414" + 49"
F21(S)= g”hr

241f9"+12f'29" +4f9" +12h"g" +129"h"+4f§"" + 49"
FZZ (S) = gfhr/

Fo(s)= 24f"+12'2g" +4f" +12h"g" +12g"h" + 41 §"" + 4g""
23 (24ff"+12h")

24ff"+121f'29" +41f 9" +12h"g" +12g"h"+ 419"+ 49""
1—‘24(3): £

_24119"+121'29" +419" +12h"g" +129"h" +41§"" + 49"
g”

241f9"+12f'29" +4f9" +12h"g" +12g9"n"+4f§"" + 49"

rZG (S): hn

24ff9"+121'2g" +419" +12h"g" +129"h" +4fQ"" + 49"
L'y (S): fr2

T (s)

_24119"+121'29" +4119" +12h"g" +129"h" +41§"" + 49"
fg’

24" +12f'29" +4F9" +12h"g" +12g"h"+ 414" +49""

r29 (S): g/h!

24f19"+121'2g" +419" +12h"g" +129"h"+4f§"" +4g9""
F30 (S): fr

Iy ()

B 24ff9"+121'29" +4f9" +12h"g" +12g"h"+4f Q" +49""
g/

24ff9"+12f'29" +4 19" +12h"g" +129"h"+4f8"" +49""
Ty (s)= h

Iy(s)= 24fY"+12F°g" +4119" +12h"g" +129"h" + 414" + 49"

I3 (5)

T3 (s) :g_m T (s) :g_” Ty (s)= gn T3 (s) :g_, T3 (s) :g_, Ty (s)=9"
h h g h g
fl ”+ f m f ”+ f " f "+ f " f! ”+ f m
F4O (S): g " g 1—‘41(5): ’g ’ g 1—‘42 (S): ,g " g 1—‘43 (S): g " g
g fo k f
f!”+f m fI ll+f " f!ll+f m f!ll+f "m
Ly (S):% Lys (S) :M Ly (S):% Ly (S):%
f ”+ f m fl ﬂ+ f "
FAB(S) :% 1"49 (S)I% FSO(S): ffgu_'_ fgm (86)

There are freedoms in the determination of u,,v,,w,, p,,S which can exploit the following rules, without
loss of generality:
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If u, hasthe form uO:u’(x,y,t)+§Q then we can assume that Q=0
X

(make the transformation f (s) — f (s)— Q) ,
2

If v, hastheform v, =Vv'(x, y,t)+§7§2 then we can assume that Q=0
(make the transformation f (s) — f (s)-Q),
If w, hastheform w, =w'(x, y,t)+§Q then we can assume that Q=0
(make the transformation f (s) > f (s)-Q),
3

If p, has the form pozp'(x,y,t)+§?g then we can assume that Q=0

(make the transformation f (s) — f (s)—Q).

If s(x,y,t) is defined by an equation of the form Q(s)=s,(x,y,t), we can also assume that Q=s
(make the transformation s — Q™ (s)).

From Equation (17), we get

Su g Iy (s) (87)

integrating Equation (87) with respect to x, we get

Lns, +Lnl(s)=Lno(y,t), (88)
s,I'(s)=6(y.t). (89)
integrating Equation (89) with respectto X, we obtain
7(s)=0(y.t)x+o(yt). (90)
By using the rule (e) into Equation (90), we obtain a function s(x,y,t) in the form
s(x,y,t)=0(y.,t)x+o(y,t) (91)

substituting from Equation (90) into Equations (17), (20), (24), (25), (26), (53), (54), (55), (56), (63), (64), (71),
(72), (73), (76), (77), (80), (83)and (84) we obtain

Fp(8)=Tp(s)=Ty(s)=T45(s)=T45%(s)=T,

1(5)=T3(5)=T,(s)=T4(s) (92)
Fys(5)=T(s)=Ty(s)=0,
where s,, =0 which clear in Equation (91).
By using Equation (91) into Equation (18), we get
1 190
———a =——— 93
Uo 1 2(s) 12 ox 72 (S)] (93)
d 0s
where T, (s)=—y,(s), 6=—.
:(5) ds 72(5) OX
By apply the rule (a) on Equation (93), we obtain
7,(s)=0=T,(s)=0, u, =0. (94)
substituting from Equations (91), (94) into Equation (20), we obtain
r,(s)=0. (95)
using Equations (91)and (94) into Equation (19), we get
1, 0, o, 120 0, o
w,=—60T,(s)———x-———=—— S)|———x—-——, 96
0 =150 T4 ()5 25 "1 e L )" 126* 126 (36)
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d? d%s
where F4(s)=¥7/2(s), 0° =7
By using the rule (c) into the above Equation (96) to become in the form

7:(s)=0=T,(s)=0,
then Equation (96) take the form

1
W, :—E[th+o-t]. 97)

substituting from Eqgs.(91), (94), (97) into Equations (20), (23), (25), (29), (30), (31), (32), (33)and (34), we
obtain

Is(s)=T,(5)=T4(s)=T1;(s)=Ty(s)=Ti5(s) =T (s) =Ty (s) =Ty (s)=0 (98)
from Equation (91) into Equation (57), we get
62
Vo :921"23 (S)Zy[%s (S)] (99)
d? d’s
where T (s) =@7’zs(5): 0° =7
By using the rule (b) into the above Equation (99)
723(8)=0=Tp(s)=0, Vv, =0. (100)

substituting from Equations.(91), (94) and (97), into Equations.(61), (62), (65), (68), (75), (78), (81)and (82)
then,we obtain

Tpe(5) =T (5)=Tg(5)=T3(s) =Ty (5)=T4(s)=T4s(s) =T, (s)=0. (101)
Substituting from Equations (91), (94), (97) and (101) into Equations (60), (69), (70), we obtain
A

1“25(s)=?:c, (102)
I, (s)=—(Ds+F), (103)
Iy (s) = —2D. (104)

where 6=0(y,t),c=c(y,t).

and
0, A
A-bc-2, (105)
Hy O-y

D:?,F:7—DG, (106)
B=21_ Ao, (107)

Using this notation, the Equation (97) take the following form
W, =~ (As+B), ((108))
12
substituting Equations (97) and (100) into Equation (74), we obtain
F39(s):$C(Ds+ F), (109)
using any equation which we need into Equation (28), we obtain

64
12p,, = 04F12 (S)=a7712 (S) (110)
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d d's
where T, (s) = e (s), ¢ =
By using the rule (d) after differential with respect to x into Equations (110), we obtain
72(8)=0=T,(s)=0, p, =0. (111)
Substituting into Equations (9)-(12), we obtain the similarity solutions of the Broer-Kaup system Equations
(1)-(4) in the form
u(x,y,t)=0P(s), V(X Yy,t)=6°Q(s), w(xy,t)= HZR(S)—%(AS+ B), p(xy.t)=6°H(s). (112
where
P(s)=f"Q(s)=9"R(s)=h"and H(s)=k". (113)

with s(x,y,t)=6(y,t)x+o(y,t).
Substituting from Equation (112) to obtain an ordinary differential equations from the origin system (1)-(4),

we get

P"”-3PP"+3PR’'-3P"” +3RP’+3P’P'+3H' =0, (114)

4Q" + 24QPP’ +12P?Q’ +12RQ’ + 4P'Q’ +12QR’ + 4PQ" —CQ =0, (115)

-12Q'— ADs +12R'Ds +12FR'+ 24DR - FC =0, (116)

(PQ) —3DH —~FH'~DsH'=0. (117)
where "' :i
ds

The general solution for the variable 6(y,t),o(y,t) which satisfy Equations (105)-(107) are
1| (BD-AF)y+c
O(yt)=—F—, o(y,t)== ¢—B (118)
At+Dy+c, Al At+Dy+c

where c;,c, are arbitrary constants.
There some subcases for the constants A,B,D,F
D=F =0,A=0, thesolutions of Equations (105)-(107) are

1 1 ¢
o(yt)=0(t)=- : t)=co(t)==|—>—-B 119
=00 obr=el=5 e8] w9
where c,,c. are arbitrary constants. In this case the Equations (114)-(117) take the form
P” —3PP"+3PR'-3P"? +3RP’'+3P?*P'+3H' =0, (120)
4Q" + 24QPP’+12P2Q’+12(RQ)' +4P'Q"+4PQ"-CQ =0, (121)
Q'=0, (122)
(PQ) =0. (123)
the solutions for Equations (120)-(123) are
C
P(s)=_> Q(s)=cr (124)
7
1 cC CsC
R(s)=—cs+¢;,, H(s)=—"2s*-"Bs+c,.
(s) 12 » M) c, c, ?

To obtain the solutions for the original system (1)-(4), we substituting from the Equations (119), (124) into
Equations (112), we get
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(9]

[10]

[11]

[12]

[13]
[14]

[15]

A.S. AL-JOHANI

G

V(X y,t)=—m,

u (X, y’t) -6
¢, (At+c,)
(CaCs” +CsCaS —C,C; ) (129)

¢, (At+c,)

cs+12c 1
w(x,y,t)=———"=2——-—(As+B), p(x,y,t)=
()= e 12A5 8 PO
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