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ABSTRACT

This paper offers a general formula for surface subdivision rules for quad meshes by using 2-D Lagrange inter-
polating polynomial [1]. We also see that the result obtained is equivalent to the tensor product of (2N + 4)-point
n-ary interpolating curve scheme for N >0 and n > 2. The simple interpolatory subdivision scheme for quadrila-
teral nets with arbitrary topology is presented by L. Kobbelt [2], which can be directly calculated from the pro-
posed formula. Furthermore, some characteristics and applications of the proposed work are also discussed.
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1. Introduction

There are two general classes of subdivision schemes, namely, approximating and interpolating schemes. The
limit curve of an approximating scheme usually does not pass through the control points of control polygon. As
the level of refinement increases, the polygon usually shrinks towards the final limit curve. The interpolating
schemes are more attractive than approximating schemes because of their interpolation property. All vertices in
the control polygon are located on the limit curve of the interpolation scheme, which facilitates and simplifies
the graphics algorithms and engineering designs.

Lian generalized the classical binary 4-point and 6-point interpolatory subdivision schemes to a-ary setting for
any integer a > 3. After that, the a-ary 3-point and 5-point interpolatory subdivision schemes for curve design
for arbitrary odd integer a > 3 [3,4] were introduced. After that, Lian [5] investigated both the 2m-point, a-ary
for any a> 2 and (2m + 1)-point, a-ary for any odd a > 3 interpolatory subdivision schemes for curve design. Ko
[6] presented explicitly a new formula for the mask of (2N + 4)-point binary interpolating and approximating
subdivision schemes with two parameters. The proposed work presents a new observation about the curve case
given by Najma [7]. In this work, we avoid finding the mask of subdivision schemes separately, as a result, its
approach is simple and avoids complex computation when deriving subdivision rules.

The rest of the paper is organized as follows. Section 2 gives some preliminaries results and a new relation for
(2N + 4)-point n-ary interpolating curve scheme for closed and open polygon to access main result. Section 3
presents the construction for general formula of the surface case using Lagrange interpolating polynomial, and
some characteristics are also discussed. In Section 4, we also give some numerical examples for the visual per-
formance of the proposed work. This work also provides some special cases of the classical subdivision
schemes.
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2. Preliminary Results

Let Z be the set of integersand a= {ai |i € Z} a set of constants. The general form of univariaten-ary subdi-
vision scheme which maps a polygon f* = { fik}i , s defined by

fkﬂ :Zaan fiEj« s=012,---, n-1, (21)

ni+s
jez

where the set a= {ai|i € Z} of coefficients is called mask of the subdivision scheme. A necessary condition
for the uniform convergence of the subdivision scheme is

Zam.+S =1 s=012,-, n-1, (2.2)
jez
Let Q,,,, be the space of all polynomials of degree <2N+1. Where, N is a non-negative integer. If
{Lﬂ (x)}NHN is fundamental Lagrange polynomial corresponding to the nodes {,u}/’jle defined by
H== ==

N+1 X—j
L(x)= ]I — (2.3)
j=N,jzk L= ]
for which
Lp(j):(SH., i, j=—-N,--- N+1
and

N+1

Z p(,u)L#(x): p(X), PeQyy .,y
u=—N
where, O is the Kronecker delta, defined as
1, =j
5, =1 #7 (2.4)
K] 0’ /J¢J

Using all the above mentioned identities Ko [6] presented the general formula for the mask of (2N +4) -po-
int binary interpolating symmetric subdivision schemes. After that Najma [7] generalized the result for
(2N +4) -point n-ary interpolating symmetric subdivision scheme and gave the following formula for the mask
of n-ary interpolating schemes.

a,;=0;0-V& (N, J),
25
{anjﬂ :§1(Nlj’n's)_an(N+l)+s§2(N’j)_an(N+1)+t§3(N’j)’ ( )
where
ﬁ (ni+s)
AN ) = T (i) (N = DN 10 )
L ()M (N +2)
&N )= N Je 0N =<1
L ()" (en+2)
§S(N'J)_(N—j)!(N+j+1)!(N—j+2)’
and
an(N+1)+s =a—n(N+2)—s (26)
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The free parameters 8(nagyes CAN be explicitly defined as

_(d-n)(d-2n)---(d —(2Nn +3n))
(_1)(2N+3) (n)(2N+3) (ZN +3)|

N+1

n(N+1)+s

where d =n(N+1)+s.

Here, n stands for n-ary subdivision scheme (i.e. n = 2(binary), 3(Ternary), 4(quaternary)=-), N >0,
j=-N-1,---/N,s=0,1,2,---,n—1 and t =n-s. Considering the symmetry of the scheme and construction of
the mask formula described above, (2N +4) -point interpolating subdivision schemes are presented in the fol-
lowing form

N+2

it =Y a,,f where ¢ =01 2.7)

2i+a
I=—N-1

Here, N >0 with the symmetry condition is

A o (Ns1)a = Ho(Ni1)ra
Setting a,, ., =0 and a,,., =v, the mask a,_, of the schemes comes from the generalized formula
for the mask of (2N +4) -point interpolating schemes (2.5). Following the procedure of binary case, we have
derived the following form of (2N +4) -point ternary interpolating subdivision schemes are presented in the
following form

N+2

fart = > a, 1Y, where @ =012. (2.8)

3i+a
|=—-N-1

Here, N >0 and for the symmetry condition, a ., , =8yy,q,,

Setting ay,, =0 and ay,, =V, the mask a,_, is calculated from the same mask formula (2.5). In the
same way, (2N +4)-point quaternary interpolating subdivision scheme has the form
N+2
fit=> a,,f, where «=0123. (2.9)
I=—N-1
where, N >0 and for the symmetry of the scheme, a ., , =8y.1).0 -

Setting a, N+2) =0 and By = V- Finally, from (2.7)-(2.9), (2N +4) -point n-ary interpolating schemes
has the following form
N+2
fit = > a,,ft where =012,,n-1, (2.10)
I=—N-1

With N >0,n> 2, and for the following symmetry condition
(2.11)

A (N4 = An(N+D)ra

where a ):O and a =V.

n(N+2 n(N+1)

Construction of the Schemes for Open Polygon

When dealing with open initial polygon f° :{fiO =0, N}, it is not possible to refine the first and last
edges by rules (2.10) for interpolating subdivision schemes. However the extension of this strategy to deal with
open polygon requires a well-define neighborhood of end points. Since the first and last edges can be treated
analogously, it will be sufficient to derive the rules only for one side of the polygon. To this aim define the aux-

iliary point fS=2f—f° as extrapolatory rule in the initial polygon f°. Then the nonrefined open polygon
{fik = O,---,nkN} can be refined by the rules defined below. The formula described in (2.10) for interpolat-
ing scheme is not helpful to refine first and last edges of open polygon. Then to refine the open polygon by
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(2N + 4) -point interpolating scheme using auxiliary points is defined as following
PR
fni:a =

where @ =0,12,---,(n-1), N=0,i=0,1---,N and n=>2, where, the weights satisfies the same condition
(2.112).

Example: If an open polygon is refined by using the 6-point ternary interpolating subdivision scheme using
(2.10), then two auxiliary points % = f)—f) and f%=2f"-f has to be defined in the coarsest polygon

f°. The first two edges fy f* and ff, of the nonrefined polygon {f*:i=0,---,3N} can be refined
by the rules that can be calculated directly by (2.12). Substituting n=3,N =1 in (2.12),

b+2

(zanl—a fOk - anl—az f—k(i+l))+ zanl—a fitl’ (212)
I=—i

1

—i-1

3
faie = z (2a3|—a fo —ay_, fj((m))"’ g(;aa-a £,

1=-2

where o =0,1,2.i=0,1.

Then, for i=0,
fo ™ =(2a, +2a,+ay) fy +(a,—a,) £ +(a; —a,) ) +ay fy,
f ' =(2a,+2a,+a,)ff +(a,—a,) i +(as—a,) f, +afy,
f, 0 =(2a,+2a +a,)fy +(a,—a,) £ +(a, —a,) f, +a, £,
For, i=1
Fel=(2a,+a,) ff +(a—a,) ff +a, ff +a ff +a £y,
it =(2a, +a,) ff +(a,—a,) X +a,fy +a ) +a, 1,

fot=(2a,+as) f+(a,—a,) f +a,f +a,f +a,f,

3. Tensor Product of (2N + 4)-Point Interpolating Subdivision Scheme

Given a set of control points pi'fj eRY,i,jeZ,N>2, wherek is a non-negative integer indicates the subdivi-
sion level. n-ary subdivision surface is tensor product of n-ary subdivision curve defined by

prl:iila,nj-v-ﬂ = zzaa,raﬂ,s pik-f-r,j+s’ a’ﬂ =0,1,---,n-1, (31)
r=0s=0
where, a, satisfies
m
da,; =1 a=01--,n-1 (3.2
j=0

Given initial values pfj eRYi,jeZ,i,jeZ, theninthe limit k — oo, the process (3.1) defines an infinite
set of points in R"“. The sequence of values {pi'fj} is related, in a natural way, with a diadic mesh points

k+1
ni+a,nj

(nl—klj i, j € Z. The process then defines a scheme whereby p .p replacesthevalue p;, . 4, atthe

nk
mesh point (ﬁLf/nj for a,<{0,n}, while the values p}* are inserted at the new mesh
n n

ni+a,nj+f

points (%%j for a,#=0,1,---,n—1 (where o and S are not zero at the same time). Labeling of old

and new points is shown in Figure 1, which illustrates subdivision schemes (3.1).
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@ (b) (©

Figure 1. Solid lines show one face of coarse polygons whereas dotted lines are refined polygons. (a)-(c) can be ob-
tained by subdividing one face into four, nine and sixteen new faces by using (3.1) for n = 2,3,4 respectively.

Construction
Let Z be the set of integers and the space of all polynomials of degrees <2y +1 and < 2o +1 is denoted by
Q, ., and Q, ., respectively. If { Lu(x)}:1 are fundamental Lagrange interpolating polynomials corres-
==V

ponding to the nodes {u}ﬁf_y and {U}Zja The Lagrange interpolation polynomial for tensor product case is
defined as [1],

7+l o+l
p(xy)= 2 2L (xy)p(av),
H=—yv=-0
where
Lio (%)= ﬁ l_i X1, (3.3)
me i=—y izpuj=—c,jro H— U ] '

H=-y,, 7+l v=—0,,0+1.
d,; and o, ; are Kroneker delta symbols defined as,
1, u=i
P
K 0, u=i
and
{1, v=i
é‘vi = -
' 0, v=i
Here, some important results for the formulation of required form of tensor product scheme can be verified
using (2.3). That is foreach p=-y-1,---, and v=-o0-1,---,0 (Using the result [1]),

(-1 (27 +2)!

Li(-r-1)= (r=iMy+i+)(y-i+1)’
—-o-1)= (_1)j+a(26+2)!
AN ) ErEa )

L ()= U rr2)

(=D y+i+D)(y+i+2)’
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(-1)" " (20 +2)!
(c-i)No+j+1)(c+j+2)

L -(0+2):

2s, +1j [Th_(,.y(2nb+2s, +1)
(20" (_1)—i+7—1 (2ni+2s +1)(y—i)(y +i+1)!

(2m)? ™ (<2) 7 (2mj + 25, +1) (0 — )Y (o + j+1)!

HZ:fy—l(nb + Sl)

FJ: 1 (<1) "7 (ni 48, ) (7 =)y +1+0)

L (252 +1j _ [15- (. (2mb+2s, +1)

L [S_zj: ‘ [1,. ,i(mb+s;) .
Am) m2 (—0) 7 (mj+s,) (0 - )Y (o +1+ )!

The mask of a subdivision scheme shows the contribution of a single original vertex to each new, subdivided
vertex. To find the mask of a scheme, we need to find all ways to get from the origin to each point in the grid.
For the tensor product scheme, this is simply the tensor product of the univariate case.

Lemma 3.1. [8] Given initial control polygon pi‘_’j =P, L,JeZ, letthe values pi‘fj, k>1 be defined
recursively by subdivision process (3.1) together with (3.2) then the scheme derived by tensor product naturally
get four-sided support region.

It can be loosely say that the support is the tensor product of the supports of the two regions, just as one can
loosely say that Doo-Sabin is the generalization of the tensor product of two Chaikin constructions.

Lemma 3.2. [9] Given initial control polygon pfj =p.;, 1, jeZ, letthe values pik,j,k >1 be defined re-
cursively by subdivision process (3.1) together with (3.2), then if a scheme is derived from a tensor product, then

the level of continuity can be determined between pieces by reference to the underlying basis functions, i.e. all
the tensor product schemes have the same continuity as their counterparts.

The general formula which generates the mask {a, }izf*;y , and {aj}z_mz3 , of n-ary approximating schemes
2y =20

presented by [7] is

a, =06V, (7/1 J)
: . . (3.4)
ani+51 = é:l (7’ I' n’ Sl)_ an(y+1)+51§2 (7’ I)_ a‘n(y+1)+t1‘/§3 (7/' I)'
and
Ay :5j,o_V772 (O': ]) (3.5)
amj+sz = 771 (6’ j‘ n, SZ)_ an(a+1)+sz 772 (77‘ J)_ an(a+1)+12 773 (U’ J)‘
where

H:),:—(w-l)(nb + Sl )

é‘3(7"’”'31):(.1)2"/+1(_1)*‘*7*1(m+sl)(y_i)!(y+i+1)!’
o H;’?(M)(mersz)

m (o, ims,) (m)z,yu(_l)—iW-l(mj+Sz)(g_j)!(g+j+1)!’

£ ()= (-1)" (27 +2)!

(r=i)(y+i+1)(y—i+1)’
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i) = (-1)"* (20 +2)!
m (o, J)_(o—— Dieririo-1+D"
&(r.i)= (1) (27 +2)!

(y=iN(y+i+D)(y+i+2)

1) (20 +2)!
o-Wo+i+D) o+ j+2)

773(ij)=(

Here, n, m stands for n-ary, m-ary subdivision schemes respectively (i.e n, m = 2(binary), 3(ternary),
4(quaternary) ), y,020 i=—y-1---,,j=-0-1---,0, §=12,---,n-1, s,=12,---m-1,t =n-5s/,
and t,=m-s,

The free parameter a, .,  and a are defined as

A
n(y+1)+s, (_1)27+3 (n)27+3 (27 +3)!

o+1)+s;

(3.6)

where d =n(y+1)+s, and
~ (e-m)(e-2m)---(e—(2o0m+3m))
m(o+l)+s; (_1)20+3 (2m)20+3 (20'+3)!

3.7)

where e=m(o+1)+s,.
As each mask a, ; of the refinement rule satisfies & ; =bb;, where b;,b; are the mask of univariate sub-
division schemes, then
ch )= i

Ni+sp,mj+8 ni+sp “mj+sp

The tensor product of (2N + 4) -point interpolating subdivision scheme is presented as,

7+2  o+2

fnﬁi,mﬁ/»’: Z Z a(nll—a,mlz—ﬁ)fiill,jﬂz' (3.8)

h=—y-lly=—0-1

where, =0,1,2,---,(n-1), £=012,--,(m-1), y,0>0, and n,m>2 and symmetry conditions are,

3.9)

a—n(}/+1)—a = an(y+l)+a
a—m(a+1)—ﬂ _am(a+1)+ﬂ'

=8y, = 0, and the constants a and a, , , could be evaluated by using the results

+2 o=2 nh-1-a mly

Taking a_
(3.4) and (3.53.

Example: Consider the tensor product of the 4-point DD interpolating subdivision scheme, while DD scheme
can be calculated using the result (2.5) mentioned in Section 2. The Laurent polynomial of the scheme is given as

1 -3 -1 1 3
a(z)_E(—z +9771+1+921 -1z )
This implies

a(z) :%(—21’3 +9z2,1 +1+9z —zf'),

a(z,) :%(—22’3 +9z,7 +1+9z, —zg).

Since, a(z,z,)=2a(z)a(z,) then, we can obtain the Laurent polynomial of the 4-point tensor product bi-
nary interpolating scheme S, . So that the suggested 4-point tensor product binary interpulating scheme is
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fzkilej = fi,kj’

fzkiiiz]' = %(‘ fiEI,j +9 fif(j +9 filfrl,j - fitz,j )v

fzki,+21j+1 = %(‘ fi,kj—l +9 fi,kj +9 fi,kj+1 _1fi,kj+2 )v

R 1

f2ki+i21+1 = ﬁ( fiEl,j—l -9 fif(j—l -9 fitl,j—l + filjrz,j—l (3'10)
—9fX  +8LfY +81fk  —9f), —9f
+ 81fi?(j+l +81fi51,j+l -9 fitz,j+1 + fi£1,j+2
-9 fi%j+2 -9 fiEl,j+2 + fihz,j+2)

Using the result obtained above for the tensor product of interpolatory scheme (3.8), tensor product of 4-point
DD scheme can be calculated directly. Since the DD scheme has C'! continuity, then by lemma (3.2) its tensor
product has the same continuity. Substituting n=m=2 in (3.8) and (3.9), ¢,4=0,1 and y=0=0, the
symmetry conditions becomes

a, , =a,,,
{ —2—a 2+a (311)
A, p =84
then formula (3.8) attains the form,
k+1 2 2 k
foiaiop = Izﬂzla(zhfa,mrﬂ) fioh, oty (312
1="H2="

Aseachmask a,; of the refinement rule satisfies a ; =bb;, then

a(2|1—0',2|2—/3) =8y, %, p

As n=m=2 so a,=0 forbothnandm, when v, =v, =0, wl:%:;_é’ b,=b,=0 and s,s,=1is

substituted in (3.8) and (3.9) our requirement is fulfilled, that is the rules (3.10) are obtained.

Example: A simple interpolatory subdivision scheme for quadrilateral nets with arbitrary topology is pre-
sented by L. Kobbelt [2] which generates C' surfaces in the limit. In the first step they present the refinement
rules derived by the modification of the well-known Dyn et al. [10] 4-point interpolatory subdivision scheme for
curve design. The natural way to define refinement operators for quadrilateral nets is therefore to modify a ten-
sor product scheme such that special rules for the vicinity of non regular vertices are found.

The modified form of Dyn scheme can be evaluated by setting the value of n=2,N=v =0, a,=0 and
a, =-w/16 (where 0<w< 2(\/5—1)) in (2.10) and (2.11), the following refinement rules are obtained

fk+1 _ fk

a = N

k+l _ 8+w k k (2] K K (313)
foin —?( fi + fi+1)_E( fil+ fi+2)'

They used the simple tensor product as the basis for the modification of refinement rules of irregular quadri-
lateral nets. Since it is interpolating scheme, so  f,%; = £, and the edge points f,i/;,; and f,75,,, aregiven

as,

fk+1 :8-1‘_0)( fi!(j + f_k )_%( fiEl,j + fiEZ,j )1

2i+1,2j 16 i+1, ]
8+w @
k+1 K k K k
fi2ja= 16 (fi,j + fi,j+1)_E( flia+ fi,j+2)'
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Finally, the face point f,},, , is,

. 1
f2ki+i2j =(256w fl -1, j- -1 (8+w) fl j -1 (8+CO) filjrl,j—l

+a)2fitzyj71 (8+a))fIlJ (8+a))2 fif‘j+(8+a)) fX

i+1,j

~0(8+w) Y, ~o(8+w) £, +(8+w) £, (3.15)
+(8+a)) fltl i+ (8-‘1-60) f|+2 j+1 +a) fl 1,j+2
(8+0)) f| j+2 (8+a)) f|51 j+2 +0) f|+2 j+2)

Instead of taking the tensor product the above rules can be directly obtained by substituting n=m=2 in
(3.8) and (3.9),then @ =4=0,1 and y,o =0, the symmetry conditions are then written as,

a,,=a,,,
{ —2-a 2+a (316)
a-z-ﬂ = a2+/5’
then the formula (3.8) acquires the form,
fZKIIi 2§+ T IZ IZ a (2h-0.,21,-B) |+I1 JHlp ! (317)
h=-1l=-1

Ateach mask a ; of the refinement rule satisfies a; ; =bb;, then
a(le—a,le—ﬂ) =8, A, p

Using the result (3.4) and (3.5) the constants a,, , anda,, , are evaluated by substituting v, =v, =0,
a,=-w/l6, y=0c=0, s,s,=1 and a, =0 for both n and m. After substituting the weights in (3.17) we
get the same rules (3.14) and (3.15).

Example: Using the results for the interpolating curve subdivision schemes (2.10) the 4-point interpolatory
scheme [3] is obtained. Further here the tensor product of the scheme is evaluated by using the result (3.8).

Put n=m=3Db, =b, =0 in(3.8),

fSTIi 3j+8 Z Z (8h-c,31,-) |+I1 j+lp ! (318)

h=—1l=—1
Also, from (3.9)
a,, =4a,.,,
{aw =84
Taking a=$=012, v=v,=3,=0,0, =w, =8, =-5/81, w1 =u, =a,=—4/81. Also for interpola-
tory scheme a =0,as n=m=23gives a;, =0 forboth nand m.

n +2
After calculatl/ng the mas& from (3.4) and (3.5) and substituting all the results in equation (3.18) following
4-point ternary interpolating tensor product scheme is obtained

k+1 _ gk
f3|3] - fi,j'

—4fk

|+2])

fo1 zé(_ﬁigj +301) +60f,, ~5f5, ),

i+1,j

fails = E;L(—sfk +601 +30f,!

i+1, ]

f3‘|<§3]+1 8 (_Sfikj 1+60f +30f|kj+1 f|kj+2)v
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N 1
fda = @(20 £ 0 — 24015 120}, +161%,
k

k k k
~150 5, ; +1800f% +900f , ~120",

-300f%, ;,, +3600f",, +1800f}, ;,, —240f%,
k

+25 fi51,j+2 —300 fi,kj+2 -150 fi51,j+2 +201; 5.2 )1

. 1
foii2ain = @(20 fify 2 —150f, 300!, ;, +256%,

k k k k
—240f%, , +1800 1% +3600f% , —300f",,
-1201), ;,, +900 Y, +1800f" ., —150f),

+16 1, ., ~1201,, —240F 1., +20f5, ., ).

k+1 1 Kk Kk K K
foiaj0 = a(_‘l fija+301; +60f 5, —5f, ),
4 1
f3'i(*11'3j*2 - 6561(20 1Eiflvjfl —240 fi,kj—l -120 fitl,j—l +16 fitz,j—l

-150f, ; +1800 ) +900 ", ; 120,

J

-300f, ;,, +3600f),, +1800f), ;. 240, .,

i, j+

+25 fi51,1+z —300 fi,kj+2 -150 fiEl,j+2 +20 fif—z,j+2)’

(a
Figure 2. Performance of tensor product of 4-point ternary interpolating scheme: (a), (b), (c) and (d) show the initial
polygon, 1, 2" subdivision levels and limit surface respectively. (a) Initial polygon; (b) 1% level; (c) 2™ level; (d) Lim-

it surface.

(‘ T _h“--_\\? L—--"'__L |
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@ (b) © @

Figure 3. Performance of tensor product of 4-point binary interpolating scheme: (a), (b), (c) and (d) show the initial
polygon, 1%, 2" subdivision levels and limit surface respectively. (a) Initial polygon; (b) 1% level; (c) 2" level; (d) Lim-
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it surface.
R 1
f3Ii<+§,3j+2 = @(16 fiELj—l -120 fi,kj—l —240 fitl,j-l +20 fitz,j—l
K K k k
~120),, +900f " +1800 ", , ~150f%, (319)
24015, ., +18001% | +3600% ., ~300f,

—300fFK

i+1, j+

—150f*

i,j+2

+20 X

i-1,j+2

2 +25 fitz,pz >,

4. Numerical Examples

Here, the performances of some of the schemes which are deduced from the proposed formula are shown. Fig-
ure 2 shows the tensor product of 4-point ternary interpolating scheme (3.19), and Figure 3 gives the perfor-
mance of the proposed 4-point binary scheme (3.10).
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