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ABSTRACT 
In this paper, some new generalizations of the matrix form of the Brunn-Minkowski inequality are presented. 
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1. Introduction 
The well-known Brunn-Minkowski inequality is one of the most important inequalities in geometry. There are 
many other interesting results related to the Brunn-Minkowski inequality (see [1-8]). The matrix form of the 
Brunn-Minkowski inequality (see [9,10]) asserts that if A  and B  are two positive definite matrices of order 
n  and 0 1λ< < , then 

( ) ( )
1 1 1

1 1 ,n n nA B A Bλ λ λ λ+ − ≥ + −                            (1) 

with equality if and only if ( )0A cB c= ≥ , where A  denotes the determinant of A . 
Let n n×  denote the set of n n×  real symmetry matrices. Let nI  denote n n×  unit matrix. We use the 

notation ( )0 0A A> ≥  if A  is a positive definite (positive semi-definite) matrix, and *A  denotes the 
transpose of A . Let , n nA B ×∈ , then ( )A B A B> ≥  if and only if ( )0 0 .A B A B− > − ≥  

If n nA ×∈ , then there exists a unitary matrix U  such as 

[ ]*
1, , ,nA U Uλ λ=   

where [ ]1, , nλ λ
 is a diagonal matrix ( )i ijλδ , and 1, , nλ λ  are the eigenvalues of A , each appearing as its 

multiplicity. Assume now that ( )if λ ∈  is well defined. Then ( )f A  may be defined by (see e.g. [11, p. 71] 
or [12, p. 90]) 

( ) ( ) ( )*
1 , , .nf A U f f Uλ λ =                                 (2) 

In this paper, some new generalizations of the matrix form of the Brunn-Minkowski inequality are presented. 
One of our main results is the following theorem. 

Theorem 1.1. Let A , B  be positive definite commuting matrix of order n  with eigenvalues in the interval 
I . If f  is a positive concave function on I  and 0 1λ< < , then 

( )( ) ( ) ( ) ( )
1 1 1

1 1n n nf A B f A f Bλ λ λ λ+ − ≥ + −                        (3) 

OPEN ACCESS                                                                                          AM 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2014.53034


L. Z. ZHAO  ET  AL. 338 

with equality if and only if f  is linear and ( ) ( ) ( )0f A cf B c= ≥ . 
Let , n nA B ×∈ , if A B≥ . We can define the determinant differences function of A  and B  by 

( ), .dD A B A B= −  

The following theorem gives another generalization of (1).  
Theorem 1.2. Let A , B  be positive definite commuting matrix of order n  with eigenvalues in the 

interval I  and 1 I∈ . Let f  be a positive function on I  and a and b be two nonnegative real numbers such 
that 

( ) ( ) ( ) ( ),  .n nf A af I f B bf I> >  

Then 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
1 1 1

, , ,n n n
d n d n d nD f A f B a b f I D f A af I D f B bf I+ + ≥ +          (4) 

with equality if and only if ( ) ( )1 1 .a f A b f B− −=  
Remark 1. Let ( )f t t=  in Theorem 1.1 or let ( )f t t=  and 0a b= =  in Theorem 1.2. We can both ob- 

tain (1). Hence Theorem 1.1 and Theorem 1.2 are generalizations of (1). 

2. Proofs of Theorems 
To prove the theorems, we need the following lemmas: 

Lemma 2.1. ([13], p.472) Let , n nA B ×∈ , 0A B> > . Then 

.A B>  

Lemma 2.2. ([13], p.50) Let , n nA B ×∈ , 0A > , 0B > . If A  and B  are commute, then exists a unitary 
matrix U  such that 

[ ] [ ]* *
1 2 1 2, , ,    and   , , , .n nU AU a a a U BU b b b= =   

Lemma 2.3. ([14], p.35) Let ( )0, 0 1,2, ,i ix y i n≥ ≥ = 
. Then 

( )
1 1 1

1 1 1
,

n n nn n n

i i i i
i i i

x y x y
= = =

     + ≤ +     
     
∏ ∏ ∏  

with equality if and only if i ix yν= , where ν  is a constant. 
This is a special case of Maclaurin’s inequality. 
Proof of Theorem 1.1. 
Since A  and B  are commuted, by lemma 2.2, there exists a unitary matrix U  such that 

[ ] [ ]* *
1 2 1 2, , ,   and  , , , .n nA U a a a U B U b b b U= =   

Hence, 

( ) ( ) ( ) ( )*
1 1 2 21 1 , 1 , , 1 .n nA B U a b a b a b Uλ λ λ λ λ λ λ λ+ − = + − + − + −    

By (2), we have 

( ) ( ) ( ) ( )*
1 2, , , ,nf A U f a f a f a U =    

( ) ( ) ( ) ( )*
1 2, , , ,nf B U f b f b f b U =    

and 

( )( ) ( )( ) ( )( ) ( )( )*
1 1 2 21 1 , 1 , 1 .n nf A B U f a b f a b f a b Uλ λ λ λ λ λ λ λ + − = + − + − + −   

Since f  is a concave function, by lemma 2.3, we get 
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( )( ) ( )( )
1

1

1
1 1

n n
n

i i
i

f A B f a bλ λ λ λ
=

 + − = + − 
 
∏  

( ) ( ) ( )
1

1
1

n n

i i
i

f a f bλ λ
=

  ≥ + −   
∏                                    (5) 

( ) ( ) ( )
1 1

1 1
1

n nn n

i i
i i

f a f bλ λ
= =

   ≥ + −   
   
∏ ∏                                 (6) 

( ) ( ) ( )
1 1

1 .n nf A f Bλ λ= + −  

Now we consider the conditions of equality holds. Since f  is a concave function, the equality of (5) holds if 
and only if f  is linear. By the equality of Lemma 2.3, the equality of (6) holds if and only if ( ) ( ) ,i if a cf b=  
which means ( ) ( )f A cf B= . So the equality of (3) holds if and only if f  is linear and ( ) ( ) ( )0f A cf B c= ≥ . 
This completes the proof of the Theorem 1.1. 

Applying the arithmetic-geometric mean inequality to the right side of (3), we get the following corollary. 
Corollary 2.4. Let A , B  be positive definite commuting matrix of order n  with eigenvalues in the interval 

I . If f  is a positive concave function on I  and 0 1λ< < , then 

( )( ) ( ) ( ) 1
1 ,f A B f A f B

λ λ
λ λ

−
+ − ≥  

with equality if and only if .A B=  
Taking for ( )f t t=  in Corollary 2.4, we obtain the Fan Ky concave theorem. 
Proof of Theorem 1.2. 
As in the proof of Theorem 1.1, since A  and B  are commuted, by lemma 2.2, there exists a unitary matrix 

U  such that 

( ) ( ) ( ) ( )*
1 2, , , nf A U f a f a f a U =    

and 

( ) ( ) ( ) ( )*
1 2, , , .nf B U f b f b f b U =    

So 

( ) ( ) ( ) ( )
1 1

,    ,
n n

i i
i i

f A f a f B f b
= =

= =∏ ∏  

( ) ( ) ( ) ( )( )
1

.
n

i i
i

f A f B f a f b
=

+ = +∏  

It is easy to see that (4) holds if and only if 

( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

1 1

1 1

1

1 1 .

n nn
i i

i

n nn nn n
i i

i i

f a f b a b f

f a af f b bf

=

= =

 + − +    

   ≥ − + −            

∏

∏ ∏

                 (7) 

Since ( ) ( ) ( ) ( ), n nf A af I f B bf I> > , by Lemma 2.1, we have 

( ) ( ) ( ) ( )
1 1

1 ,     1 .
n nn n

i i
i i

f a af f b bf
= =

> >      ∏ ∏  

Now we prove (7). Put 
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( ) ( ) ( ) ( )
1 1

1 ,     1 .
n nn nn n

i i
i i

X f a af Y f b bf
= =

= − = −      ∏ ∏  

Then 

( ) ( ) ( ) ( )
1 1

1 ,       1 .
n nn nn n

i i
i i

X af f a Y bf f b
= =

+ = + =      ∏ ∏  

Applying Minkowski inequality, we have 

( ) ( ) ( )( ) ( )( ) ( )( )
( ) ( )

1 1 1

1 1

1 1

1 1 1
n n nn n n nn n

n nn n

i i
i i

X Y a b f X af Y bf

f a f b
= =

+ + + ≤ + + +          

   = +   
   
∏ ∏

 

Using the Lemma 2.3 to the right of the above inequlity, we obtain 

( ) ( ) ( )( ) ( ) ( )( )
11

1
1 ,

n nnn n
i i

i
X Y a b f f a f b

=

 + + + ≤ +      
∏  

which implies that 

( ) ( ) ( )( ) ( ) ( )
1

1 .
n nn

i i
i

X Y f a f b a b f
=

+ ≤ + − +  ∏  

It follows that 

( ) ( )( ) ( ) ( )
1

1
1 ,

n nn
i i

i
X Y f a f b a b f

=

 + ≤ + − +    
∏  

which is just the inequality (7). 
By the equality conditions of Minkowski inequality and Lemma 2.3, the equality (1.4) holds if and only if 

( ) ( )1 1
i ia f a b f b− −= , which means ( ) ( )1 1a f A b f B− −= . Thus we complete the proof of Theorem 1.2. 

Taking for ( )f t t=  in Theorem 1.2, we obtain the following corollary. 
Corollary 2.5. [7] Let A , B  be positive definite commuting matrix of order n  and a and b be two 

nonnegative real numbers such that 

, .n nA aI B bI> >  

Then 

( )( ) ( ) ( )
1 1 1

,n n n
n n nA B a b I A aI B bI+ − + ≥ − + −  

with equality if and only if 1 1a A b B− −= . 
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