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ABSTRACT 
In this paper, two different numerical schemes, namely the Runge-Kutta fourth order method and the implicit 
Euler method with perturbation method of the second degree, are applied to solve the nonlinear thermal wave in 
one and two dimensions using the differential quadrature method. The aim of this paper is to make comparison 
between previous numerical schemes and detect which is more efficient and more accurate by comparing the 
obtained results with the available analytical ones and computing the computational time. 
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1. Introduction 
Thermal wave is reaction-diffusion equation that plays an ever-increasing role in the study of material parame-
ters. It has been employed in optical investigations of solids, liquids and gases with photo-acoustic and thermal 
lens spectroscopy. Thermal waves have also been used to analyze the thermal and thermodynamic properties of 
materials and image thermal and material features within a solid sample [1]. 

In the past several decades, there has been greeting activity in developing numerical and analytical methods 
for the thermal wave equation. Due to the nonlinearity and complexity of such problems, only limited cases can 
be analytically solved [2-5]. Yan applied the projective Riccati equation method to solve Schrodinger equation 
in nonlinear optical fibers [2]. Then Mei, Zhang and Jiang employed the same method to get the exact solutions 
for some reaction-diffusion problems [3]. Abdusalam applied a factorization technique to find exact traveling 
wave solutions [4]. Chowdhury and Hashim obtained analytical solution for Cauchy reaction-diffusion problems 
using homotopy perturbation method [5]. Literature on the numerical solution of reaction-diffusion equations is 
sparse, and singular perturbation method has been applied to solve reaction-diffusion equations by Puri et al. in 
[6]. David, Curtis and John introduced time integration methods to solve thermal wave propagation [7]. Marcus 
applied finite difference method to study the dynamics of predator-prey interactions [8]. As well as, Chen et al. 
employed the finite element method to solve adjective reaction-diffusion equations [9]. Then Christos et al. also 
applied the same method to solve the problem with boundary layers [10]. Meral and Sezgin used this method 
and finite difference method with a relaxation parameter to solve nonlinear reaction-diffusion equation in one 
and two dimensions [11]. Recently, differential quadrature method has been efficiently employed in a variety of 
engineering problems [12]. Wu and Liu had introduced the generalization of the differential quadrature method 
to solve linear and nonlinear differential equations [13]. Kajal applied differential quadrature and Runge-Kutta 
method to solve thermal wave, a blow-up and a Brusselator chemical dynamics system [14]. Kajal achieved high 
accuracy. But there are some difficulties in the previous method which are explicit schemes used to update the 
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solution using very small step size due to the limitation of stability condition that leads to more computational 
cost and lower efficiency. Therefore, Meral applied differential quadrature method and implicit Euler method 
with Newton method to solve one dimensional density dependent nonlinear reaction-diffusion equation [15]. 
Meral obtained stable solutions, and larger time steps could be used. 

In this research, the thermal wave propagation model is solved by using two numerical methods to make 
comparison between them. In the first method, we used the hybrid technique method of Runge-Kutta fourth or-
der method (RK4) and differential quadrature method (DQM). In the second method, we used the combined al-
gorithm of DQM, Perturbation method of second degree and implicit Euler method. Perturbation method is used 
to avoid the nonlinear term. The obtained results are compared with the previous analytical ones to complete the 
comparison between previous different numerical schemes. 

2. Numerical Procedure of Thermal Wave 
Propagation of thermal waves through a rectangular plate, is governed by [14]: 

( ) ( ) ( ) ( )
2 2

2
max2 2 , 0, 0,0 , ,U U U U U U t x y a b

t x y
α β γ∂ ∂ ∂

= + + − > < <
∂ ∂ ∂

               (1) 

where: U is a temperature, 
α and β are diffusion parameters in direction of x and y, respectively, 
γ is reaction parameter, 
a and b are plate dimensions in direction of x and y, respectively, 
Umax is a maximum temperature of the system. 
Along the external boundaries, the temperatures can be described as: 
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where ( ),   and   , 1, 4 ,i i ia b f i =  are known functions. 
Then initial temperature may be described as: 

( ) ( ), ,0 ,U x y g x y=                                      (3) 

where ( ),g x y  is a known function. 

2.1. Numerical Procedure Using First Method (RK4) 
The main strategy is to employ DQM to reduce the problem to a system of ordinary differential equations then 
to apply RK4 to solve the reduced system as follows: 

1) Discretize the spatial domain using Chebyshev-Gauss-Lobatto grid points [12], such as: 

( )1 π
1 cos , 1,2, ,

2 1i

iax i N
N
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= − = − 
                           (4-a) 

( )1 π
1 cos , 1,2, ,

2 1j

jby j M
M
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= − = − 
                          (4-b) 
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2) Apply the method of differential quadrature in terms of nodal temperature, such that: 
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where p
ijA  and p

ijB , ( ),p x y=  are the first and second order weighting coefficients with respect to p [12]. 
3) On sustainable substitution from Equations (5) into (1), one can reduce the problem to the following system 

of ordinary differential equations as: 
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4) Update the temperature using RK4 such that [16] 
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where 1 0 2 1 1P Pt t t t t t t −∆ = − = − = = −  

2.2. Numerical Procedure Using Second Method (Implicit Euler) 
The main strategy is to apply perturbation method of second order [17,18] then applying DQ discretization to 
reduce the problem to a system of ordinary differential equations then applying implicit Euler method to trans-
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form the previous system to a system of linear algebraic equations as follows: 
1) We can solve 

( )
2 2

2
max2 2 ,U U U U U U

t x y
α β εγ∂ ∂ ∂

= + + −
∂ ∂ ∂

                         (10) 

subjected to the prescribed to boundary and initial conditions in Equations (2) and (3), assuming  
2

1 2
n

o nU U U U Uε ε ε= + + +                                  (11) 

where 0 1 2, ,U U U  are unknowns functions and ε  is a perturbation parameter. 
The following condition is tested to ensure the convergence condition [19] in previous series in Equation (11). 

1 1  where  0,1, , 1i

i

U
i n

U
+ < = −                                 (12) 

2) On sustainable substitution from Equation (11) into (10), one can reduce the problem to the following equ-
ation. 
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3) Applying zero order perturbation method such that, 
2 2

0 0 0
2 2

U U U
t x y

α β
∂ ∂ ∂

= +
∂ ∂ ∂

                                   (14) 

Subjected to boundary and initial conditions in Equations (2) and (3), where differential quadrature method and 
implicit method are used to reduce Equation (14) to a system of linear algebraic equations such that, 

By substitution of Equation (5) into (14) result that, 
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4) First order perturbation method is applied such that, 
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Subjected to the same boundary and initial conditions in Equations (2) and (3), reduced to the following alge-
braic system in equations 
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5) Also second order perturbation method is applied such that, 
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( )
2 2
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Subjected to the same boundary and initial conditions in Equations (2) and (3), reduced to the following alge-
braic system 
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NMi j i j ijU x y t t U x y t t q U U U t t+ ∆ = + ∆ × + ∆                       (24) 

Finally, the series solution can be written as 

numerical 1 21
lim oU U U U U
ε→

= = + +                                (25) 

We carry on previous procedure until the specified time is reached. 

3. Results and Discussions for One Dimension Analysis 
To ensure the accuracy of the proposed numerical techniques, the thermal wave propagating model is solved 
using presented methods and compared with the available analytical solution [14,20]. 

Consider a one-dimensional problem of thermal wave propagation along x-direction as: 1 2 max 1,a a Uα = = = =
3 4 1 2 3 4 3 41, 0a a b b b b f fγ β= = = = = = = = = = . 

While 

( ) ( ) ( )
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f t f t
t t

g x x
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+

                 (26) 

The exact solution for such problem can be obtained as [20]: 

( )
( )( )exact

1, , 0,0 1
1 exp 2 2

U x t t x
x t

= > ≤ ≤
+ −

                   (27) 

To validate the accuracy of numerical results, the following errors [16] are computed, 

( )2
numerical exact

1
Root mean square of errors . . .of errors

NM

i
R M S U U NM

=

 = = −  
∑          (28-a) 

( ) ( )numerical exact1
1

Max. absolute error max , , , ,i j k i j ki N
j M

U x y t U x y t
≤ ≤
≤ ≤

= −                      (28-b) 

3.1. Numerical Results of First Method (RK4) 
For the numerical computation, the time domain is limited to 0 20t≤ ≤  and N = 7. The efficiency of presented 
techniques is tested by CPU time required when the computation reaches to t = 20 s. Two time step sizes of 
0.001 and 0.005 are used for layer marching in the time direction. The numerical results of these two cases are 
listed respectively in Tables 1 and 2. From these two tables, it can be seen that RK4 method can achieve high 
accuracy at very small step size at Δt = 0.001 with 9 9. . . of errors 4 10 ,Max. absolute error 3 10R M S − −< × < ×  
and at Δt = 0.005 with 8 8. . . of errors 1.4 10 , Max. absolute error 1.0 10R M S − −< × < × . Moreover, as shown in 
Figure 1, as Δt increased slightly to 0.00515 the stability condition will not achieved and the oscillation will 
occurs in the period 6 25t≤ ≤ . On the other hand the efficiency is very small as the CPU time required to reach 
t = 20 s is much larger. 
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Table 1. R.M.S., absolute errors, time steps and CPU times given by 4-stage Runge-Kutta at Δt = 0.001. 

Time (s) Time steps R.M.S. error Max. absolute error CPU time (s) 

0.5 501 4.8171E−009 3.4276E−009 0.06 

1.0 1001 4.6699E−009 3.3448E−09 0.1 

1.5 1501 2.7909E−009 2.1988E−009 0.17 

2.0 2001 9.8607E−010 5.5920E−010 0.27 

2.5 2501 2.2172E−009 1.7006E−009 0.42 

5.0 5001 1.8723E−010 1.1556E−010 2 

10.0 10001 4.9678E−012 3.5828E−012 11.2 

20.0 20001 3.1625E−013 2.2571E−013 77.6 

 
Table 2. R.M.S., absolute errors, time steps and CPU times given by 4-stage Runge-Kutta at Δt = 0.005. 

Time (s) Time steps R.M.S. error Max. absolute error CPU time (s) 

0.5 101 1.4898E−008 1.0284E−008 0.029 

1.0 201 1.4445E−008 1.0047E−008 0.037 

1.5 301 8.5098E−009 6.5970E−009 0.05 

2.0 401 2.6387E−009 1.5218E−009 0.05 

2.5 501 6.8062E−009 5.1014E−009 0.062 

5.0 1001 5.0520E−010 3.4387E−010 0.1 

10.0 2001 1.3932E−011 1.0817E−011 0.27 

20.0 4001 9.7838E−013 6.7968E−013 1.13 

3.2. Numerical Results of Second Method (Implicit Euler) 
In the obtained results the advantage of using an implicit scheme has been observed. Stability problems are not 
encountered due to the use of implicit time integration step and larger time increments can be used, e.g. for t = 
30, 3.0t∆ =  can be taken. Table 3 shows the maximum absolute errors and root mean square of errors for a 
fixed time (t = 30.0) for various numbers of grid points. The accuracies by using N = 8, 11 are almost the same 
and there is a drop for N = 15. From the table, DQM is observed to give very good accuracy with a small num-
ber of grid points. For N = 15, the drop of accuracy is due to the ill-conditioned Vandermonde-system obtained 
after the DQM discretization, which is the known nature of DQM for large N [15]. Tables 4-6 give the compar-
ison of the DQM solution with the exact solution in terms of maximum absolute error and root mean square of 
errors for small time levels and for the times tending to steady-state, respectively. The computations are carried 
out with N = 11 and it is seen to be enough to obtain the solution with five digits accuracy at steady-state. 
Moreover, Figure 2 shows the absolute error at different times and locations. Also convergence condition in 
Equation (12) is tested achieving higher accuracy at second order perturbation method as shown in Figure 3. 

4. Results and Discussions for Two Dimensions Analysis 
Consider also a simple two dimensional problem with 

1 2 3 4 1,a a a aα β= = = = = =  

1 2 3 4 1 2 3 4 0b b b b f f f fγ = = = = = = = = = , 

and 
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To show the effect of oscillation on figure we graph the absolute error in range 10 ≤ t ≤ 11 
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Figure 1. Absolute errors at different times and locations. 

 
Table 3. R.M.S., absolute errors and CPU times given by implicit euler at Δt = 3. 

t = 30.0 N = 5 N = 8 N = 11 N = 15 

Max.absolute error by implicit Euler 0.0025 6.9707E−004 2.4820E−004 0.0045 

Root mean square of errors by implicit Euler 0.0015 4.0116E−004 1.3981E−004 0.0023 

CPU time 0.018 0.018 0.02 0.042 

 
Table 4. R.M.S., absolute errors and CPU times given by implicit euler at Δt = t. 

N = 11 t = 0.01 t = 0.1 t = 0.5 t = 1.0 

Max. absolute error by implicit Euler 0.1320 0.0654 0.0129 1.0898E−004 

Root mean square of errors by implicit Euler 0.0871 0.0391 0.0076 5.6590E−005 

CPU time 0.019 0.015 0.015 0.011 
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Table 5. R.M.S., absolute errors and CPU times given implicit euler at Δt = 2. 

N = 11 t = 6.0 t = 12 t = 22 t = 34 

Max.absolute error by implicit Euler 0.0220 0.0176 0.0012 0.0012 

Root mean square of errors by implicit Euler 0.0134 0.0089 6.8117E−004 6.8188E−004 

CPU time 0.021 0.017 0.024 0.038 

 
Table 6. R.M.S., absolute errors and CPU times given by implicit euler at Δt = 4. 

N = 11 t = 16 t = 36 t = 60 t = 84 

Max.absolute error by implicit Euler 0.0093 2.7649E−004 7.0708E−005 7.0708E−005 

Root mean square of errors by implicit Euler 0.0050 1.6835E−004 4.0801E−005 4.0801E−005 

CPU time 0.024 0.024 0.029 0.029 
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Figure 2. Absolute errors at different times and locations. 
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Figure 3. Satisfying convergence conditions. 

 
( ), sin π sin π ,0 , 1g x y x y x y= ≤ ≤  

which can be solved exactly as [21]: ( ) 22π, , e sin π sin πtU x y t x y−= . The design of the numerical scheme is ex-
tended to two dimensions. 

Table 7 shows that for 0.01, 5, 4t N M∆ = = = , the obtained results agree with the analytical ones [21] in 
both methods. Also Figure 4 shows that absolute error for the hybrid method absolute error <0.01, and for im-
plicit Euler, the absolute error 30.6 10−× . 

5. Conclusion 
Throughout this study, thermal wave propagation model which is the type of reaction-diffusion equations is 
solved by using DQM for space discretization and two different time-integration schemes. Moreover, one can 
use a small number of discretization points, which lead to higher accuracy. Also for the nonlinear wave equation, 
the use of DQM with non-uniform grid discretization increases the accuracy and stability of solution. The re-
sulting system of ordinary differential equations is solved by using two different time integration schemes in order  
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Table 7. Root mean square of errors for two dimensional thermal wave propagation at Δt = 0.01, N = 5, M = 4. 

TIME 0.01 0.04 0.08 0.16 0.4 1.00 

Root mean square of errors by hybrid method 0.0027 0.0060 0.0054 0.0021 3.9994E-005 5.1513E-010 

Root mean square of errors by implicit Euler 0.0369 0.0143 0.0025 0.0013 7.4271E-005 2.9596E-009 
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Figure 4. Absolute error at t = 0.1 s and different locations of x, y. 

 
to make comparison between two methods and detect which of them is better. The numerical results obtained in 
this paper ensure that the problems have small desired time to reach it. Thus they have very small step size 
which is preferred and use RK4 to solve the system of ordinary differential equations in order to decrease the 
computational time. On the other hand, the problems which have high desired time to reach it, thus have large 
incremental time (stiff problems) which are preferred and use implicit Euler with perturbation method to solve 
the system of ordinary differential equations. 
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