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ABSTRACT 
Memory-based collaborative recommender system (CRS) computes the similarity between users based on their 
declared ratings. However, not all ratings are of the same importance to the user. The set of ratings each user 
weights highly differs from user to user according to his mood and taste. This is usually reflected in the user’s 
rating scale. Accordingly, many efforts have been done to introduce weights to the similarity measures of CRSs. 
This paper proposes fuzzy weightings for the most common similarity measures for memory-based CRSs. Fuzzy 
weighting can be considered as a learning mechanism for capturing the preferences of users for ratings. Com-
paring with genetic algorithm learning, fuzzy weighting is fast, effective and does not require any more space. 
Moreover, fuzzy weightings based on the rating deviations from the user’s mean of ratings take into account the 
different rating scales of different users. The experimental results show that fuzzy weightings obviously improve 
the CRSs performance to a good extent. 
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1. Introduction 
Web services grow very fast letting Web users in a diffi-
cult position to select from a huge number of choices. 
This creates an argent need for Web personalization tools 
that help users navigate Web easily in a personalized way. 
Collaborative recommender system (CRS), the most suc-
cessful Web personalization tool [1-6], recommends a 
given active user items to people with similar tastes and 
preferences liked in the past. Today, recommender sys-
tems become a must in many Web applications. Amazon, 
eBay, MovieLens and many others use some types of 
recommender systems [2-5]. In real life, we cannot ex-
pect users to come across or have heard of each of the 
products (items) they might like. 

Out-of-the-box recommendation is the most important 
feature of CRSs which allows CRS recommends a di- 
verse set of items to an active user based on the tastes  

and past preferences of his set of neighbors. This set of 
neighbors play an important role in the CRS success 
[1,2,6]. As long as the neighborhood set is close and rep-
resentative to the active user, the CRS suggestions will 
be more valuable. Hence, a great attention has to be paid 
for selecting the set of neighbors. Actually CRS con-
structs the set of neighbors based on a similarity measure 
which has to reflect the most important factors between 
the two users in consideration. Consequently, the simi-
larity computation phase for any CRS plays the heart role 
for its success. Different similarity measures often lead to 
different sets of neighbors for a given active user and 
thus a good similarity measure will be that one producing 
a close set of neighbors for that active user. 

The existing similarity measures for memory-based 
CRS based their work on the users’ raw declared ratings 
or on the deviation of these ratings from the mean ratings 
of the users. However, the tastes of users for ratings dif- 
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fer from time to time and the actual employed rating scale 
differs from user to user. Therefore the raw declared rat-
ings need to be weighted so that a weighted rating scale 
is obtained for all users. Most of the previous weighting 
work for Pearson correlation coefficient was focusing 
either on genetic algorithm (GA) [7,8] or on trust and 
reputation as similarity modifiers [9]. However, GA ap-
proach takes a long time for training and forces the sys-
tem to store the evolved weights which are an extra load 
for the system. Other weighting techniques like signifi-
cance weighting using trust and variance weighting for 
discerning user’s interest for items are studied by Her-
locher et al. [10]. Sometimes the inverse user frequency 
is used for distinguishing universally liked items from 
less common items [11]. The contribution of the univer-
sally liked items is decreased as they are not useful for 
capturing similar users while the contribution of the less 
common items is increased as they are useful for captur-
ing similar users. 

This paper proposes fuzzy weightings for the most 
popular similarity measures for memory-based CRS. 
Fuzzy weighting increases the effectiveness of the simi-
larity measure for capturing close set of neighbors with-
out loading the CRS in time or in space. Consequently, 
the CRS accuracy gets enhanced. The main contributions 
of this paper are three-folds. 
 A methodology for fuzzifying rating values and rating 

deviation values is proposed. 
 Fuzzy weightings for the most popular similarity meas-

ures of memory-based CRS are proposed. 
 Fuzzy mean difference weights similarity measure is 

introduced. 
The rest of this paper is organized as follows: an in-

troduction to some similarity measures of memory-based 
CRS is given in Section 2. Section 3 explores the answer 
to two main questions for fuzzy weighting. The two ques-
tions are What and How to fuzzify? Fuzzy-weighted 
similarity measures for memory-based CRS are intro-
duced in Section 4. The experimental methodology and 
results for the proposed approaches with the traditional 
approaches are presented in Section 5. Finally, we con-
clude our work in the last section. 

2. Similarity Measures for Memory-Based 
CRS in Literature 

Formally, CRS has M  users, { }1, , MU u u=  , having 
preferences for certain items such as products, news, web 
pages, books, movies, restaurants, destinations, or CDs. 
The user’s degree of preference for an item is represented 
by a rating that is obtained explicitly from the user di-
rectly or inferred implicitly from the users’ navigation 
behavior. For example, if an Amazon customer views 
information about a product, the system can infer that 
they are interested in that product, even if they don’t buy 

it [1,2,6]. Each user iu  rates a subset of items iS  from 
the K  items, { }1, , KS s s=  , of the system. The de- 
clared rating of user cu  for an item ks  is denoted by 

,c kr  and the user’s average rating is denoted by cm . The 
set of users cross the set of items form a user-item matrix 
which is called sometimes a utility matrix [1,2,6]. 

The set of ratings for each user forms the user profile 
which has to be compared to other users’ profiles based on 
a predefined similarity measure. The similarity between 
two users is a measure of how closely they resemble each 
other. Once similarity values are computed, the CRS sys-
tem ranks users according to their similarity values with 
the active user to extract a set of neighbors for him. Ac-
cording to the set of neighbors, the CRS assigns a pre-
dicted rating to all the items seen by the neighborhood set 
and not by the active user [2,6]. The predicted rating, 

,x kpr , indicates the expected interestingness of the item 
ks  to the user xu . 
The most popular similarity measure for memory-based 

CRS is the Pearson correlation coefficient (PCC) [1,2,6]. 
PCC computes the similarity between two users, xu  and 

yu , based only on the common ratings, xyS , both users 
have declared. The PCC is given by: 

( )
( )( )

( ) ( )

, ,

22
, ,

corr , k xy

k xy k xy

x k x y k y
s S

x y

x k x y k y
s S s S

r m r m

r m r m

∈

∈ ∈

− −

=
− −

∑

∑ ∑
u u  (1) 

The CRS’s literature described also the cosine similar-
ity measure [2,6], which treats each user as a vector in 
the items’ space and then takes the cosine of the angle 
between the two vectors as a similarity measure between 
the two users. 

( )
, ,

2 2
, ,

cos , k xy

k xy k xy

x k y k
s S

x y

x k y k
s S s S

r r

r r

∈

∈ ∈

=
∑

∑ ∑
u u        (2) 

Many other efforts explore different similarity meas- 
ures for memory-based CRS. Breese et al. [11] evaluated 
the predictive accuracy of different similarity measures 
for CRS. They concluded that Pearson correlation coeffi- 
cient outperforms the other measures. Fuzzy concordan- 
ce/discordance principle is used in [12] as a similarity 
measure which measures the pros and cons separately 
and then the overall statement about a given pair of users 
is obtained by balancing the pros and cons within the set 
of criteria. Recently, Bobadilla et al. [7] proposed the 
mean difference weights similarity measure. This simi- 
larity measure calculates the average of the two users’ 
rating difference weights. These weights are evolved using 
GA; however, they can be assumed fixed to the mean of 
each difference weight interval that have been proposed 
in [7]. 
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Bobadilla et al. [7] divide Formula (3) by the differ-
ence between the maximum and minimum values of the 
rating scale. However, this factor is not necessary be-
cause Formula (3) already divides the weights by their 
number. The numerator cannot exceed xyS  in any way 
since [ ]1,1w∈ − . The only effect this factor has is re-
ducing the similarity values which in turn will reduce the 
contribution of each neighbor’s rating in the aggregation 
process. Moreover, the learning intervals of GA used by 
[7] are small. This will degrade the usefulness of GA 
learning process. 

3. What and How to Fuzzify? 
Weighting some variables of the user profile is an effec-
tive way to capture the users’ different tastes for the CRS 
rating scale. However, most of the previous work based 
this weighting on GA as a learning technique. Although 
GA can focus on the good items while removing bad 
ones or reducing their impact but it requires a long time 
for learning the weights and a large space for storing 
them later. Moreover, these weights have to be recalcu-
lated periodically to capture the users’ changing tastes 
over time. Therefore GA is a good way if we have time 
and space. 

We argue that a simple and effective way will be that 
one uses fuzzy logic to get these weights by employing 
some variables of the user profile. This leads to fuzzy- 
weighted similarity measures for memory-based CRS. 
Having you agreed to use fuzzy logic instead of GA for 
evolving weights. Two main questions arise, What and 
How to fuzzify? The answer to these two questions de-
pends on the nature of the user profile. The user profile 
of memory-based CRS consists of a set of ratings for a 
subset of the system’s items. Accordingly, we have four 
main variables for the user profile, namely, the ratings 
themselves, the mean of these ratings, the rating devia-
tion of each rating from the user’s mean rating, and the 
user total number of ratings. 

The rating and the rating deviation variables are very 
close to the user’s taste for the rating scale. However, 
these ratings have less value if the user’s number of rat-
ings is too small. Thus the user rating and the rating de-
viation variables are the more appropriate candidate to be 
fuzzified if the ratings are somehow dense. Normally, the 
user ratings follow a fixed rating scale which is usually a 
discrete rating scale while the rating deviation takes a 
continuous range. This nature of both variables will de-
termine the fuzzy sets suitable for each one of them. 
Figures 1 proposes some fuzzy sets for a 5-point rating 
scale for the rating variable. Figure 1(a) represents each 

rating as a triangular fuzzy set that can be named very 
bad, bad, good, very good and excellent. Figure 1(b) 
gives three fuzzy sets for ratings that can be named bad 
(trapezoidal), neural (triangular) and good (trapezoidal). 
This representation treats rating 1 and 2 similarly as bad 
ratings and ratings 4 and 5 as good ratings. However, this 
is not always true especially for those users paying more 
attention for their votes. This situation getting worse with 
the two trapezoidal fuzzy sets of Figure 1(c) which groups 
ratings 1 and 2 as bad ratings and ratings 3, 4 and 5 as 
good ratings. Figure 1(d) seems to be more appropriate 
representation because it grades the membership values 
of ratings between two fuzzy sets bad and good sets. 

 

 

 

 

 
Figure 1. Different choices of fuzzy sets for the rating vari-
able. 
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On the other hand, rating deviation values have a con-
tinuous range from a negative maximum to a positive 
maximum based on the rating scale nature. For a 5-point 
rating scale, the deviation value starts from −4 (rating 1 - 
rating 5) to 4 (rating 5 - rating 1). Accordingly, the range 
of choices for fuzzy sets representing deviation values is 
wider and more flexible than that of ratings themselves. 
Figure 2 proposes some possible fuzzy sets for the de-
viation value for a CRS with a 5-point rating scale. Fig-
ures 2(a) and (b) give nine and five triangular fuzzy sets 
for the deviation scale, respectively. The nine fuzzy sets 
seem to be large number while the five fuzzy sets are 
more acceptable. Instead of the five triangular fuzzy sets 
we can use five trapezoidal fuzzy sets as given in Figure 
2(c). The trapezoidal fuzzy sets give flexibility for some 
values to be indifferent. This is more suitable for devia-
tion values rather than rating values. The last option is 
Figure 2(d) which maps the deviation scale into three 
trapezoidal fuzzy sets. However, due to the long con-
tinuous and range of deviation values, the trapezoidal 
five fuzzy sets seem to be more appropriate than the 
other three ones. 

To answer the second question we have to keep in 
mind that each profile variable has a crisp value. This 
value has to be mapped to fuzzy sets through member-
ship values. That means each crisp value has to be mapped 
to a vector of membership values where the vector length 
is determined by the number of fuzzy sets representing 
that variable [13]. For example, each crisp value of rating, 

,x kr , will get a 2-tuple membership values (2-tuple vector) 
to the two bad and good fuzzy sets of Figure 1(d) as 
defined by the following membership functions. 

( ) 1,1 5
4b

rm r r−
= ≤ ≤           (4a) 

( ) 5 ,1 5
4g

rm r r−
= ≤ ≤           (4b) 

For example, if , 2x kr =  then the corresponding 2-tu- 
ple membership vector will be , 0.25,0.75x k =r . Based 
on the membership vectors, we can get the fuzzy weight, 

kw , for the thk common item as [14]: 

( ), ,2 disk x k y kw = − −r r           (5) 

where ,x kr  is the membership vector for ,x kr  value and 
( ), ,dis x k y k−r r  is any vector distance metric. In this pa-

per, Euclidean distance function [13-15] is used for this 
purpose. In general ,x kr  and ,y kr  are two membership 
vectors of size l  (in this paper 2l = ). 

( ) ( )2

, , , ,
1

dis
l

j j
x k y k x k y k

j
r r

=

− = −∑r r        (6) 

where ,
j

x kr  is the membership value of ,x kr  to its thj  
fuzzy set. We subtract ( ), ,dis x k y k−r r  from 2  in  

 

 

 

 
Figure 2. Different choices of fuzzy sets for the rating devia-
tion variable. 

 
Formula (5) because 2  is the maximum distance value 
that we can get from Formula (6) [in this case the two 
deviation values belong to two different fuzzy sets with a 
unity membership value to each one of them, for example 

, 1,0x k =r  and , 0,1y k =r ]. For fuzzifying the rating 
deviation values, ,y kdev , we define five fuzzy sets for 
each deviation value (Figure 2(c)). The membership val-
ues for these fuzzy sets are defined as follows [14]: 

( )1

1 4 3
0 4 and 2

2 3 2

d
m d d d

d d

− ≤ ≤ −
= < − > −
− − − < ≤ −

   (7a) 
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( )2
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( )3
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( )5

0 2 and 4
1 3 4

2 2 3

d d
m d d

d d

< >
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 − ≤ ≤

    (7e) 

Accordingly, each deviation value will get a 5-tuple 
membership values (5-tuple vector) to the five fuzzy sets. 
For example, if , 2.3y kdev = , then the corresponding 
5-tuple membership vector will be  

, 0,0,0,0.7,0.3y kdev = . The fuzzy weight, kw , for the 
thk  common item is obtained by Formulae (8) and (9) as 

done before for the rating values. 

( ), ,2 dis ,k x k y kw = − dev dev          (8) 

( ) ( )2

, , , ,
1

dis ,
l

j j
x k y k x k y k

j
dev dev

=

= −∑dev dev     (9) 

where ,x kdev  is the membership vector for ,x kdev  value. 
In general ,x kdev  and ,y kdev  are two vectors of size l  
(in this paper 5l = ) where ,

j
x kdev  is the membership 

value of the ,x kdev  value to its thj  fuzzy set. An ex-
ample of two deviation values belonging to two different 
fuzzy sets with a unity membership value to each one of 
them is , 1,0,0,0,0x kdev =  and , 0,0,0,1,0y kdev = . 

4. Fuzzy-Weighted Similarity Measures for 
Memory-Based CRS 

Usually, weighting the similarity measure is done by 
introducing a weight, kw , to its numerator. The way of 
calculating these weights determines the weighting name. 
Consequently, the fuzzy-weighted cosine similarity meas-
ure and fuzzy-weighted Pearson correlation coefficient 
are defined as below: 

( )
, ,

2 2
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k xy k xy

k x k y k
s S
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x k y k
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∈ ∈
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For both similarity measures, the fuzzy weights can be 
obtained based on the raw ratings themselves or based on 
the rating deviations. The direct rating values ignore the 
user’s taste and preferences for the rating scale while the 
rating deviations implicitly take the users’ different rat-
ing scales into consideration. Therefore we expect that 
the fuzzy weighting based on the rating deviations will 
perform better than the fuzzy weighting based on the raw 
ratings. 

The third similarity measure we have examined is the 
mean difference weights similarity measure which gives 
an indirect way for calculating the similarity between 
users. The main idea for this similarity measure is how to 
get weights for the differences before summing up these 
weights. Bobadilla et al. [7] uses GA weights. However, 
fuzzy logic offers a very good alternative for calculating 
these weights without the headache of GA learning. The 
time complexity of GA learning depends on the number 
of users, number of items and the number of iteration 
required if a predefined threshold of the fitness function 
is not satisfied. For space complexity, GA learning process 
requires the system to store as large as the utility matrix 
for GA weights. On the other hand, fuzzy weighting cal-
culates weights on-the-fly. The system needs to store 
these weights only at the implementation stage. The time 
complexity of calculating the fuzzy weights depends on 
the lengths of the vectors ,y kr  and ,y kdev . This time 
can be assumed constant as the lengths of the vectors 

,y kr  and ,y kdev  are constants for a given system. A 
more general mean difference weights similarity measure 
can be rewritten in terms of the difference, dif , as be-
low. 

( )
( )dif

sim , k xy
k

s S
x y

xy

w

S
∈

=
∑

u u        (12) 

The difference can take many forms based on the un-
derlying variable. In this paper, the difference can be 
obtained between the raw ratings or between the rating 
deviations from their corresponding rating means. 

, ,dif x k y kr r= −             (13) 

, ,dif x k y kdev dev= −           (14) 

The same reasoning for preferring PCC over cosine 
similarity measure is applicable here for preferring the 
difference of the rating deviations over the difference of 
the ratings themselves. This paper examines two options 
for calculating the difference fuzzy weights. The first op-
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tion uses the two fuzzy sets for ratings depicted in Fig-
ure 1(d) (Formula (4)). The corresponding fuzzy weights 
are calculated using Formulae (5), and (6). The second 
option uses the five fuzzy sets for rating deviation values 
depicted in Figure 2(c) (Formula (7)). The correspond-
ing fuzzy weights are calculated using Formulae (8), and 
(9). The two options get fuzzy weights without going 
through a comprehensive GA learning. 

5. Experimental Evaluation 
5.1. Dataset Selection and Formation 
We conduct our experiments using the one million Mo- 
vieLens dataset [16]. This dataset consists of 1,000,209 
ratings by 6040 users on 3900 movies. Table 1 illustrates 
the distribution of the users of this dataset according to 
the number of each user’s declared ratings. Consequently, 
the total dataset is divided into three datasets, DataSet1, 
DataSet2, and DataSet3 according to the user’s total rat- 
ings. To mimic the whole dataset, we randomly select 
500 users out of 6040 total users such that 50% (250 us- 
ers) are selected from DataSet1, 40% (200 users) are 
selected from DataSet2, and 10% (50 users) are selected 
from DataSet3 [14]. 

Keeping in mind the actual users’ distribution, we 
subdivide the resulting dataset into 5 mutually exclusive 
folds, fold(1), …, fold(5), each of which having the same 
size, 100 users (20% of the total). Each fold mimics the 
whole dataset distribution where 50 users, 40 users, and 
10 users are belonging to DataSet1, DataSet2, and Data- 
Set3, respectively. Training and testing are performed 5 
times where in iteration-i, fold(i) is reserved as the test 
set (20%) and the remaining folds are collectively used to 
train the system (80%). That is in Split-1 dataset, fold 
(2), …, fold(5) collectively serve as the training set while 
fold(1) is the test users; Split-2 is trained on fold(1), 
fold(3), …, fold(5) and tested on fold(2); and so on [15]. 
Thus each fold is used the same number of times for 
training and once for testing. The number of total users, 
total training users, and total active users are 500M = , 

400TM = , and 100AM = , respectively. 
During the testing phase, the set of declared ratings, 

aS , by an active user, au , are divided randomly into two 
disjoint sets, namely training ratings TR

aS  (34%) and test 
ratings TE

aS  (66%) such that TR TE
a a aS S S=  . The CRS 

treats TR
aS  as the only declared ratings while TE

aS  are  
 

Table 1. The one million MovieLens dataset users’ distribu- 
tion. 

DataSet No. of Users’ Ratings No. of Users Total Ratings (%) 

DataSet1 20 - 100 3154 155,677 52 

DataSet2 101 - 500 2491 550,580 41 

DataSet3 >500 395 287,913 7 

treated as unseen ratings that the system would attempt to 
predict for testing the CRS performance. 

5.2. Evaluation Metrics 
The performance of each CRS is evaluated using cover- 
age, percentage of the correct predictions (PCP), and 
mean absolute error (MAE) [2,17,18]. Coverage is the 
measure of the percentage of items for which a CRS can 
provide predictions. We compute the active user cover- 
age as the number of items for which the CRS can gener- 
ate predictions for that user over the total number of un- 
seen items. The split coverage over all active users is 
given by: 

1

1

Coverage

A

A

M
p

i
i

M
TE
i

i

N

S

=

=

=
∑

∑
            (15) 

Here, p
iN  is the total number of predicted items for 

user iu . The PCP of the active user [2,17,18] is the per- 
cent of the correctly predicted items by CRS for a given 
active user to the total number of items in the test ratings 
set of that user. The set of correctly predicted items for a 
given user and the split PCP over all active users are de- 
fined by the following formulae: 

( ) { }, ,CorrectSet ,TE
a k k a a k a ku s s S pr r= ∈ =   (16) 

( )
1

1

CorrectSet
100%

A

A

M

i
i

M
TE
i

i

u
PCP

S

=

=

= ×
∑

∑
      (17) 

The MAE measures the deviation of predictions gen- 
erated by the CRS from the true ratings specified by the 
active user [17,18]. The split MAE over all active users 
( )AM  is given by: 

, ,
1 1

1 1
TE
iA

SM

i k i kTE
i kA i

MAE pr r
M S= =

 
 = −
 
 

∑ ∑     (18) 

Low coverage value indicates that the CRS will not be 
able to assist the user with many of the items he has not 
rated while lower MAE corresponds to more accurate 
predictions of a given CRS. Over all splits we compute 
PCP (coverage) by summing all correct predictions (pre- 
dictions) over all active users over all splits and divided 
it by the sum of all testing set sizes of all active users 
over all splits. The MAE over all splits is the average of 
all splits’ MAEs. 

5.3. Experiments 
Our experiments assume that the number of common 
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items between the active user and any training user has to 
be at least five to include this training user in the 
neighborhood set of that active user. By this assumption 
we guarantee that there is an acceptable history between 
the two users. Otherwise the similarity between the two 
users may be 100% even if they have only one common 
item. This data is too small to draw any reliable conclu-
sions about the users’ similarity. Moreover, the mislead-
ing high correlations lead to neighbors that are terrible 
predictors for the active user. 

The neighborhood set size, NSS = {10, ∙∙∙, 100} is 
varied from 10 to 100 by a step size of 10 each time to 
show the effect of NSS on the memory-based CRS per-
formance. The Resnick’s prediction formula [1,2,6] is 
used for predictions which scales the contribution of each 
neighbor’s rating by his similarity to the given active user. 

( ) ( )

( )
,

,

sim ,

sim ,
y x

y x

y k y x y
u N

x k x
x y

u N

r m
pr m

∈

∈

−

= +
∑

∑

u u

u u
    (19) 

All the experiments are conducted on the 500 users’ 
dataset formed in Subsection 5.1. This paper implements 
eight experiments based on the formula used for com-
paring users. The first experiment uses PCC (Formula (1)) 
for similarity computation and we call this CRS as Cor-
relation-Based RS (CBRS). The second experiment uses 

Cosine Vector similarity measure (Formula (2)) for 
similarity computation and we call this CRS as Cosine 
Vector RS (CVRS). The list of the conducted CRS ex-
periments, their similarity measures, and their shortcuts 
are listed in Table 2. 

5.4. Analysis of the Results 
The PCP, MAE, and coverage over all active users and 
over all splits for all the examined memory-based CRSs 
are presented in Tables 3 to 5. The results of Tables 3 
and 4 show that FPRS outperforms all the examined 
CRSs in terms of PCP, and MAE. However, FWRS out-
performs all the examined CRSs in terms of coverage as 
Table 5 shows. Both FPRS and FWRS use the rating 
deviation values for evolving fuzzy weights. The per- 

 
Table 2. Different CRS experiments and their shortcuts. 

Similarity Measure Fuzzy Variable Shortcut 
Cosine similarity measure None CVRS 
Cosine similarity measure Rating deviations FCRS 
Cosine similarity measure Ratings FCRS1 

Pearson correlation coefficient None CBRS 
Pearson correlation coefficient Rating deviations FPRS 
Pearson correlation coefficient Ratings FPRS1 

Mean difference weights Rating deviations FWRS 
Mean difference weights Ratings FWRS1 

 
Table 3. PCP values for the different CRSs for many neighborhood set sizes. 

NSS CBRS FPRS FPRS1 CVRS FCRS FCRS1 FWRS FWRS1 
10 17.077 19.240 17.169 15.364 18.949 17.809 18.554 17.477 
20 24.430 26.917 25.104 22.559 26.393 24.281 26.365 24.902 
30 29.612 31.476 29.928 26.967 30.852 29.338 31.349 29.473 
40 32.915 35.202 34.137 30.003 34.953 33.089 34.680 32.634 
50 35.967 37.764 36.874 32.316 37.132 35.227 36.366 34.892 
60 37.772 38.662 38.197 33.655 38.188 36.916 37.703 36.599 
70 39.203 39.993 39.137 35.161 39.128 38.247 38.578 37.977 
80 40.093 40.725 40.201 36.400 39.652 39.544 39.226 38.896 
90 40.692 41.133 40.626 37.681 40.393 40.626 39.615 39.440 
100 41.266 41.707 41.075 38.280 41.216 41.300 40.037 39.778 

 
Table 4. MAE values for the different CRSs for many neighborhood set sizes. 

NSS CBRS FPRS FPRS1 CVRS FCRS FCRS1 FWRS FWRS1 
10 3.1919 2.8297 3.1265 3.5206 2.7943 3.0016 2.9365 3.0901 
20 1.6463 1.5041 1.6628 1.8602 1.5462 1.6764 1.5853 1.7184 
30 1.2480 1.1381 1.2093 1.3721 1.1243 1.2416 1.1773 1.2694 
40 1.0234 0.9519 0.9895 1.1432 0.9531 1.0415 1.0078 1.0822 
50 0.9056 0.8619 0.8791 1.0343 0.8731 0.9425 0.9338 0.9749 
60 0.8401 0.8144 0.8319 0.9588 0.8263 0.8823 0.8837 0.9099 
70 0.8000 0.7873 0.7910 0.8890 0.7950 0.8326 0.8515 0.8677 
80 0.7777 0.7665 0.7698 0.8453 0.7760 0.8009 0.8303 0.8439 
90 0.7658 0.7557 0.7602 0.8234 0.7557 0.7744 0.8172 0.8267 
100 0.7560 0.7457 0.7490 0.8033 0.7459 0.7618 0.8076 0.8157 
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Table 5. Coverage values for the different CRSs for many neighborhood set sizes. 

NSS CBRS FPRS FPRS1 CVRS FCRS FCRS1 FWRS FWRS1 
10 46.041 50.749 46.523 43.196 49.534 47.338 49.356 47.747 
20 65.380 68.450 65.522 60.680 68.084 63.999 68.856 65.959 
30 75.220 78.997 75.828 70.121 79.321 74.505 80.213 76.522 
40 82.732 86.500 84.312 76.818 86.017 81.692 87.188 83.124 
50 88.629 90.767 89.586 80.835 89.744 85.651 90.790 87.801 
60 92.123 92.963 92.198 84.454 91.865 89.345 93.303 91.074 
70 94.302 94.560 94.202 87.548 93.811 92.148 94.947 93.585 
80 95.367 95.600 95.417 90.110 94.934 93.745 96.171 95.005 
90 96.140 96.423 96.066 91.590 95.908 95.250 96.985 95.950 
100 96.864 96.989 96.939 92.955 96.789 96.049 97.542 96.780 

 
formance of the mean difference similarity measure [7] 
with fuzzy weighting is close to that of FCRS and FPRS 
even it does not go through a long and expensive GA 
learning. 

Figures 3 to 8 depict PCP, MAE, and coverage results 
of the traditional approaches with their fuzzy weighting 
approaches. On the other side, Figures 6 to 8 compare 
different fuzzy weighting approaches for the examined 
memory-based CRSs. The experimental results show that 
CVRS performs the worst and the results indicate that all 
the proposed variants even poor ones outperform CVRS 
for all aspects and all NSSs. This is because CVRS relies 
directly on the raw ratings themselves. The raw ratings 
depend on each user’s rating scale and on his mood and 
taste. Thus comparing one user’s raw rating with another 
user’s raw ratings will not give a good indication of their 
similarity. This problem is alleviated somehow with CBRS 
which uses the rating deviation from each user’s mean of 
ratings instead of his direct raw ratings. 

Once fuzzy weighting is introduced to CVRS, its per- 
formance is improved in all aspects. The improvement 
degree depends on the fuzzy variable used for weighting. 
For example, FCRS1 outperforms CVRS but not CBRS 
because its fuzzy variable for weighting is the user-de- 
pendent raw ratings. However, FCRS outperforms both 
CVRS and CBRS as its fuzzy variable for weighting is 
the rating deviations which alleviate the rating scale 
variations of different users. 

The higher PCP and coverage values of the proposed 
approaches obviously illustrate that better sets of like- 
minded users are found and therefore the accuracy of the 
CRS gets enhanced. The PCP and coverage values for all 
CRSs increase as xN  increases for all CRSs while the 
MAE values decreases as xN  increases. 

MAE starts high because only a few numbers of items 
can get predictions. For small neighborhood set sizes, 
there is a big improvement for FPRS, FCRS, and FWRS 
in all aspects. This improvement narrows as neighbor- 
hood set size increases. The performances of FPRS, FCRS, 
and FWRS seem very close with a small advantage for 
FPRS. This implies that the similarity measure choice 
has less effect as the fuzzy weighting variable is the de- 
viation values. 

 
Figure 3. PCP of CBRS, FPRS, FPRS1, CVRS, FCRS, and 
FCRS1. 

 

 
Figure 4. MAE of CBRS, FPRS, FPRS1, CVRS, FCRS, and 
FCRS1. 

 

 
Figure 5. Coverage of CBRS, FPRS, FPRS1, CVRS, FCRS, 
and FCRS1. 
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Figure 6. PCP of FPRS, FPRS1, FCRS, FCRS1, FWRS, and 
FWRS1. 

 

 
Figure 7. MAE of FPRS, FPRS1, FCRS, FCRS1, FWRS, 
and FWRS1. 

 

 
Figure 8. Coverage of FPRS, FPRS1, FCRS, FCRS1, FWRS, 
and FWRS1. 

6. Conclusions 
Different users of CRS usually give different weightings 
for their declared ratings. Thus many methods have been 
proposed for introducing weights to the similarity meas-
ure. Instead of utilizing GA for small intervals which 
degrades the usefulness of GA such as used in [7], the 
proposed fuzzy weightings give easy ways to get each 
user fuzzy weights for different rating values and rating 
deviation values. This weighting is not fixed and will be 
changed by changing the neighbor. Moreover, the pro-

posed fuzzy weighting is efficient in terms of time and 
space complexities. An extra advantage of the fuzzy 
weighting derived from the user rating deviations is that it 
avoids the users’ different rating scales problem. 

Experimental results show that fuzzy weighting im-
proves the CRS performance irrespective of the fuzzy 
weighting variable where the fuzzy-weighted similarity 
measures outperform their traditional counterparts in terms 
of PCP, coverage, and mean absolute error. The fuzzy 
weighting performance advantage increases as we use 
rating deviations instead of ratings themselves. This paper 
maps crisp values to membership vectors to get the fuzzy 
weights. However, other fuzzy techniques can be used for 
calculating these weights. This is left for the future work. 
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