
Int. J. Communications, Network and System Sciences, 2011, 4, 170-179
doi:10.4236/ijcns.2011.43021 Published Online March 2011 (http://www.SciRP.org/journal/ijcns)

Copyright © 2011 SciRes. IJCNS

Verification of Session Initiation Protocol Using Timed
Colored Petri Net

Safiye Kızmaz, Mürvet Kırcı
Electronics & Communication Engineering Department, Istanbul Technical University, Istanbul, Turkey

E-mail: safiyekizmaz@gmail.com, ucerm@itu.edu.tr
Received December 16, 2010; revised January 29, 2011; accepted February 3, 2011

Abstract

In this work, Session Initiation Protocol model is established by using Timed Colored Petri Nets (TCPN).
SIP (Session Initiation Protocol) is a protocol developed to assist in providing advanced telephony services
across the Internet. The Session Initiation Protocol (SIP) has become the quasi-standard for Voiceover-
Internet Protocol (VoIP) communications. SIP is based on a client-server infrastructure in which user agents
represent the end-terminals as clients, proxy servers handle SIP message routing between the user agents,
and registrar servers store the client’s contact information into a location service. By use of timed color set
and useful time attributes in tokens defined in CPN tools, timer and time-related problems of SIP are mod-
eled and analyzed. Timer is an important part for SIP, especially the INVITE transaction.

Keywords: Session Initiation Protocol, Timed Colored Petri Nets, Protocol Verification, CPN Tool

1. Introduction

Communications with Voice over IP (VoIP) have been
popular because of developments of Internet. VoIP uses
the Internet Protocol (IP) to transmit voice as packets
over an IP network. VOIP can be achieved on any data
network that uses IP, like Internet, Intranets and Local
Area Networks (LAN). Before a conversation can take
place between participants, protocols must be employed
to establish a session, then to maintain and terminate the
session. The Session Initiation Protocol (SIP) is one of
the protocols being used for such purposes.

SIP is developed by the Internet Engineering Task
Force (IETF) and published as Request for Comments
(RFC) 3261 in 2002 [1]. Because of its increasing popu-
larity and importance in VoIP applications [2], SIP has
become a permanent element of the IP Multimedia Sub-
system architecture as a signalling protocol [3]. Thus, it
is important to assure that the contents of RFC 3261 are
correct, unambiguous, and easy to understand. Modelling
and analysing the specification using formal methods can
help in achieving this goal. Moreover, from the perspec-
tive of protocol engineering, verification is also an im-
portant step of the life-cycle of protocol development
[4,5], as a well-defined and verified specification will
reduce the cost for implementation and maintenance.

SIP is a transaction-oriented protocol that carries out

tasks through different transactions. The two main SIP
transactions are the INVITE transaction for setting up a
session, and the non-INVITE transaction for maintaining
and closing down a session. Our current work is aimed at
verifying the functional properties of the INVITE trans-
action.

We use Timed Colored Petri Nets (CPNs) [6] as the
modeling and analyzing technique. Timed CPN have an
additional property that can be used for different kinds of
performance analysis. In untimed Petri Nets (Classical
PNs or CPNs) it is presumed that the firing of transitions
is instantaneous. Since real world actions take time to
complete, tokens in timed CPN carry additional informa-
tion, the time stamp. As CPNs TCPNs also have their
well-developed supporting software package, the CPN
Tools (Homepage of the CPN Tools).

SIP Invite Transaction is modelled and analysed with
CPN in [7-10]. In [7], the functional properties of the
INVITE transaction over a reliable transport medium
have verified. In [8], SIP INVITE transaction was mod-
elled and analysed when the medium is unreliable. Vari-
ous forms of real-time multimedia session data such as
voice, video, or text messages are carried by several
protocols [11,12]. SIP works in concert with these pro-
tocols [13]. Although time factor is very important for
SIP, SIP is not modelled with using TCPNs previously.

We firstly model the INVITE transaction. The rest of

http://www.SciRP.org/journal/ijcns)
mailto:safiyekizmaz@gmail.com
mailto:ucerm@itu.edu.tr

S. KIZMAZ ET AL.

Copyright © 2011 SciRes. IJCNS

171

the paper is organized as follows. Section 2 introduces
petri nets especially timed colored petri nets and defini-
tions of timed colored petri nets are indicated. Section 3
introduces SIP INVITE transaction. Modelling and an-
alysis of the transaction is then described in Section 4.
Finally, Section 5 concludes the work and suggests fu-
ture research.

2. Structure of SIP

SIP is an application-layer control protocol that can es-
tablish, modify, and terminate multimedia sessions (con-
ferences) such as Internet telephony calls. SIP is struc-
tured into four layers, each of which carries out a set of
functions. The lowest layer of SIP is its syntax and en-
coding. Its encoding is specified using an augmented
Backus-Naur Form grammar (BNF). The second layer is
the transport layer. It defines how a client sends requests
and receives responses and how a server receives re-
quests and sends responses over the network. The third
layer is the transaction layer with each transaction con-
sisting of a client transaction sending requests and a
server transaction responding to requests. The layer
above the transaction layer is called the transaction user
(TU), which creates and destroys SIP transactions, and
utilises services provided by the transaction layer [1].

Among the four SIP layers, the transaction layer is the
most important layer since it is responsible for request-
response matching, retransmission handling with unreli-
able transport medium, and timeout handling when set-
ting up or tearing down a session.

2.1. The INVITE Transaction

The INVITE client and server transactions are defined in
RFC 3261 using two state machines, as shown in Figure
1.

1) INVITE Client Transaction
The TU communicates with the client transaction

through a simple interface. When the TU wishes to initi-
ate a new transaction, it creates a client transaction and
passes it the SIP request to send and an IP address, port,
and transport to which to send it. The client transaction
begins execution of its state machine.

The INVITE transaction consists of a three-way hand-
shake. The client transaction sends an INVITE, the
server transaction sends responses, and the client trans-
action sends an ACK.
● An INVITE client transaction (Figure 1 (a)) has

four states: Calling, Proceeding, Completed, and Ter-
minated.
● The initial state, “calling”, must be entered when the

TU initiates a new client transaction with an INVITE

request.
● The client transaction must pass the request to the

transport layer for transmission.
● If an unreliable transport is being used, the client

transaction must start timer A with a value of T1. For any
transport, the client transaction must start Timer B with a
value of 64*T1 seconds. Timer A controls request, Timer
B controls transaction timeouts.
● When timer A fires, the client transaction must re-

transmit the request by passing it to the transport layer,
and must reset the timer with a value of 2*T1. When
timer A fires 2*T1 seconds later, the request must be
retransmitted again.
● If the client transaction is still in the “Calling” state

when timer B fires, the client transaction should inform
the TU that a timeout has occurred.
● The client transaction must not generate an ACK.

The value of 64*T1 is equal to the amount of time re-
quired to send seven requests in the case of an unreliable
transport.
● If the client transaction receives a provisional re-

sponse while in the “Calling” state, it transitions to the
“Proceeding” state.
● If a Transport Err (Error) occurs or Timer B expires,

the client transaction moves to the Terminated state and
informs its TU immediately.
● In the “Proceeding” state, the client transaction

should not retransmit the request any longer. Further-
more, the provisional response must be passed to the TU.
Any further provisional responses must be passed up to
the TU while in the “Proceeding” state.
● When in either the “Calling” or “Proceeding” states,

reception of a response with status code from 300-699
must cause the client transaction to transition to “Com-
pleted”.
● The client transaction should start Timer D when it

enters the “Completed” state, with a value of at least 32
seconds for unreliable transports, and a value of zero
seconds for reliable transports. Timer D reflects the
amount of time that the server transaction can remain in
the “Completed” state when unreliable transports are
used. This is equal to Timer H in the INVITE server
transaction, whose default is 64*T1.
● If Timer D fires while the client transaction is in the

“Completed” state, the client transaction must move to
the terminated state. When in either the “Calling” or
“Proceeding” states, reception of a 2xx response must
cause the client transaction to enter the “Terminated”
state, and the response must be passed up to the TU.

2.1. INVITE Server Transaction

● The server transaction is responsible for the delivery of

S. KIZMAZ ET AL.

Copyright © 2011 SciRes. IJCNS

172

requests to the TU and the reliable transmission of re-
sponses.
● Server transactions are created by the core when a

request is received, and transaction handling is desired
for that request.
● As with the client transactions, the state machine

depends on whether the received request is an INVITE
request. When a server transaction is constructed for a
request, it enters the “Proceeding” state.
● The server transaction must generate a 100 (Trying)

response unless it knows that the TU will generate a pro-
visional or final response within 200 ms, in which case it
may generate a 100 (Trying) response.
● If, while in the “Proceeding” state, the TU passes a

2xx response to the server transaction, the server transac-
tion must pass this response to the transport layer for
transmission. It is not retransmitted by the server trans-
action; retransmissions of 2xx responses are handled by
the TU. The server transaction must then transition to the
“Terminated” state.
● While in the “Proceeding” state, if the TU passes a

response with status code from 300 to 699 to the server
transaction, the response must be passed to the transport
layer for transmission, and the state machine must enter
the “Completed” state.
● For unreliable transports, timer G is set to fire in T1

seconds, and is not set to fire for reliable transports.
● When the “Completed” state is entered, timer H

must be set to fire in 64*T1 seconds for all transports.
Timer H determines when the server transaction aban-
dons retransmitting the response.
● If Timer G fires, the response is passed to the trans-

port layer once more for retransmission, and Timer G is
set to fire in min (2*T1, T2) seconds. From then on,

when Timer G fires, the response is passed to the trans-
port again for transmission, and Timer G is reset with a
value that doubles, unless that value exceeds T2, in
which case it is reset with the value of T2.
● If an ACK is received while the server transaction is

in the “Completed” state, the server transaction must
transition to the “Confirmed” state. As Timer G is ig-
nored in this state, any retransmissions of the response
will cease.
● If Timer H fires while in the “Completed” state, it

implies that the ACK was never received. In this case,
the server transaction must transition to the “Termi-
nated” state, and must indicate to the TU that a transac-
tion failure has occurred.
● The purpose of the “Confirmed” state is to absorb

any additional ACK messages that arrive, triggered from
retransmissions of the final response.
● Once Timer I fires, the server must transition to the

“Terminated” state.

3. Petri Nets

3.1. Petri Nets Overview
Petri Nets (PNs) are a well-known formal and graphical
language for modelling concurrent and asynchronous
systems in the presence of conflicts, mutual exclusion,
synchronization and nondeterministic aspects. In its basic
form, PNs are adequate for qualitative evaluation of sys-
tems, for example to answer questions about liveness,
boundedness, invariants and other characteristics of a
system’s model. Analysis can be performed by linear
algebra techniques or by investigating the set of reach-
able states.

(a) INVITE client transaction (b) INVITE server transaction

Figure 1. State machines defining SIP INVITE transaction [1].

S. KIZMAZ ET AL.

Copyright © 2011 SciRes. IJCNS

173

3.2. Timed Colored Petri Nets

Most applications of CPNs are used to investigate the
logical correctness of a system [14]. The CPN extended
by time gives a possibility to describe the dynamic prop-
erties of a system in the time space [14-16]. The time
concept of CPNs is based on the introduction of a global
clock. The clock values represent the model time and
they be discrete (for example integers). Each token carry
a time value, also called a time stamp. The time stamp
describes the earliest model time at which the token can
be used, i.e., removed by the occurrence of a binding
element.

3.2.1. The Basic Definitions of TCPN
The original definitions of TCPN [17,18]:

Definition 1: A timed multi-set tm, over a non-empty
set S, is a function []SxR Ntm ∈ → such that the sum:

() (),
r R

tm s tm s r
∈

= ∑ (1)

is finite for all s S∈ The non-negative integer tm(s) is
the number of appearances of the element s in the timed
multi-set tm. The list:

[] ()1 2, , , tm stm s r r r =  L (2)

is defined to contain the time values r R∈ for which
tm(s, r) ≠ 0. Each r appears tm(s, r) times in the list,
which is sorted such that 1i ir r

+
≤ for all 1, ,i ∈ L

() 1tm s − .
We usually represent the time multi-set tm by a formal

sum:

() []@s S tm s s tm s
∈

′∑ (3)

By TMSS we denote the set of all timed multi-sets
over S. The non-negative integer (){ }tm s s S∈ are
called the coefficients of the timed multi-set tm, and tm(s)
is called the coefficient of s. An element s S∈ is said
to belong to the timed multi-set tm iff tm(s) ≠ 0 and we
then write s tm∈ . Each timed multi-set TMStm S∈ de-
termines an ordinary multi-set u MStm S∈ defined by:

() 'u
s S

tm tm s s
∈

= ∑ (4)

Definition 2: A timed non-hierarchical CP-nets is a tu-
ple TCPN = (CPN, R, 0r) such that:

1) CPN= (Σ , P, TA, N, C, G, E, I) satisfying the re-
quirements below:

a) Σ is a finite set of non empty types, called color
sets.

b) P is a finite set of places.
c) T is a finite set of transitions.
d) A is a finite set of arcs such that:

P T=P A=T A= .∅I I I

e) N is a node function. It is defined from A into
P T T P.× ×U

f) C is a colour function. It is defined from P into Σ .
g) G is a guard function. It is defined from T into ex-

pressions such that:

()() ()():t T Type G t B Type G t ∀ ∈ = ∧ ⊆ ∑ 
h) E is an arc expression function. It is defined from A

into expressions such that:

()() ()() ()()
:

MS

A

Type E a C p a Type VarE a

α∀ ∈

 = ∧ ⊆ ∑ 

where p(a) is the place of N(a).
i) I is an initialization function. It is defined from P

into closed expressions such that:

()() ()():
MS

p P TypeI p C p a ∀ ∈ = 
2) R is the set of time values, also called time stamps.

It is a subset of R closed under + and containing 0.
3) 0r is an element of R called the start time.
Definition 3: A binding of transition t is a function b

defined on Var(t), such that;
1) () () ():Var t b Typeν ν ν∀ ∈ ∈
2) G(t) .
By B(t) we denote the set of all binding for t.
Definition 4: A binding element is a pair (t, b) where

t T∈ and ()b B t∈ . The set of all binding elements is
denoted by BE.

Definition 5: A step Y is enabled in a state ()1 1, M r
at time 2r iff the following properties are satisfied:

1) ()
()

()2
,

: , l
t b Y

P E p t b r M pρ
∈

∀ ∈ < > <∑

2) 1 2r r≤ .
3) 2r is the smallest element of R for which there ex-

ists a step satisfying above two restrictions.
Definition 6: When a step Y is enabled in a state

()1 1, M r at time 2r it may occur, changing the state
()1 1, M r to another state ()2 2, M r , where 2M is
defied by:

() () ()

()

2

2

2 1
(,)

,

: ,

 + (,)

r
t b Y

rt b Y

P M M E t b

E t b

ρ ρ ρ ρ

ρ

∈

∈

 
∀ ∈ = − < > 

 
< >

∑

∑

The first sum is called the removed token while the
second is called the added tokens. Moreover, we say that
()2 2, M r is directly reachable from ()1 1, M r by the
occurrence of the step Y at time 2r .

S. KIZMAZ ET AL.

Copyright © 2011 SciRes. IJCNS

174

4. Modelling and Analysis of the SIP
INVITE Transaction

4.1. Summary of Timers

The client transaction uses three timers: A, B and D.
Timer B sets up the maximum time that the client trans-
action would wait in its Calling state for a provisional or
final response from the server side. This timer is used no
matter over what transport medium the transaction is
running. Timer A is used only when the medium is unre-
liable, to control retransmissions of INVITE requests.
Timer D also only plays its role when the medium is un-
reliable because its value is set to zero for reliable trans-
port and 32 seconds for unreliable transport.

The server transaction also has three timers: G, H and
I. Timer H is used for both reliable and unreliable me-
dium, to set up the maximum time that the server trans-
action would wait in its Completed state before an ACK
is received. Timer G is only used for unreliable transport,
to control retransmissions of 300-699 responses. Timer I
is set to zero seconds for a reliable transport medium,
and 5 seconds for an unreliable medium.

4.2. Software Tools and TCPN

CPN Tools can simulate both basic Petri Nets and more
advanced Colored Petri Nets [17]. The “color” or proper-
ties of the model are set using CPN Markup Language
(CPN ML). Time is one of many properties that can be
set, so timed Colored Petri Nets are available.

Since CPN Tools simulate models using Petri Nets
there are only three basic elements. These are places,
transitions and arcs, as shown in Figure 2.

The “color” modifies the way a model functions. CPN
Tools can create, simulate and make state space analysis
of the Petri Net model.

Figure 2. View of the CPN Tools with opened network win-
dow and opened menus to create, simulate and make state
space analysis of the model.

Basically, Petri Net is a directed graph composed of
two disjoint sets of nodes called places and transitions.
Places represent states of the system, while transitions
represent actions that the system can perform. To simu-
late an action performed by the system, appropriate tran-
sition has to “fire”.

The “firing” of a transition is enabled or disabled by
the tokens inside transition’s input place(s). If there is an
appropriate number of tokens in all input places, this
depends on connecting arcs’ inscriptions, then the transi-
tion is enabled and it can “fire”.

4.3. TCPN Model of the INVITE Transaction

Figure 3, Tables 1 and 2 show the TCPN model which
based on state machines for the INVITE transaction. It
extends the CPN model presented in [7] by adding time
factor, and by modelling an unreliable transport medium.
Same naming conventions are used here as in [4]. To
distinguish a server transaction’s state from a client
transaction’s state with the same name, a capitalised S is
appended to the name of the state of the server transac-
tion (except for the proceedingT state). SIP response
messages (Table 3) are named as follows: r100 repre-
sents a 100 Trying response; r101 is for a provisional
response with a status code between 101 and 199; r2xx
for a 2xx response; and r3xx for a 300-699 response.
● Place Client is typed with colour set STATEC and

its initial marking is calling.
● Place Invite Sent is typed by colour set INT.
● Transition Send Request is enabled only if the Client

is calling and Invite Sent contains an integer 0.
● Transition Receive Response is enabled when a re-

sponse is received and the Client is not terminated.
● If the client transaction receives a 300-699 response,

an ACK is passed to SIP transport layer, and the Client
changes to be completed.
● If the received response is r100, r101 or r2xx, no

ACK is sent; when the response is r100 or r101, the Cli-
ent changes to proceeding; and when the response is
r2xx, the Client changes to be terminated.
● If the client transaction receives a 300-699 response,

an ACK is passed to SIP transport layer, and the Client
changes to be completed.
● If the received response is r100, r101 or r2xx, no

ACK is sent; when the response is r100 or r101, the Cli-
ent changes to proceeding; and when the response is
r2xx, the Client changes to be terminated.
● Transition Timer D is enabled once the Client is com-

pleted, and its occurrence changes Client to be terminated.
● Transition Client Transport Err is enabled when the

Client is completed. Its occurrence also changes Client to
be terminated.

S. KIZMAZ ET AL.

Copyright © 2011 SciRes. IJCNS

175

If
re

s =
 r3

xx

th
en

 1
`A

C
K

el

se
 e

m
pt

y

If
 (s

c
=

ca
lli

ng
) t

he
n

1`
IN

V
IT

E
el

se
 1

`A
C

K

Lo
se

R

eq
ue

st

C
lie

nt

Tr
an

sp
or

t
Er

r

[a
 =

 0
]

[(
sc

 =
 c

al
lin

g)

or
el

se

(s
c

=
co

m
pl

et
ed

)]

@
 +

 3
20

00

Ti
m

er
 D

sc

te
rm

in
at

ed

co
m

pl
et

ed

If
 ((

sc
 =

 c
om

pl
et

ed
)

an
da

ls
o

(r
es

 =
 r1

00

or
el

se
 re

s =
 r1

01
))

th

en
 c

om
pl

et
ed

el

se
 c

as
e

re
s o

f

r2
xx

 =
>

te
rm

in
at

ed

| r
10

0
=>

 p
ro

ce
ed

in
g

| r
10

1
=>

 p
ro

ce
ed

in
g

| r
3x

x
=>

 c
om

pl
et

ed
 R
ec

ei
ve

R

es
po

ns
e

[s
c<

>t
er

m
in

at
ed

]
re

sp
on

se
Q

re

sp
on

se
Q

Lo
se

Re

sp
on

se
 R
ES

PO
N

SE
Q

R
es

po
ns

es

re
s:

:re
sp

on
se

Q
 tim

e_
ca

l

A

B

sc

C
lie

nt

Ti
m

e A
 o

r B

STATEC

If
O

T(
tim

e_
ca

l)
th

en
 te

rm
in

at
ed

el

se
 c

al
lin

g

tim
e_

pa
ss

T1

 2*
T1

[a

>=
1t

im
e_

ca
l +

 ti
m

e_
pa

ss
]

tim
e_

co
ns

T1

 tim
e_

co
ns

tim
e_

pa
ss

G

r3
xx

If
 O

T(
tim

e_
ca

lS
)

th
en

 e
m

pt
y

el
se

1`

r3
xx

b

tim
e_

co
ns

@

 +
 (I

f O
T(

tim
e_

ca
lS

)
th

en

0
el

se
 ti

m
e_

pa
ss

S)

If
O

T(
tim

e_
ca

lS
)

th
en

 b
 +

 1

el
se

 b
 IN

T
re

sp
on

se
Q

If
ss

 =
 p

ro
ce

ed
in

g
th

en
 1

`r
10

0b
 +

 1

el
se

 1
`r

e

re
sp

on
se

Q

[(
ss

 =
 p

ro
ce

ed
in

gT
)

or
el

se
 (s

s=
pr

oc
ee

di
ng

S)

an
da

ls
o

le
ng

th
 re

sp
on

se
Q

 <
 n

Se
nd

R

es
po

ns
e

If
ss

 =
 p

ro
ce

ed
in

gT

th
en

 p
ro

ce
ed

in
gS

el

se
 ca

se
 re

 o
f

r1

01
 =

>
pr

oc
ee

di
ng

S
| r

2x
x

=>
 te

rm
in

ate
dS

| r

3x
x

=>
 co

m
pl

ete
dS

Se
rv

er

Tr
an

sp
or

t
Er

r

ss

ss

ss

[r
es

po
ns

eQ
 <

>
nl

l
an

da
ls

o
(s

s=
pr

oc
ee

di
ng

S
or

el
se

ss

=c
om

pl
et

ed
S)

]

te
rm

in
at

ed
S

ST
AT

ES

Ti
m

e
G

 o
r H

Se

rv
er

Ti

m
er

 I

Id
le

co

nf
irm

ed
S

te
rm

in
at

ed
S

@
 +

 5
00

0
[s

s=
co

m
pl

et
ed

S]

If
 ((

re
q

=
IN

V
IT

E)

an
da

ls
o

(s
s=

Id
le

))

th
en

 p
ro

ce
ed

in
gT

el

se
 if

 ((
re

q=
A

C
K

)
an

da
ls

o
(s

s=
co

m
pl

et
ed

S)
)

th
en

 c
on

fir
m

ed
S

el
se

 ss

ss

b
<

20

2*
T1

T1

tim
e_

co
ns

tim

e_
ca

lS
 +

 ti
m

e_
pa

ss
S

If
 O

T(
tim

e_
ca

lS
)

th
en

 te
rm

in
at

ed
S

el
se

 ss

T1

tim
e_

ca
lS

 H

If
 ((

re
q

=
IN

V
IT

E)

an
da

ls
o

(s
s=

pr
oc

ee
di

ng
S)

th

en
 1

`r
10

1
el

se
 if

 (r
eq

=I
N

V
IT

E)

an
da

ls
o

(s
s=

co
m

pl
et

ed
S)

)
th

en
 1

`r
3x

x
el

se
 e

m
pt

y

R
EQ

U
ES

T

re
q

R
ec

ei
ve

R

eq
ue

st

[(
ss

<>
te

rm
in

at
ed

S)
 a

nd
al

so
 (s

s<
>p

ro
ce

ed
in

gT
)]

re
q

IN
V

IT
E

Se
nd

R

eq
ue

st

R
eq

ue
st

s

a

a
+

1

ca
lli

ng

te
rm

in
at

ed

IN
V

IT
E

Se
nt

If
 O

T(
tim

e_
ca

l)
th

en
 a

 +
 1

el

se
 a

1`
ca

lli
ng

 ca
lli

ng
 a IN

T

1`
0

@
 +

 (I
f O

T(
tim

e_
ca

l)
th

en
 0

el

se
 ti

m
e_

pa
ss

)

If
 O

T(
tim

e_
ca

l)
th

en
 1

`T
im

eo
ut

40
8

el
se

 1
`I

N
V

IT
E

Figure 3. CPN model of the INVITE transaction.

S. KIZMAZ ET AL.

Copyright © 2011 SciRes. IJCNS

176

Table 1. The meanings of CPN components in Figure 3.

Client Transaction

Places The meanings stand for

Client model the states of the INVITE client
transaction

Invite Sent count the number of INVITE requests that
have been transmitted and retransmitted

A model Timer A

B model Timer B

Transitions The meanings stand for

Send Request
model how the transaction passes the
original INVITE request to SIP transport
layer for transmission

Receive Response model how the client transaction receives
responses and sends ACKs.

Timer D model the ring of Timer D

Client Transport Err control client transport error

Timer A and B model using Timer A and B

Transport Layer

Places The meanings stand for

Requests model the transmission of requests from
the client side to the server side

Responses model the transmission of responses in the
reverse direction

Transitions The meanings stand for

Lose Request occurrences destroy requests from places
Requests

Lose Response occurrences destroy responses from places
Responses

Server Transaction

Places The meanings stand for

Server model the states of the server transaction

r3xxResent record the number of r3xx retransmitted
when Timer G fires

G model using Timer G

H model using Timer H

Transitions The meanings stand for

Receive Request model the reception of an INVITE or
ACK request

Send Response model how the server transaction send
responses.

Server Transport Err control server transport error

Timer I model using Timer I

Timer G and H model using Timer H and G

Table 2. Declarations of the CPN model.

1. colset STATEC = with calling | proceeding | completed|
terminated;

2. colset STATES = with Idle | proceedingT | proceedingS |
confirmedS | completedS | terminatedS;

3. colset REQUEST = with INVITE | ACK;

4. colset RESPONSE = with r100 | r101 | r2xx | r3xx;

5. colset Response = subset RESPONSE with [r101, r2xx, r3xx];

6. colset time_cons=int timed;

7. colset INT = int with 0..11; (*---variables---*)

8. var time_passS, time_calS: time_cons;

9. var time_pass, time_cal: time_cons;

10. val T1 = 500;

11. var sc : STATEC;

12. var ss : STATES;

13. var req: REQUEST;

14. var re : Response;

15. var res : RESPONSE;

16. var a,b: INT;

17. fun OT(t:time_cons):bool = if t>64*T1 then true else false;

Table 3. SIP response messages.

Timer Value Meaning

T1 500 ms default RTT Estimate

T2 4 s
The maximum retransmit interval for
non-INVITE requests and INVITE
response

T4 5 s Maximum duration a message will
remain in the network

Timer A initially T1 INVITE request retransmit interval,
for UDP only

Timer B 64*T1 INVITE transaction timeout timer

Timer C > 3 min Proxy INVITE transaction timeout

Timer D > 32 for UDP
0s for TCP/SCTP Wait time for response retransmits

Timer E initially T1 Non-INVITE request retransmit in-
terval, for UDP only

Timer F 64*T1 Non-INVITE transaction timeout
timer

Timer G initially T1 INVITE response retransmit interval

Timer H 64*T1 Wait time for ACK receipt

Timer I T4 for UDP
0s for TCP/SCTP Wait time for ACK retransmits

Timer J 64*T1 for UDP
0s for TCP/SCTP

Wait time for non-INVITE retrans-
mits

Timer K T4 for UDP
0s for TCP/SCTP Wait time for response retransmits

S. KIZMAZ ET AL.

Copyright © 2011 SciRes. IJCNS

177

● When an error is reported by SIP transport layer, the
ACK that has been passed to it from the transaction layer
will not be sent to the server side, so when Client Trans-
port Err occurs, the ACK that has been put in place Re-
quests is destroyed.
● A transport error can occur when the client transac-

tion is Calling, so Client Transport Err is enabled as
well when the Client is calling.
● Place Server is typed by colour set STATES.
● ProceedingT models the new state ProceedingT that

we add to the server transaction.
● The initial marking for place Server cannot be pro-

ceedingT.
● Place r3xxResent is typed by INT.
● When the transition occurs upon receiving an IN-

VITE request and the Server is Idle, a proceedingT is
created in the Server place. In this case and only in this
case, transition Receive Request models the operation of
the TU instead of the server transaction of receiving an
INVITE request from the client side
● Once the Server is proceedingT, transition Send

Response is enabled, thus a r100 can be put into Re-
sponses, and the state of Server is changed to proceed-
ingS.
● In the proceedingS state, Send Response is again

enabled. When it occurs, a r101, r2xx or r3xx response is
put into place Responses. This is represented by the
variable re included in the else clause of the inscription
of arc from Send Response to Responses where re is of
type Response. Meanwhile, a proceedingS, completedS
or terminatedS is put in the Server place.
● While the Server is completedS, if an ACK is re-

ceived, the occurrence of Receive Request changes the
Server to confirmedS. We have assumed that the server
transaction can receive INVITE or ACK requests when it
is confirmedS, the last else clause of the inscription of
the arc from Receive Request to Server models the server
transaction stays in the same state and do not send any
response. The guard of Receive Request models that the
server transaction cannot receive any requests after it is
Terminated because it is destroyed by TU after the Ter-
minated state is entered.
● If the medium is unreliable, when the Server is pro-

ceedingS or completedS, a response (r101 or r3xx) is
sent upon receiving an INVITE retransmitted by the cli-
ent.
● Similar to the modelling of Timer A and Timer B

requests when it is confirmedS, the last else clause of the
inscription of the arc from Receive Request to Server
models the server transaction stays in the same state and
do not send any response. The guard of Receive Request
models that the server transaction cannot receive any
requests after it is Terminated because it is destroyed by

TU after the Terminated state is entered.
● If the medium is unreliable, when the Server is pro-

ceedingS or completedS, a response (r101 or r3xx) is
sent upon receiving an INVITE retransmitted by the cli-
ent.
● When the transport medium is unreliable, we cannot

use lists. Instead we let the color sets of Requests and
Responses be multisets of possible requests and re-
sponses respectively, so that an occurrence of an output
transition of Requests or Responses destroys a randomly
picked request or response. This models that the trans-
port medium may reorder messages, i.e. messages are not
received in the order they are sent (put into the Requests
or Responses place).
● To model message loss, we use two transitions Lose

Request and Lose Response, whose occurrences destroy
requests and responses from places Requests and Re-
sponses respectively.
● Retransmission is controlled by transition “Timer A

and B” with T1, an interval 2*T1 and Place A. Timeout
is controlled by declared overtime function OT of 64*T1
for Timer B with transition “Timer A and B” and Place B.
Time transition inscription of “Timer A and B” indicates
time consuming by attaching time to “@+.”
● When timer D fires while the client transaction is in

the “Completed” state, the client transaction must move
to the terminated state.
● As Timer D, when timer I fires, the server must tran-

sition to the “Terminated” state.

4.4. State Space Analysis of the INVITE

Transaction CPN Model

CPN tools offers specific tools to analyze properties of
modeled net, such as boundness and liveness properties
shown in the simulation report, automated state space
calculation, supported query functions of CPN ML,
simulation, and performance tools, etc.

As state space is calculated, CPN ML query functions
can be utilized for further analysis. CPN ML language is
used for declarations and net inscriptions. The monitor-
ing and performance tools are useful for simulation of
models, which would store simulation data for further
analysis. Simulating INVITE transaction model, we can
see states of telecommunication systems which use SIP
protocol at the certain time. Real-time systems behaviors
and carrying of Multimedia session data such as voice,
video, or text messages are seen obviously by adding
time factor.

In this section we define state space analysis of model
which is represented above. In order to avoid state ex-
plosion problem with state space analysis, we use 3 as
the maximum length of the queue in place Response,

S. KIZMAZ ET AL.

Copyright © 2011 SciRes. IJCNS

178

define colset INT = int with 0…1 and limit transitions
(for example Timer A and B is enabled when [a > = 1]
and Timer D is enabled when b < 17). When the model is
generated, we meet infinite state space and can not ana-
lyse state space. Its reason is Timer D is enabled for
every value of b. If we did not limit transition Timer D,
model would be infinite loop because value of b.

A deadlock is an undesired dead marking in the state
space of a CPN model, and a marking is dead if no tran-
sitions are enabled in it [19]. We also expect that the
INVITE transaction has no dead code. For our model,
there is no dead marking. We use state space report gen-
erated by CPN tools for analyse our model properties.
The report shows that a full state space with 14 nodes
and 29 arcs is generated. If we use SCC graph(strongly
connected components) a full state space with 14 nodes
and 29 arcs would be generated. Dead Transition In-
stances returns a list with all those transition instances
that are dead, i.e., do not appear in any occurrence se-
quence starting from the initial marking of the state space.
For our model:

model'Client_Transport_Err 1
model'Receive_Response 1
model'Timer_A_or_B 1
model'Timer_D 1
model'Timer_I 1
TIsLive determines whether the set of transition in-

stances (specified in the list) is live, i.e., whether, from
each reachable marking, it is possible to find an occur-
rence sequence which contains one of the transition in-
stances. For our model:

model'Timer_G_or_H 1
TIsFairness determines whether the set of transition

instances (specified in the list) is impartial, fair or just.
model'Client_Transport_Err 1
 Fair
model'Receive_Request 1
 Fair
model'Receive_Response 1
 Fair
model'Send_Request 1 No Fairness
model'Send_Response 1 Fair
model'Server_Transport_Err 1
 No Fairness
model'Timer_A_or_B 1 Fair
model'Timer_D 1 Fair
model'Timer_G_or_H 1 No Fairness
model'Timer_I 1 Fair

5. Conclusions and Future Work

In this paper, we have modelled and analysed SIP IN-
VITE transaction using timed Coloured Petri Nets. Based

on the detailed analysis of SIP, Time Coloured Petri net
model of the protocol is established in the paper. By dis-
cussing and analyzing the model on the basis of proper-
ties of Petri net relating to the model, analyzing reach-
ability tree, and calculating and analyzing the invariant,
the protocol was proved to be boundedness, deadlock
free, liveness and conservativeness.

In the future, we would model and analyse INVITE
transaction over a reliable medium and unreliable me-
dium and find that the INVITE transaction is free of
livelocks and dead codes, as in the case of a reliable me-
dium. We have noticed that, very recently, an Internet
draft (work in progress) has been published by IETF, to
propose updates to the INVITE transaction state ma-
chines [19]. The proposed updates have no impacts on
the behaviour of the INVITE transaction when the
transport medium is reliable, which means IETF may
have not been aware of the incompleteness of [19] of the
specification of the INVITE transaction. On the other
hand, the proposed updates may have influence on the
INVITE transaction when the transport medium is unre-
liable. Therefore, the other possible future work can in-
clude modelling and analysing the updated version of
INVITE transaction proposed in the Internet Draft [19].
In this way, the correctness of the proposed updates
given in the Internet Draft [19] can be checked and con-
firmed.

6. References

[1] J. Rosenberg, et al., “RFC 3261: SIP: Session Initiation

Protocol,” Internet Engineering Task Force, 2002.
http://www.faqs.org/rfcs/rfc3261.html

[2] R. Arora, “Voice over IP: Protocols and Standards,” Stu-
dent Reports, CSE of Ohio-State University, Columbus,
November 1999.

[3] R. Sparks, “SIP: Basics and Beyond,” Queue, Vol. 5, No.
2, 2007, pp. 22-33. doi:10.1145/1229899.1229909

[4] G. J. Holzmann, “Design and Validation of Computer
Protocols,” Prentice Hall, Englewood Cliffs, 1991.

[5] D. Sidhu, A. Chung and T. P. Blumer, “Experience with
Formal Methods in Protocol Development,” ACM SIG-
COMM Computer Communication Review, Vol. 21, No.
2, 1991, pp. 81-101. doi:10.1145/122419.122425

[6] J. Wang, “Timed Petri Nets Theory: An Application,”
Kluwer Academic Publishers, Norwell, 1998.

[7] L. G. Ding and L. Liu, “Modelling and Analysis of the
INVITE Transaction of the Session Initiation Protocol
Using Coloured Petri Nets,” Proceedings of the 29th In-
ternational Conference on Applications and Theory of
Petri Nets and Other Models of Concurrency, Xi’an, Vol.
5062, 23-27 June 2008, pp. 132-151.

[8] L. Liu, “Verification of SIP Transaction Using Coloured
Petri Nets,” In: B. Mans, Ed., Proceedings of 32nd Aus-

http://www.faqs.org/rfcs/rfc3261.html

S. KIZMAZ ET AL.

Copyright © 2011 SciRes. IJCNS

179

tralasian Computer Science Conference, Wellington, 19-23
January 2009, pp. 63-72.

[9] V. Gehlot and A. Hayrapetyan, “A CPN Model of a
SIP-Based Dynamic Discovery Protocol for Webservices
in a Mobile Environment,” Proceedings 7th Workshop
and Tutorial on Practical Use of Coloured Petri Nets and
the CPN Tools, Aarhus, 24-26 October 2006, pp. 1-20.

[10] G. J. Holzmann, “Design and Validation of Computer
Protocols,” Prentice Hall, Englewood Cliffs, 1991.

[11] Y. Peng, Z. Yuan and J. Wang, “Petri Net Model of Ses-
sion Initiation Protocol and Its Verification,” Proceedings
of the IEEE International Conference on Wireless Com-
munications, Networking and Mobile Computing, Shanghai,
21-25 September 2007, pp. 1861-1864.

[12] H. Wan, G. Su and H. Ma, “SIP for Mobile Networks and
Security Model,” Proceedings of the IEEE International
Conference on Wireless Communications, Networking and
Mobile Computing, Shanghai, 21-25 September 2007, pp.
1809-1812.

[13] S. Ahson and M. Ilyas, “SIP Handbook: Services, Tech-
nologies, and Security of Session Initiation Protocol,”
CRC Press, Boca Raton, 2009.

[14] K. Jensen, “Coloured Petri Nets,” Vol. 2, Springer, New

York, 1995.
[15] M. Bago, N. Peric and S. Marijan, “Modeling Wire Train

Bus Communication Using Timed Colored Petri Nets,”
Proceedings of SICE Annual Conference, Tokyo, 20-22
August 2008, pp. 2905-2910.
doi:10.1109/SICE.2008.4655160

[16] Y.-S. Huang, T.-H. Chung and J.-H. Lin, “A Timed Col-
oured Petri Net Supervisor for Urban Traffic Networks,”
IMACS Multiconference on Computational Engineering
in Systems Applications, Beijing, Vol. 2, 4-6 October 2006,
pp. 2151-2156.

[17] Homepage of the CPN Tools, 2009.
http://wiki.daimi.au.dk/cpntools/cpntools.wiki

[18] K. Jensen, L. Kristensen and L. Wells, “Coloured Petri
Nets and CPN Tools for Modelling and Validation of
Concurrent Systems,” International Journal on Software
Tools for Technology Transfer, Vol. 9, No. 3, 2007, pp.
213-254. doi:10.1007/s10009-007-0038-x

[19] R. Sparks, “draft-sparks-sip-invfix-00: Correct Transac-
tion Handling for 200 Responses to Session Initiation
Protocol INVITE Requests,” Internet Engineering Task
Force, 2007.
http://tools.ietf.org/id/draft-sparks-sip-invfix-00.txt

http://wiki.daimi.au.dk/cpntools/cpntools.wiki
http://tools.ietf.org/id/draft-sparks-sip-invfix-00.txt

