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ABSTRACT 
LHCII is a crucial light-harvesting pigment/protein complex in photosystem II (PSII) supercomplex. It also par-
ticipates in the light energy redistribution between photosystems and in the photoprotection via its reversible 
dissociation with PSII and PSI (photosystem I). This reversible detachment of LHCII is regulated by phos-
phorylation of its own and PSII core protein. Under low light conditions, LHCII is phosphorylated and dissoci-
ated with PSII core protein complex and combined with PSI, which balances the excitation energy between PSII 
and PSI; Under high light environment, the phosphorylation of PSII core proteins makes LHCII detach from 
PSII. The dissociated LHCII presents in a free state, which involves in the thermal dissipation of excess excita-
tion energy. During photodamage, dual phosphorylations of both PSII core proteins and LHCII complexes occur. 
The phosphorylation of D1 is conductive to the disintegration of photodamaged PSII and the cycle of repair. In 
this circumstance, the phosphorylation of LHCII is induced by reactive oxygen species (ROS) and then the 
phosphorylated LHCII migrates to PSI, into the repair cycle of damaged PSII. The ferredoxin (Fdr) and thiore-
doxin (Tdr) system may play a possible central role in the phosphorylation regulation on LHCII dissociation. 
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1. Introduction 
Photosynthetic organisms utilize sunlight energy, CO2 
and H2O to synthesize carbohydrates. The photosynthetic 
process consists of light reaction and dark reaction. In 
plants, light reaction occurs inside chloroplasts, to gener-
ate NADPH and ATP by photosynthetic electron transfer 
chain and photophosphorylation. The resulting NADPH 
and ATP are used to converse carbon dioxide into car-
bohydrates in dark reaction. The electron transfer chain 
locates in the membrane of thylakoid, containing the two 
types of photosystems (PSII, PSI) and cytochrome b6-f 
(Cytb6-f) complexes. NADP production depends on the 
linear electron transfer involving PSII, Cytb6-f and PSI. 
Extra ATP is synthesized by the cyclic electron transfer 

only involving PSI and Cytb6-f. There is a difference in 
light absorption wavelength between PSII and PSI. With 
these characteristics of photosynthesis, to acquire the 
high efficiency of light utilization, plants not only need 
to coordinate the action between light reaction and dark 
reaction, but also between PSII and PSI.  

Light is the sole energy for plant photosynthesis, but it 
also damages the photosynthetic apparatus [1-4]. Under 
fluctuating light or strong light conditions, the imbalance 
allocation of excitation energy occurs between PSII and 
PSI, or the captured energy in light reaction beyond the 
need of dark reaction. The resulting excess energy in 
photosynthetic apparatus damages PSII complexes and 
reduces the photosynthetic efficiency. This phenomenon 
is so-called photoinhibition or photodamage. In order to 
avoid this injury, plants have developed a series of specific  *Corresponding author. 
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protection mechanism in chloroplasts during the long- 
term evolution [5-7]. This mechanism involves the arc-
hitectural shifts in PSII complexes and thylakoid mem-
brane [8]. One of them is the reversible detachment of 
light-harvesting pigment complex with PSII and PSI core 
complex [9-11]. Under the light condition with changing 
wavelength, the reversible detachment of LHCII complex 
makes the excitation energy redistributed between the 
two photosystems [10,12]. In continuous intensive light 
condition, a number of LHCIIs dissociate from PSII and 
present in a free state inside chloroplast stroma, prevent-
ing more excitation energy from destroying the reaction 
centers [13,14]. Several reports show that the detachment 
of LHCII also participates in PSIIrepair mechanism dur-
ing photodamage [15,16]. In higher plants, the reversible 
dissociation of LHCII with the photosystems is regulated 
by phosphorylation [6,17], and the mechanism of phos-
phorylation according to the light intensity. 

2. LHCII Phosphorylation in State  
Transition 

The reaction centers of PSII and PSI have different light 
absorption characteristics, their absorption peak, respec-
tively, at 680 nm and 700 nm. As green plants are sub-
jected to light environment with fluctuating intensity, 
PSII and PSI are excited in out-balance and LHCIIs dis-
placed from the over-excitation photosystems to the less- 
excitation photosystem, which is so-called state transition 
[12,18]. Under photoinhibition conditions, state transi-
tion is also considered as a very important photoprotec-
tion mechanism of PSII [19]. 

The reversible phosphorylation of LHCII complex re- 
gulates the reversible displacement of LHCII between 
two photosystems is regulated by the phosphorylation/ 
dephosphorylation of LHCII complex [17], because the 
phosphorylation state of LHCIIchanges LHC II affinity 
with the two different photosystems [6]. As PSII com- 
plex is overly excited, LHCII is phosphorylated. And 
then the phosphorylated LHCII dissocates from PSII to 
move towards PSI, which is called state 2. When PSI is 
excessively excited, the phosphorylated LHCII is de- 
phosphorylated and detached from PSI and then returns 
to PSII, which is called state 1 [11,20]. In unicellular 
organisms, the mobile fraction of LHCII during state 
transitions is approximately 80%, whereas in land plants 
the percent is only 15% - 20% [11]. 

The major function of photosynthetic electron trans- 
port chain is to synthesize NADPH and ATP. In some 
circumstances, plants need to strengthen cyclic photo- 
synthetic electron transfer to generate more ATP. State 
transitions are found to participate in the regulation of 
ATP synthesis. Owens and Ohad (1982) [21] restricted 
ATP synthesis in Chlamydomonas reinhardtii by inhi-

biting chloroplast respiration, the phosphorylation level 
of LHCII significantly increased and accompanied by 
cytb6-f complex movement to PSI, which promoted the 
cyclic electron transfer and ATP generation. The similar 
phenomenon was observed in higher plants. The inhibi-
tion of ATP synthesis in tobacco plants induced the state 
transition and also accelerated the cyclic electron flow 
[22].  

PSII is a dimeric supercomplex containing changeable 
number of outer LHCII complexes [23]. The LHC II 
consists of trimeric LHCII complexes, from 2 to 4 copies 
[24]. The polypeptides are encoded by the genes of lhcb1, 
lhcb2 and lhcb3 [25]. Lhcb1 and Lhcb2 have been well 
documented to reversibly phosphorylated/dephosphory- 
lated, and Lhcb3 has not been found to have any phos-
phorylation site. After phosphorylated and dissociated 
from PSII, LHCII trimer is depolymerized and releases 
phosphorylated monomers that binds to PSI [10]. The 
connection between LHCII antenna and PSII core com-
plex is through antenna proteins of CP29, CP26 and 
CP24, which are the products of genes of lhcb4, lhcb5 
and lhcb6 [24,26,27]. In Arabidopsis, three isoforms of 
CP29 are found, named as Lhcb4.1, Lhcb4.2 and 
Lhcb4.3 [28]. Nevertheless, the difference in function of 
these protein isoforms has remained elusive. 

The recent studies have revealed the protein kinases 
involved in PSII phosphorylation events [29]. In Arabi-
dopsis, two orthologue thylakoid-associated serine/ 
threonine kinases, called STN7 and STT7, were identi-
fied by mutant analysis approach and found to be the 
LHCII phosphokinase [6,9]. They are single-spanning 
membrane domain proteins. Their N-terminal regions 
locate in luminal side and C-terminal kinase domains in 
stromal side in cloroplasts. STN7 is essential for reversi-
ble LHCII polypeptide phosphorylation. This phospho-
rylation is required for state transitions in Arabidopsis 
[30-33]. The loss of STN7 in plants blocks the movement 
of LHCII complex from PSII core complex to PSI core 
complex [30,34]. Low light intensity activates STN7, but 
high light intensity deactivates it [31,35]. The redox state 
of mobile electron carriers between photosystems such as 
plastoquinone (PQH2 and PQ) [35-39] and ferredoxin/ 
thioredoxin system [12] regulate the activity of STN7. 
The lack of PQH2 at the Qo site inside Cytb6-f complex 
results in STN7 deactivation in dark. Under short-wave- 
length light, PSII is over-excited, PQH2 binding to the 
Qo site and causing a conformational change in Cytb6-f, 
which transfers the reduction signal from thylakoid lu-
men to the kinase domain in stromal side and activates 
LHCII kinase, resulting in LHCII phosphorylation [15, 
40]. A new model is proposed by Puthiyaveetil (2011) 
[12]. In his model, when PSII is overly excited, PQH2 
released by Qo site reduces a disulfide bond between 
conserved luminal cysteine residues in STN7 and the 
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kinase is activated. Under strong light, STN7 is inacti-
vated via the ferredoxin/thioredoxin system by the reduc-
tion of stromal disulfide bond. This model better ex-
plained the inactivation of STN7. Moreover, we consider 
that the ferredoxin/thioredoxin system regulates both 
STN7 and phosphatase PPH1/TAP38 activity. STN7 can 
catalyze the phosphorylation of D1, D2 and CP43 of PSII 
core complex, but in a very low level.  

CP29 and TSP9, the linker proteins [41,42] regulate 
state transitions by their differential phosphorylation [6, 
43,44]. Under strong light condition, stn8 and wild type 
Arabidopsis thaliana selectively increased the phospho-
rylation of CP29 isoforms Lhcb4.1 and Lhcb4.2 at threo-
nine residues in five different positions, whereas in stn7 
and stn7/stn8 palnt, the four phosphorylation positions 
were not found [45]. 

The dephosphorylations of Lhcb1 and Lhcb2 are ma-
jorly catalyzed by PPH1/TAP38 protein phosphatase. In 
mutants with loss of the activity of PPH1/TAP38, the 
size of PSI light harvesting complex grew and state tran-
sition1 is inhibited [46,47]. It is suggested that when PSI 
is over excited under long-wavelength light, PQH2 is 
oxidized and released from the Qo site, and the phospha-
tases in stromal side become active and catalyze the de-
phosphorylation of phosphorylated LHCIIproteins [48, 
49], LHCII dissociated from PSII. 

When state 1 transition occurs, the phosphorylated 
LHCII is dephosphorylated and detached from PSI and 
then returns to PSII. For maintaining this process, it is 
essential for photosynthetic systems to enhance dephos-
phorylation reaction and inhibit phosphorylation reaction 
of LHCII. We propose that the ferredoxin/thioredoxin 
system plays a central role in this process (as shown in 
Figure 1). While overly excited, PSI generates more 
reduced ferredoxin (Fdr) and thioredoxin (Tdr), which 
activates the phosphatase PPH1/TAP38 and inactivates  
 

 
Figure 1. A diagram of the ferredoxin and thioredoxin reg- 
ulation on STN7 and TAP38 during state 1 transition. 
When PSI is overly excited and generates more reduced 
ferredoxin (Fdr) and thioredoxin (Tdr), which activate the 
phosphatase PPH1/TAP38 and inactivate STN7. 

STN7 via the reduction of stromal disulfide linkage [12]. 

3. Phosphorylation of PSII Core Proteins in 
Photoprotection 

The reversible dissociation of LHCII from PSII also oc-
curs under high light intensity, but the mechanism differs 
from that in low light condition. The phosphorylation of 
core proteins in PSII complex occurs during photopro-
tection. The original and primary site of photodamage is 
locked in PSII [1]. In order to avoid this injury, plants 
need decreasing the excitation energy transferred to PSII 
reaction centers in high light condition. Therefore, LHCII 
detachment from PSII and PSI is conductive to this 
energy-decreasing process. But, under such high light 
condition, the phosphorylation of LHCII is restricted [20]. 
Several studies have shown that the ferredoxin and thi-
oredoxin system at the side of PSI the down regulated the 
LHCII phosphorylation. The protein kinase STN7, which 
catalyzes LHCII phosphorylation, has disulfide bonds on 
the luminal side [17]. The disulfide bonds may be re-
duced to sulfhydryl group by ferredoxin-thioredoxin sys-
tem, resulting in STN7 inactivation [12]. However, a 
fraction of LHCII are still detached from PSII under 
strong light condition, and the detached LHCIIs present 
in a free state, not binding to PSI [14]. The free LHCIIs 
dissipate the excitation energy via fluorescence release 
and thermal radiation. This process prevents the excita-
tion energy which is not needed by reaction centers, from 
entering the reaction centers [14,50,51]. 

The protein phosphorylation of PSII core complex re-
gulates the detachment of LHCII from PSII under strong 
light, when the phosphorylation of LHCII proteins is 
restricted. D1, D2, CP43 and PsbH of PSII core proteins 
were phosphorylated under high light intensity [14, 
16,17]. PSII was overexcited in the mutants with loss of 
STN7 kinase under low intensity of light, but the overex-
citation was not found under strong light. The mutant 
analyses on Arabidophsis indicate that the core proteins 
of PSII is phosphorylated by the protein kinase STN8, 
rather specific for these proteins [52,53]. This kinase is 
different from STN7 in structure. It has no disulfide bond 
in the luminal side so that the activity is not inhibited by 
ferredoxin–thioredoxin system. Consequently, core pro-
teins of PSII complex are still phosphorylated by high 
irradiance condition. Zhang and Xu (2003) [14] found 
the core protein phosphorylation of PSII can induce the 
changes in the structure of PSII reaction center. These 
changes may loose the bounding of LHCII with PSII 
reaction center complex, in favor of LHCII dissociation. 
When green plants are moved to low intensity of light or 
dark condition, D1 protein is dephosphorylated by phos-
phatase [54], LHCII returning to PSII again. This phos-
phatase localizes in stacked thylakoid membrane and 
catalyzes the dephosphorylation of D1 in functional PSII 
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centers, independent of light, which is different from the 
phosphatase functioning in PSII repair [55]. In a reverse 
genetic screen, a PSII core protein phosphatase (PBPC) 
was identified, which counteracts the activity of STN8 
kinases and is required for efficient dephosphorylation of 
PSII core proteins [56,57]. 

During high light, PSII and PSI need to prevent the 
accumulation of excess light energy. The detached 
LHCII must be prevented from phosphorylation again 
and blocked to bind PSI. The phosphorylated D1 proteins 
need to remain in phosphorylation state during high light. 
In this process, the ferredoxin/thioredoxin system may be 
a central coordinator (as shown in Figure 2). Under high 
light, PSII through PSI generates more reduced ferre-
doxin (Fdr) and thioredoxin (Tdr), which activate STN8 
and inactivate PSII core protein phosphatase (PBPC) 
possibly by kinases. STN7 is also inhibited and pre-
vented to phosphorylate LHCII, not associating with PSI. 
In spite of lacking of disulfide bond, STN8 activity is not 
inhibited by ferredoxin-thioredoxin system [52,53], but it 
may be regulated by phosphorylation [58]. 

4. LHCII Phosphorylation in Photodamage 
In high light intensity, LHCII separates from PSII via the 
core protein phosphorylation of PSII in plants, and is 
avoided combining with PSI to prevent photoinhibition, 
even photodamage [3]. However, a number of studies 
have shown that, when plants are subjected to strong 
light condition, the phosphorylation of a fraction of 
LHCII complex remains to occur [16,39]. This phospho-
rylation may be due to the production of reactive oxygen 
species (ROS) in PSII reaction center. ROS serves as an 
oxidant that damages the PSII reaction centers and oxi- 
 

 
Figure 2. A diagram of the ferredoxin and thioredoxin reg- 
ulation on STN8, PBPC and STN7 during high light. Under 
high light, PSII through PSI generates more reduced ferre- 
doxin (Fdr) and thioredoxin (Tdr), which activate STN8 
and inactivate PSII core protein phosphatase (PBPC) possi- 
bly by kinases. STN7 is also inhibited and prevented to 
phosphorylate LHCII. 

dizes the sulfhydryl group to the disulfide bond of the 
inactivated LHCII kinase STN7 in thylakoids membrane, 
restoring the catalytic activity of the enzyme. Breitholtz 
et al. (2005) [39] found that, under high light intensity, in 
both Arabidopsis plants with higher excitation capacity 
of PSII and with defectiveness in non-photochemical 
reaction activity, the phosphorylation in LHCII occurred. 
Because the lower ability of non-photochemical quench-
ing and higher excitation capacity of PSII result in more 
excess energy accumulation in PSII reaction centers, and 
the generating hydrogen peroxide and singlet oxygen 
restored the catalytic activity of the LHCII kinase. As a 
result, the phosphorylated LHCII migrates to the PSI 
enriched stromal region from the PSII enriched granal 
region of the thylakoid membrane and transfers the exci-
tation energy to PSI [16]. Then, what function is the 
binding of LHCII to PSI and whether the binding leads to 
the damage to PSI?  

The phosphorylation of LHCII induced by the high 
light intensity may involve in repair mechanism of PSII 
[15]. Of the core proteins of PSII complex, D1 is sus-
ceptible to be injured and the turnover rate is fast. Under 
prolonged high irradiance, ROS generated by PSII reac-
tion center, can inevitably damage the D1 protein [59]. 
The rate of photodamage increases as irradiance intensity 
rises. On the other hand, the newly synthesized function-
al D1 displaced the injured one in PSII core complex and 
the repair kept pace with the damage. Otherwise, the 
structure and function of photosynthetic apparatus were 
severely disrupted. The repair process proposed includes: 
1) disassembly of injured PSII-LHCII supercomplex into 
PSII and LHCII, and PSII core dimer into monomer; 2) 
movement of the PSII monomer from the stacked mem-
brane region of thylokoid to the stroma region of non- 
stacked membrane; 3) D1, D2 and CP43 proteins were 
dephosphorylated; 4) degradation of injured D1 protein; 
5) the newly biosynthesized D1 protein cotranslationally 
inserted PSII complex [60]. The repair cycle of inacti-
vated PSII is associated with dephosphorylation of phos- 
phorylated and photodamaged D1 and is a light-dependent 
reaction in vivo [55]. 

The PSII repair rate was decreased while the genera-
tion of ATP was blocked in Spirodela oligorrhiza [61,62] 
because the synthesis of ATP is indispensable for the D1 
protein synthesis. The binding of phosphorylated LHCII 
to PSI accelerates the cyclic electron transfer and en-
hances the synthesis of ATP [21]. Consequently, the 
phosphorylation of LHCII is related to the transient re-
pair of damaged PSII complex in photoinhibition. Murata 
et al. (2007) [62] proposed in his review that unfavorable 
environmental factors other than high light majorly inhi-
bited the PSI repair cycle. For instance, high salt, low 
CO2, low temperature and mild heat stress all blocked de 
novo synthesis of proteins. 
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During the photodamage, PSII core proteins are also 
phosphory lated like LHCII complex. These dual phos-
phorylations may more conductive to the repair of the 
injured PSII. Within chloroplasts, strong light causes the 
excitation imbalance between PSII and PSI leading to 
ROS generation and D1 photodamage. Plants prevent 
and recover from this damage by rearranging the struc-
ture of photosynthetic membrane [63]. The phosphoryla-
tion of PSII core polypeptides is of importance when the 
PSII core complex is rapidly photodamaged during high 
light stress [64]. The movement of impaired PSII com-
plex from PSII-enriched regions to PSI-enriched regions 
for restore is facilitated by the core protein phosphoryla-
tion. A hypothesis supposed that the phosphorylation of 
injured D1 protein was a signal for the PSII complex 
movement to PSI-enriched regions from PSII-enriched 
regions [65,66]. In the PSI-enriched regions, proteases 
DegP and FtsH decomposed the damaged D1 protein 
[65,66]. In light condition, the decomposition of dam-
aged D1 protein is indeed delayed in the mutants of stn8 
and stn7/stn8, other than in the plants of wild type and 
stn7 [30]. The phosphorylation of PSII core protein par-
ticipates in the change of thylakoid membrane contexture, 
which facilitated the transport of damaged PSII complex 
to the PSI-enriched regions for repair. Lack of STN8 
impeded the shift of the stacked thylakoid membrane to 
non-stacked membrane [67]. The stack of photosynthetic 
membrane blocks the lateral displacement of thylakoid 
proteins and restrains the conversion of D1 proteins 
damaged by strong irradiance [67-69]. The stack of thy-
lakoid membrane was not influenced by the lack of 
STN7 activity [30]. On the contrary, the translocation of 
movable LHCII fraction from PSII to PSI and state tran-
sition1 were impeded [42,34]. The release of PSII sub-
units was partially regulated by phosphorylation in PSII 
membranes [70,71]. Upon the phosphorylation of the 
PSII core proteins, the thylakoid membrane architecture 
was switched to a state with more fluid, as a result, pro-
moting the cycle of PSII complex repair [72]. In sum-
mary, the dual phosphorylations of PSII core proteins 
and LHCII complexes enhance the dissociation of dam-
aged PSII core protein with LHCII complexes and the 
migration of the PSII to stromal regions, via the confor-
mational change of thylakoid membrane. 

During photodamage occurs, chloroplasts not only 
need to prevent the accumulation of excess excitation 
energy in PSII, but also to repair the damaged PSII (as 
shown in Figure 3). In photodamage, PSII through PSI 
generates more reduced ferredoxin (Fdr) and thioredoxin 
(Tdr), which, possibly via kinase, activate STN8 and 
inactivate PSII core protein phosphatase (PBPC) in PSII 
membrane region and activates the inactive phosphatase 
in PSI membrane for D1 dephosphorylation and repair. 
STN8 catalyseds D1 protein phosphorylation is neces- 

 
Figure 3. A diagram of the ferredoxin and thioredoxin reg-
ulation on STN8, PBPC and STN7 under photodamage. 
When photodamage occurs, PSII produces reactive oxygen 
species (ROS) and through PSI generates more reduced 
ferredoxin (Fdr) and thioredoxin (Tdr). Fdr/Tdr activates 
STN8 and inactivates PSII core protein phosphatase (PBPC) 
in PSII membrane region possibly by kinases. The sulfhy-
dryl group to the disulfide bond oxidized by ROS, the inac-
tivated LHCII kinase STN7 become active. Active TAP38 
may be inactivated via kinase (different from its activation). 
In addition, the inactive phospatase in PSI membrane may 
be activated by Fdr/Tdr system via kinase for D1 dephos-
phorylation and repair. 
 
sary for PSII repair, because damaged PSII repair de-
pends on the dissociation of complexes. D1 phosphoryla-
tion is conductive to prevent excitation energy accumula-
tion in PSII. In addition, under photodamage, PSII pro-
duces reactive oxygen species (ROS), oxidizing the 
sulfhydryl group to the disulfide bond and activates the 
inactivated LHCII kinase STN7. LHCII phosphorylation 
is not only beneficial to the disassembly of PSII com-
plexes, but also enhances cyclic electron transport to 
synthesize ATP needed to repair damaged PSII complex. 
Active TAP38 may be inactivated via kinase, which is 
different from its activation. 

5. Perspectives 
Recent studies have shown that the regulation of reversi-
ble dissociation of LHCII is closely related to the site and 
amount of phosphorylation, but less is known about how 
plants differentially recognize the sites and control the 
amount. The regulation of light intensity to this process 
may be in a more complicated mechanism. In addition, 
during photodamage, the phosphorylated LHCII binds to 
PSI reaction center and transfers extra excitation energy 
to it, a potential damage. Therefore, we need more in-
formation about the mechanism of photoprotection of 
PSI reaction centers in such circumstance. And we know 
that the low light intensity condition is in favor of the 
repair of photodamaged PSII. This repair process, in-
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volving the synthesis of D1 proteins de novo, needs extra 
ATP. But the low light intensity also activates phospha-
tases, resulting in the dephosphorylation of LHCII and 
the dissociation from PSII. As a result, the cyclic electron 
transfer and the synthesis of ATP will be decreased. 
Therefore, plants need a complicated system to ensure 
the process of D1 repair. Evidence shows that the phos-
phoryltion regulation of reversible dissociation of LHCII 
with photosystems at least consists of ferredoxin/thiore- 
doxin system and kinase system. Up to date, we have 
known little about kinases in this regulation network. 
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