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ABSTRACT 
Agent-based models (ABMs) are capable of constructing individual system components at different levels of re-
presentation to describe non-linear relationships between those components. Compared to a traditional mathe-
matical modeling approach, agent-based models have an inherent spatial component with which they can easily 
describe local interactions and environmental heterogeneity. Furthermore, agent-based model maps interactions 
among agents inherently to the biological phenomenon by embedding the stochastic nature and dynamics transi-
tions, thereby demonstrating suitability for the development of complex biological processes. Recently, an abun-
dance of literature has presented application of agent-based modeling in the biological system. This review fo-
cuses on application of agent-based modeling to progression in simulation of infectious disease in the human im-
mune system and discusses advantages and disadvantages of agent-based modeling application. Finally, potential 
implementation of agent-based modeling in relation to infectious disease modeling in future research is explored. 
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1. Introduction 
Infectious disease, identified by clinical symptoms, is defined as the presence and growth of a various type of 
pathogen in an organism [1]. Under most circumstances, intruding pathogens are eliminated by activating im-
mune cells such as tissue macrophages and activated neutrophils in the immune system. If overwhelming im-
mune response occurs, unbalanced responses between immune cells and cytokines lead to unexpected harmful 
outcomes for patients. Abundant research has recently focused on modeling immune responses to infectious 
disease such as sepsis or gut infection in order to explore complicated dynamic presentation of cells and cyto-
kines in the immune system under the presence of infection. Modeling and simulation of immune responses to 
infectious disease could provide dynamic understanding of infectious disease progression and further acknowl-
edge therapeutic targets for the infectious disease. 

As a standard approach, mathematical modeling is currently being developed as a dynamic knowledge repre-
sentation offering a promising possibility for understanding complex local and global dynamics of infectious 
disease [2,3]. Using a series of known and hypothesized kinetics of biologic system components from current li-
terature, mathematical models describe infectious disease processes by measuring the steady states of various 
components in the immune system. However, mathematical models fail to capture inhomogeneous information 
of various components over the simulation space and fail to describe possible deviations of various components 
from their aggregated behaviors. As a powerful computational modeling technique, Agent-based model (ABM) 
simulates complicated non-linear dynamic relationships between components and intuitively maps a more rea-
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listic biological system by incorporating spatial effects and stochastic nature into model construction. Key ele-
ments of ABM include agents, a collection of decision-making entities classified into different types based on 
entities described in a real-world system. Each type of agents executes certain behaviors appropriate for the sys-
tem they represent. By implementing a pre-defined set of rules, agents move in a certain direction and arbitrarily 
interact with other agents in a spatial environment. Agent behaviors are updated in various locations according 
to update rules executed at discrete time steps. Agent-based modeling inherently captures repetitive spatial inte-
ractions between agents in a stochastic process and, therefore, is a powerful tool to render valuable information 
and redraw an overall picture of a biological system. Even simple implementation of ABM requires well-es- 
tablished technology which relies on the power of computers to explore dynamics beyond the reach of pure ma-
thematical methods [4,5]. Because of the inherent nature in computational structure, the agent-based model can 
be implemented on parallel computers very efficiently [6]. This review specifically investigates previous appli-
cations of agent-based modeling to infectious disease associated with failure of the immune system to respond to 
intruding bacteria. Subsequent article sections are organized as follows: 1) introduction of basic structure of 
agent-based model, 2) review of existing research delineating ABM implementations on infectious disease, 3) 
discussion of the advantages and disadvantages of ABM on modeling of infectious disease, and 4) prediction of 
future implementation of ABM on infectious disease and other types of disease in a broader way. 

2. Basic Structure of Agent-Based Model 
A typical type of agent-based model includes two elements: “Agents” and “Environment”. Agents are main 
components of agent-based model and their interacting behaviors following local rules on known mechanism, 
which represent the mechanism of entire system. For instance, a typical prey-predator agent-based model in-
volves two types of agents: preys and predators. The environment in prey-predator agent-based model is defined 
as a user-specified 5 by 5 squares, and each square represents specific location of simulation environment. Pre-
dators make decision to kill preys in a natural way, and therefore the number of preys will dramatically decrease 
if the number of predators increases within a certain range of appearance of preys. In addition, the number of 
preys also relies on “environment”, which is defined as food source for preys. Each square associated with food 
resource, in prey-predator agent-based model, containing local information of the amount of available food re-
source. The localized information will change the motion of both preys and predators. Preys at location k will 
make their own decision (which is defined by modeler in prey-predator agent-based model) to move to location j 
(assume location j has sufficient food resource) if location k has run out of food. Thus, the number of preys and 
predators will differ upon on spatial locations (available food resource) in prey-predator agent-based model. The 
number of preys at location k is in relation to the number of predators and available food resource at that loca-
tion, referring to a specific ordinary differential mathematical model [7]. The following Figure 1 delineates a 
basic structure of prey-predator agent-based model. 

Figure 1 shows preys at location k are assigned probability PRk,i to move to location i, probability PRk,m to 
move to loction m, probability PRk,j to move to location j, and PRk,n to move to location n. At the same time, 
 

 
Figure 1. Basic structure of agent-based model using prey-predator interaction as an example. 
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predators at location k + 1 are assigned probability PDk+1,j to move to location j, PDk+1,n to move to location n, 
PDk+1,i to move to location i, and PDk+1,m to move to location m. It is observed most preys are moving toward 
location j and location n for more food resource at those two sites based on assumption, and therefore, more 
predators moving afterwards to location j and location n for hunting preys. By implementing prey-predator 
agent-based model, one can plot the progression of preys and predators over time. 

3. Agent-Based Model of Sepsis 
Sepsis, currently defined as a systemic inflammatory response in the presence of an infectious agent or trauma, 
is increasingly considered an exaggerated, poorly regulated, innate immune response to microbial products [8,9]. 
Progression to severe sepsis is marked by generalized hypotension, tissue hypoxia, and coagulation abnormality 
[10]. Severe sepsis can further develop into septic shock if long-lasting severe hypotension occurs [10] and ul-
timately lead to death. The first application of agent-based modeling of sepsis is employed by An [11]. An has 
produced a very abstract ABM of Acute Inflammatory Response, an initial stage of sepsis progression. His 
model is built on the interface between endothelial cells and blood at the capillary level to simulate behaviors of 
circulating neutrophils and monocytes in the presence of injury. Neutrophils and monocytes are defined as 
agents and their behaviors, including rolling, sticking, diapedesis and respiratory burst, are regulated by a series 
of state variables which obey fundamental occurrence in AIR environment derived from literature. Figure 2 
shows interacting behaviors of macrophages, neutrophils and red blood cells in An’s agent-based model. 

In Figure 2, each square represents specific intercellular location near the site of infection in An’s agent-based 
model. The macrophages and neutrophils are recruited from blood vessel to the infecting location based on 
known biological mechanism. State variables in relation to macrophages and neutrophils are defined to vary 
from location to location when agent-based simulation executes. The accumulation in macrophage and neutro-
phil-dependent state variables is used to calibrate global variables such as “total oxy deficit” and “End Injury 
Vector Number”. The variable “total oxy deficit” measures total damage caused by AIR and the variable “End 
Injury Vector Number” measures accumulated infection load during AIR progression in order to reflect the cha-
racteristics of AIR progression. Using a predefined rule system, multiple independent computer programs are 
executed with various initial injury extents to generate three general outcomes of AIR progression, including 
heal, SIRS, and overwhelming infection. A large amount of simulation data, such as the time-dependent number 
of neutrophils and macrophages, is collected during agent-based model implementation. Furthermore, the author 
generates a distributed outcome of AIR progression by calibrating the “oxy” and “End Injury Vector Number” 
in 500 selected iterations of simulation runs under the same extent of injury. Distribution outcomes confirm that 
AIR progression is stochastically represented and simulates heterogeneity of a patient population. At the end of 
his study, An concluded that his agent-based model could not represent a real system but is helpful for under-
standing essential steps in the inflammatory process at the level of his proposed model. For future research, he 
expects to produce simulated results that can be validated based on existing experimental studies and use more 
sophisticated ABMs to test therapies prior to clinical trials in order to refine clinical study design in pharmaco-
logical research. 
 

 
Figure 2. Interacting behaviors among macrophages, neutrophils, and red blood cells. 
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Following his previous work, An continued ABM construction to simulate and compare different therapeutic 
effects on the improvement of patients’ outcomes [12]. The model is developed at the cellular level and, as in 
the previous model, built on endothelial-blood interface. Compared to the previous model, however, he incor-
porated additional agents to represent sophistic interaction between cells and pathways of immune responses in 
AIR progression. Positive/negative feedback relationships and interactions between agents are represented and 
updated using simple arithmetic relationships guided by cellular/molecular mechanisms of AIR progression. The 
range of initial injury which generates SIR becomes the zone of interest. Distributions of a variable “end oxy 
deficit (EOD) with respect to different initial injury levels in infectious and sterile models with and without an-
tibiotics, demonstrated that survivability of patients would improve by using antibiotics. Furthermore, An gen-
erated four recognizable dynamic behavior patterns of infection, including healing, immune-compromised SIRS, 
hyper inflammatory SIR, and overwhelming infection under different levels of initial injury. In the end, he in-
tended to test and compare effects of various sets of anti-cytokine therapies which originate from existing clini-
cal trials, animal study and proposed interventions using the proposed agent-based model. Mortality rates asso-
ciated with anti-cytokine therapies for a group of “patients” demonstrated that anti-cytokine sets are not statisti-
cally significant in regards to outcome improvement given design parameters of the clinical trials. Failure of the 
initial clinical trials, the author concluded, is because redundant pathways of innate immune response could 
cause therapy interventions to fail to hit the targeted pathway. He criticized the proposed agent-based model for 
being very abstract model, qualitatively calibrated and difficult to apply in clinics at the current level. More spe-
cific analysis, such as grouping septic patients, could account for mortality rates for specific groups of patients 
instead of a global mortality rate for patients as a whole. Furthermore, as a future research goal, quantitative 
agent-based models are expected to calibrate patterns of inflammatory responses using basic scientific data in 
order to reproduce and illustrate effects of clinical interventions.  

Recently, Wu et al. proposed an integrated ABM embedded with a mathematical model to simulate AIR pro-
gression occurring at the interface between blood vessels and cells within the tissue [13]. Five of the total agents 
are defined in the model: pathogen, resting neutrophils, activated neutrophils, damaged tissue and anti-inflam- 
matory cytokines. The agents’ aggregated behaviors reflected characteristics of a class of cells or cytokines in 
AIR progression and provided biological insight into a series of immune response processes in AIR by describ-
ing intercellular interactions among the cells and cytokines. Interactions between agents obey fundamental im-
mune response processes in the AIR environment derived from the literature, and change in the level of each 
type of agent is derived from ordinary differential equations. By implementing the ABM with corresponding ini-
tial profiles of the patients of interest and adjustable system parameters, behaviors of the agents and local inter-
cellular interactions are captured by the simulated results. These results showed three different scenarios of AIR 
under various combinations of initial conditions: healthy response with low pathogen load, severe sepsis and 
persistent non-infectious inflammations. By analyzing outputs of patients (combined levels of pathogen, resting 
neutrophils, activated neutrophils, damaged tissue and anti-inflammatory cytokines) with variation in different 
initial conditions, the authors concluded that variations in initial levels of pathogen, initial levels of anti-inflam- 
matory cytokines, system parameters associated with anti-inflammatory cytokines, as well as system parameters 
associated with the pathogen, primarily influenced outputs of patients. The advantage of Wu’s agent-based 
model, compared to other agent-based models is to incorporate a dynamic mathematical matching to recognized 
biological kinetics of AIR. However, experimental data incorporation as well as experimental validation is still 
under development. 

Other than modeling interactions between cells, Dong et al. proposed an ABM framework to model intracel-
lular dynamics of the NF-kB signaling module and further illustrate subsequent intercellular interactions among 
macrophages and T-helper cells through up-regulation of inflammatory mediators [14]. Their approach explored 
hypothetical scenarios of AIR and potentially improved understanding of behaviors of the molecular species 
which could develop and expand to emergent behavior of the overall AIR system. Simulated results include five 
different scenarios under various initial conditions: a self-limited response where the inflammatory stimulus was 
cleared, a persistent infectious response where the inflammatory stimulus such as LPS failed to be eliminated, a 
persistent non-infectious inflammatory response where the inflammatory stimulus was eliminated but the in-
flammatory response was elevated by high concentration of inflammatory stimulus, and two other scenarios as-
sociated with endotoxin tolerance and potentiation effects. The advantage of this agent-based model is integra-
tion of intracellular responses among inflammatory mediators followed by intercellular responses among im-
mune cells. The disadvantage of this model is that it still uses a qualitative measurement of AIR and does not in-
clude experimental validation.  
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4. Agent-Based Model for Other Types of Infectious Disease 
Sepsis, or acute inflammatory response, is one kind of infectious disease of primary focus in healthcare and is 
used to explore immune responses to other types of infectious disease. Along with sepsis, we concluded that 
most infectious diseases are induced by a series of unbalanced immune responses in the immune system. Agent- 
based models play an essential role in building interactions between immune responses and gains insight into the 
unbalanced infectious disease progression. In 2007, Mi et al., proposed an agent-based model to simulate un-
derlying biological pathways, including interactions among macrophages, neutrophils, and fibroblasts and re-
lease of cytokines such as TNF-α and TGF-β1, as a cohesive whole, in diabetic foot ulcers (DFU) while also 
suggesting novel therapeutic approaches for treating DFU [15]. The authors tested and proved that elevated 
TNF-α or reduced TGF-β1 result in delay of healing process compared with normal skin healing in DFU. Fur-
thermore, they studied debridement intervention in DFU, proposed three types of therapeutic approaches for 
DFU, and demonstrated, using an agent-based model, that those types of therapeutic approaches could statisti-
cally suppress significant tissue damage in DFU. In 2008, Li et al., proposed an agent-based model for simulat-
ing inflammation of acute vocal fold injury [16]. The agent-based model quantitatively reproduced and predicted 
trajectories of inflammatory cytokines such as TNF-α, IL-1β and IL-10 under four-hour specific treatments, in-
cluding spontaneous speech, voice rest, and resonant voice in acute vocal fold injury. Simulation results have 
shown theoretical individual-specific trajectories of mediator levels across treatments while revealing potential 
application of agent-based modeling used to design patient-specific therapies in acute vocal fold injury or ex-
pansion to other clinical domains. Also in 2008, Dancik et al., proposed an agent-based model to describe natu-
ral dynamics of immune response to L. major infection [17]. They simulated infection of macrophage by L. ma-
jor infection as well as the recruitment of T cells in adaptive immunity response in the presence of chemokines, 
such as IL-8 to delineate underlying cellular mechanisms of L. major infection. By conducting sensitivity analy-
sis, results indicated that strength and timing of adaptive immune response, resting macrophage speed, and 
transfer threshold of macrophages impact parasite load at the peak of infection. In 2011, an agent-based mode of 
activation of Pseudomonas aeruginosa virulence in the stressed gut was developed to characterize and translate 
information of the host response to microbe into a behavioral rule of computational agents [18]. Aggregated be-
havioral rules of computational agents, integrated by modular submodels, described intracellular pathways and 
cross-cells pathways in gut immunity. Model shows effects of initial Pseudomonas population on simulated host 
injury and measures effects of initial Pseudomonas population on gut flora and barrier function. Furthermore, 
the agent-based model is used to investigate the host-pathogen system as it responds to different experimental 
conditions which are not developed yet, such as transient intestinal ischemia, host stress, and phosphate deple-
tion. Finally, the authors discussed the discrepancy between observed results in agent-based models and experi-
mental results from animal models and illustrated hypotheses concerning the source of discrepancy. Another 
agent-based model concerning gut immunity was proposed by Mei et al., in 2012 [19]. They simulated the dy-
namics of gut immunity by delineating interactions among seven types of cells: epithelial cells, macrophages, 
dendritic cells, neutrophils, B cells, T cells and bacteria. Cell states are represented by a variable list and varia-
ble values are changed once cell states have changed. The author assigned three basic rules for changes in the 
states of cells: interaction with another cell, change in neighboring environment, and presence at the current 
state for a certain amount of time. Simulated results have shown that chemotactic movement and cytokine-in- 
duced cell-state change play critical roles in host-pathogen immune responses of gut immunity. 

5. Implementing Software Platforms for Agent-Based Model 
During the last decade, agent-based models are primarily used for modeling different aspects of real-world 
problems, such as economics, social networks, and host-pathogen interactions. Agent-based models in relation 
to economic and social networks deal with interactions among people and the impact of people’s aggregated 
behaviors on complex economic or social situation [20-22]. Agent-based models in relation to host-pathogen 
system, otherwise, deal with interactions among cells, associated cytokines and their impact on immune system 
[16-19]. The agent-based community has developed several agent-based toolkits, including packaged software 
and open source platforms to help researchers build their own agent-based model applications. In this section, 
we review the most commonly used agent-based toolkits and describe their applications. 

In 2001, An used Starlogo to build an agent-based application to simulate AIR progression [11]. Starlogo and 
later versions such as MacStarLogo, OpenStarLogo, and StarLogo TNG, are categorized by logo family and de-
veloped from the logo programming language. Starlogo is recognized as an educational kit for building agent- 
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based applications. This platform emulates a parallel-processing computer, allowing for simultaneous execution 
of multiple independent computer programs with a high-level programming language called Starlogo. Starlogo 
uses a natural programming language to describe real systems, thereby, making it understandable and easy to 
implement without extensive programming efforts. The main user interface of Starlogo is comprised of two- 
dimensional grids. The agents can be divided into two categories: “patches” and “turtles.” “Patches” are fixed 
agents placed on background grids in the model workspace. “Turtles” are mobile agents that occupy a position 
or move freely on the surface of patches while executing certain functions or actions. Moreover, Starlogo offers 
a way to define agent set as “breed,” meaning that agent types with similar behaviors or under the control of the 
same mechanisms. “Breed” allows the modeler to define a class of agents with a set of common state variables 
and establish various functions or actions (autonomous behaviors) for agent types. Also, the modeler can gener-
ate output of a simulation and set parameters in a separate area from the Starlogo interface.  

Researchers most frequently recommend and utilize the agent-based toolkit Netlogo [23]. Compared with 
other toolkits within the logo family, Netlogo has a similar programming environment, including platform inter-
face, agent types, and programming statements. Starlogo could easily be converted to Netlogo by adjusting cer-
tain statements. Netlogo is recognized by developers of agent-based modeling as an advanced version of Starlo-
go because it incorporates more agent types such as “link” and, consequently could construct more sophisticated 
systems [24]. Furthermore, Netlogo includes a wide range of library models which could help new researchers 
prototype their own models. Therefore, Netlogo is recognized as the most professional platform for simulating 
real systems by providing a simple high-level programming language, built-in graphic interfaces, and compre-
hensive documentation [24].  

Besides built-in, high-level programming language, agent-based platforms such as Starlogo or Netlogo, Ob-
jective-C Swarm, and its derived, Java Swarm, provide well-experienced programmers conceptual frameworks 
for building agent-based models. The primary advantage of Objective-C Swarm and Java Swarm is they help 
organize different levels of agent-based models into hierarchy and eventually integrate those small agent-based 
models into a complex agent-based model. This advantage plays an essential role in developing agent-based 
models for the immune system at the whole body level by integrating several small agent-based models at organ 
level. However, the disadvantages of Swam platform include lack of novice-friendly development tools, diffi-
culty in building models because of low-level programming language, and low availability of documentation 
and tutorial material [24]. 

Recently, another popular implementing software platform for agent-based models, called Repast Symphony, 
is used in building agent-based simulation [25]. Mei’s research group proposed an agent-based simulator called 
Enteric Immunity Simulator (ENISI) Visual for modeling gut immunity [19]. ENISI Visual has an interface 
comprised of a series of grids. Each grid has a value indicating concentration of agents, and grid background 
colors change as states change. The implementer could run the simulator by setting up the initial numbers of in-
dicators, simulation speed, steps, runs, and agent movements (random or chemotactic). ENISI Visual simulator 
is implemented by Java language based on Repast Symphony, a popular platform for agent-based modeling [25]. 
The homepage of Repast Symphony states that “Repast Symphony is an integrated, richly interactive, cross 
platform Java-based modeling system that runs under Microsoft Windows, Apple Mac OS X, and Linux. It 
supports the development of extremely flexible models of interacting agents for use on workstations and small 
computing clusters.” Specially, Repast Symphony could integrate the Netlogo model into Relogo. The interface 
of Repast Symphony is comprised of three main parts: the top line is the control panel, the left side is the user 
panel for setting initial values, and the right side is a visual window for observing agent movements and interac-
tions. The advantage of Repast Symphony is that this software platform could highly customize agent behaviors 
and interaction among agents by incorporating a programming language such as Java. Few of current agent- 
based models have been built using Repast, but Repast could be a potential powerful agent-based took it with its 
development in functions. 

Mason is recognized as a smaller and faster alternative to Repast, recently designed as a Java-based platform 
with a multi-agent simulation environment [24]. Compared to other agent-based platforms, Mason is recognized 
as a less mature simulation package but having the least execution time, which is appropriate to simulate agent 
behavior with much iteration for experienced programmers. We have compared implementation of different 
agent-based platforms in the following aspects listed in Table 1. 

Table 1 shows that different characteristics of five agent-based simulation platforms in seven aspects. Only 
Netlgo has built-in agent and built-in patches which could easily start with building interactions of agents and 
tracking agents’ movement. Other than Netlogo and Repast, Swam, Java Swam and Mason need to write in low-  

OPEN ACCESS                                                                                       OJMSi 



Z. Z. SHI  ET  AL. 18 

Table 1. Characteristics of various types of agent-based simulation platforms. 

 Language Scheduling Generator Grid Space Built-in Agents Color Track Agents 

Swam Objective-C Fixed/Dynamic Mersen Non toroidal No Colormap Habitat cells 

Java Swam Java Fixed/Dynamic  Non toroidal No Colormap Habitat cells 

Repast Java/High-level Fixed/Dynamic  toroidal No Built-in Java color class Habitat cells 

Mason Java-based Fixed/Dynamic  toroidal No Built-in Java color class Habitat cells 

Netlogo High-level Fixed/Partial Dynamic  toroidal Yes Color-scaling primitive Built-in patch 

 
level language with careful design of programming. Especially, Swam need to have a generator to build agents 
and does not have toroidal interface. Five agent-based took its have a mature color function. 

When one implements an agent-based model, execution speed is crucial to determine if the agent-based plat-
form is effective. From Railsback’s implementations of 16 versions of agent-based models [24], we summarized 
that Mason is the fastest agent-based platform compared to nearly all versions of the agent-based model. Repast 
and Netlogo closely follow in results, but Swam is the slowest agent-based platform, especially when complexi-
ty increases in model structure. In conclusion, we believe that Netlogo is an appropriate toolkit for new re-
searchers for developing agent-based applications because of its simplified programming environment, easily 
implemented tool sets, well-developed library model, and well-established documentation support.  

6. Advantages of Agent-Based Modeling on Infectious Disease 
Agent-based modeling has been employed to describe numerous processes in immunology [6]. Complex, nonli-
near biological immune processes responding to infection require integrated information to represent interaction 
effects among various components rather than reconstruct those processes by linearly summarizing characteris-
tics of each single component. Compared to traditional differential equation models, Bonabeau [26] claims that 
agent-based modeling (ABM) is a powerful simulation modeling technique for naturally describing nonlinear 
relationships between components in immune responses as a whole. The author explained that ABM could si-
mulate more complicated individual behaviors in spatial and local environments and further exhibit individual 
learning and adaptation by modeling and simulating behavior of the system’s constituent units and their interac-
tion. Later, Bauer et al., [6] classified multiple applications of ABM in immunology. They reviewed various 
ABMs relevant to host-pathogen systems and discussed contributions to understanding immunology and disease 
pathology. They pointed out that ABMs are closer to the description and representation of a true biological sys-
tem compared to traditional modeling techniques. By suggesting directions and velocities of cell movement in 
simulation, ABMs could easily provide insight into spatial or localized cell interaction in host-pathogen systems 
while addressing limitations of traditional modeling techniques such as ordinary differential equations and par-
tial differential equations. 

A well-detailed agent-based model derived from verified research tells a story about immune system response 
to various insults. First, by translating basic science evidences of infectious disease into behavioral computa-
tional agents, agent-based model is intuitive and easy to understand. Secondly, agent-based model is capable of 
reconstructing the interactions between cells and cytokines in relation to specific disease and therefore simulat-
ing different kinds of infectious disease. Thirdly, an agent-based model can be developed further by incorporat-
ing new types of agents or the interactions of specific types of agents with other agents, leading to greater un-
derstanding of the control mechanism for cellular behavior. Moreover, ABM is built with a random event gene-
rator, and therefore, is able to simulate the stochastic nature of immune responses to infectious disease. Analysis 
of various consequences of disease progression for heterogeneous patients can be accomplished by getting in-
sight into the stochastic nature of immune responses. The randomness in an agent-based model is largely em-
bedded in the process of agent interactions, such as one agent choosing to interact with one neighboring agent 
rather than another. Furthermore, agents could execute certain functions in different locations when they move 
or interact with other types of agents. For example, in most immune responses, neutrophils execute a series of 
functions such as moving rolling and adhering upon gradient to endothelial cells when they are in a blood vessel. 
Once they enter a nearby tissue they execute different functions and interact with various types of cytokines and 
immune cells. In an agent-based model, behavior of agents and the interactions of one agent with another are 
highly randomized and spatially-dependent which could not be described by other modeling approaches. Most 

OPEN ACCESS                                                                                       OJMSi 



Z. Z. SHI  ET  AL. 19 

importantly, in most circumstances, agent-based models are employed to support the development and design of 
clinical trials. By incorporating single agent-treatment or multi-agent treatment, the agent-based model could 
demonstrate the evidences observed in experimental design using computational results. ABM could test effects 
of proposed treatments, prior to clinical trials, and help in designing future potential experiments especially fo-
cused on the exploration of new therapeutic approaches. Current therapeutic experiments emphasize media-
tor-directed treatments. The number of those experiments largely increases with the development of new know-
ledge of investigated mediators.  

7. Limitations of Agent-Based Modeling of Infectious Disease 
Agent-based models clearly have several striking advantages; however, they also have some limitations. Firstly, 
an agent-based model is defined as an “instructive” tool and cannot represent real immune responses in infec-
tious disease because it fails in one-to-one mapping of components and processes to biological systems. Biolog-
ical immune responses responding to infection are recognized as a series of complex processes including both 
intracellular transductions (process of DNA being transferred) and intercellular pathways between cells. Those 
biological processes will be developed with evolved understanding and continued investigation of cellular and 
molecular mechanisms. Proposed agent-based models are very abstract descriptions of real systems and are still 
under development. The challenge of constructing an agent-based model in practice is to appropriately choose 
the degree of abstraction and avoid unnecessary information while incorporating essential information for re-
cognizable results.  

Also, agent behavior and interactions between agents in infectious disease are based on the understanding of 
basic cellular and molecular mechanisms in immune responses. However, knowledge concerning some interac-
tions may not exist or are still under exploration [27]. Furthermore, patterns of immune responses evolved from 
agent interactions are observed in agent-based models and, compared with results from experimental studies, 
serve as validation and refinement of agent-based models. However, existing experimental studies may provide 
contrary information to basic biological mechanisms and patterns of immune responses, which complicates 
building and validating an agent-based model. Various experimental conditions, data sampling methods, and 
experimental designs could contribute to the conflicting results as no uniform standard exists to perform those 
clinical trials. 

Additionally, most existing agent-based models are limited in quantitative validation of simulated results from 
experimental designs. Instead, they generate qualitative results to represent patterns of progression of infectious 
disease. However, to further validate the agent-based model, quantitative measurements are necessary to match 
simulated results with experimental results reported. The validation process requires a large amount of experi-
mental data in order to incorporate or translate those data into an agent-based model. During the validation 
process, major difficulties occur, such as when some data is unavailable or the data format is not uniform by 
measurements, leading to incomplete translation of biological information into qualitative simulation.  

Furthermore, an agent-based model requires high-level of computational efforts to simulate the detailed inte-
ractions among classes of agents in immune responses of infectious disease. The agent-based model is designed 
to describe the aggregated level of components by simulating individual agent behavior and interactions, and 
therefore, requires extensive computational effort and the computation efficiency is quite low. If 10 types of 
agents are defined in an agent-based model and each type of agent initially has 100 agents. A total of 1000 
agents’ behaviors need to be encoded and decoded when executing the agent-based model. In the case of over-
whelming infection, the number of bacteria (one type of agent) can explode to 108 and a large amount of com-
putational power is therefore needed to run the model. 

8. Future Direction of Agent-Based Modeling of Infection 
Limitations of current agent-based models provide opportunities for future research. One of the initial steps 
needed in future research is to refine current agent-based models by adding more sophisticated cellular and mo-
lecular pathways in immune system when the immune system is responding to various types of infectious disease. 
For instance, in simulating sepsis progression, current agent-based models could be enhanced by adding an-
ti-inflammatory pathways in both innate and adaptive immunity. The agent-based model for simulating diabetic 
foot ulcers could be improved by incorporating collagen contraction in the wound-healing process [14]. By tak-
ing into account more molecular interactions and transductions inside cells, the agent-based models could build 
a bridge between intracellular mechanism and intercellular interactions. The current agent-based models prima-  
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rily focus on the interface of blood borne endothelial cells as a platform to simulate the initial start of immune 
responses. The long-term goal of agent-based models is to construct various structures modeling different organs, 
eventually simulating the physiology at the organ level, and link immune responses at the organ level to system-
ic responses on a whole-body scale. 

With the development of current biological experiments, experimental data could be obtained using experi-
mental designs as inputs into the agent-based model, and quantitative results could be expected in future re-
search. In addition, the existing agent-based models use simple arithmetic rules to regulate and control interac-
tions and movement among agents. In future research, we hope to describe aggregated behaviors of agents in 
immune responses using well-formed and complete mathematical expressions derived from known and hy-
pothesized kinetics of components of biologic systems. 

The current agent-based models require a large computational effort. For instance, Netlogo models, one of 
many software platforms for the agent-based model, are limited to a few thousand agents running abstract rules 
on a high-performance computer [28]. In particular, a large number of repetitive local interactions among agents 
greatly increase the running time of the agent-based model. To reduce this computational hurdle, one could use 
agent-owned variables (local variables) to define each type of agent [13]. Values of agent-owned variables will 
be updated every time period predefined in the model. Similarly, the number of agent types will be updated cor-
responding to the change in the agent-owned variables. The relationship between the change in number of cells 
and change in the agent-owned variable is described in Figure 3. Figure 3 shows that agent-specific variables 
induce the change in the number of agents. 

Similarly, dynamic agent compression allows a set of homogeneous agents stored in compact bins to make the 
model more efficient in its use of memory and computational cycles, therefore allowing the user to scale up 
complexity of the model and run the model more efficiently by increasing execution speeds [29]. Furthermore, 
the Gillespie algorithm proposed the generation of a statistically correct trajectory for stochastic simulation and 
streamlining the execution of computational steps [30]. More computational algorithms, as well as enhancement 
of computer power, are expected to implement multi-scale agent-based models. Parallel computers also have a 
potential to improve ABM applications in the future. 
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