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ABSTRACT 
Networks are used to represent interactions in a wide variety of fields, like biology, sociology, chemistry, and 
more. They have a great deal of salient information contained in their structures, which have a variety of appli-
cations. One of the important topics of network analysis is finding influential nodes. These nodes are of two kinds 
—leader nodes and bridge nodes. In this study, we propose an algorithm to find strong leaders in a network 
based on a revision of neighborhood similarity. This leadership detection is combined with a neighborhood in-
tersection clustering algorithm to produce high quality communities for various networks. We also delve into the 
structure of a new network, the Houghton College Twitter network, and examine the discovered leaders and 
their respective followers in more depth than which is frequently attempted for a network of its size. The results 
of the observations on this and other networks demonstrate that the community partitions found by this algo-
rithm are very similar to those of ground truth communities. 
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1. Introduction 
Many complex interactions can be represented by net-
works, which are collections of nodes connected by 
edges. The connections denoted by edges can vary de-
pending on the network; in a food web an edge would 
signify consumption, while in the world of social media 
services such as Facebook and Twitter, an edge signifies 
something akin to a friendship. Many other types of net-
works exist as well, such as virus transmission, infra-
structure topology, and collaboration networks. 

Much attention has been given to community detection 
on networks, partitioning a network into disjoint sets of 
nodes characterized by greater interior edge-density than 
exterior, called communities. Many community detection 
algorithms have been proposed and utilized with varying 
degrees of effectiveness. The Label Propagation Algo-
rithm (LPA) is such a method which is impressively ef-
fective, boasting elegant simplicity and near-linear run-
time. LPA works by having each node select a label from  

its neighborhood to adopt as its own. Each node initially 
has a unique label. After a set number of iterations, LPA 
terminates and the labels of the nodes of the network are 
returned [1]. Many other methods have been developed 
as well, such as Speaker-listener LPA (SLPA) [2], La-
belRank [3], and Local Tightness Expansion (LTE) [4]. 

One particularly interesting method of determining 
communities in a network is an extension of the k-means 
algorithm for clustering Euclidean data points. The k- 
means algorithm begins with specifying a number of 
clusters to find (k). It then chooses a set of initial centro-
ids points which act as cores for the clusters. Each data 
point is assigned to its nearest centroid, after which each 
centroid is recalculated as the average position of the 
points assigned to it. This process continues iteratively 
until the centroids stabilize. The Top Leaders algorithm 
proposed in [5] uses a similar method. From the network 
and a predefined number of communities, it determines 
starting leaders. Several methods of determining initial  
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leadership are suggested, such as random initialization, 
maximal degree-based initialization, and others. A fitness 
function is applied to each leader-node pair, and each 
node is assigned to its highest scoring leader. In [5] the 
fitness function is a simple comparison of neighborhoods 
between a leader and a node, but other functions could be 
used. This neighborhood comparison involves determin-
ing the set of nodes neighboring the node and the leader 
at a given depth and finding the size of the intersection. 
The depth parameter is incremented, expanding the 
search for common neighbors, until either one candidate 
leader is determined to have higher overlap or a depth 
threshold is reached. Once all nodes have been grouped 
with leaders, the leaders are recalculated to the most de-
gree-central node in their respective communities. Nodes 
are then reassigned and the process continues until the 
leaders reach equilibrium. 

This approach has distinct value. It finds cohesive 
communities centered on prominent nodes in the network, 
but it also has the drawback of requiring the user to know 
the number of communities in the network. There are 
methods of estimating this number, but these algorithms 
are generally other community detection algorithms. Even 
knowing the number of communities, the top leaders’ 
algorithm is sensitive to its initial set of leaders. 

We propose an algorithm for determining high quality 
leaders in a network based on neighborhood similarity. 
This function is combined with the Top Leaders cluster-
ing function to generate high quality community parti-
tions without the need for iterative refinements. This al-
gorithm does not require a predetermined number of 
communities, as it will discover a natural number of 
leaders for a network. 

2. Networks 
The representation of networks is quite simple. A net-
work G = (V, E) has n nodes and m edges. Any operation 
that is done based on the structure of a network can be 
performed using an adjacency matrix A —an n  by n  
matrix where an edge from node i  to node j  is 
represented by a 1 in position ijA , and a lack of an edge 
is represented by a 0. Networks can also be weighted or 
directed. In weighted networks, values in the adjacency 
matrix are not simply 1 s and 0 s, but are replaced with 
the relevant edge-weights. In directed networks, edges 
are not bi-directional, which means that the value jiA  is 
not necessarily equal to ijA . In undirected networks, 
these values are always the same. 

For this study, we use a combination of small and 
large undirected networks to compare the performance of 
our algorithm to that of other algorithms. Zachary’s Ka-
rate Club is a frequently used benchmark in terms of 
quality of community detection, with a well-known 

ground truth partition into two communities of roughly 
half the network each [6]. A new network with a known 
ground truth membership is the Pilgrim network intro-
duced by Brian Dickinson [7]. It is a social network pro-
duced from the friendships of senior students in Dickin-
son’s high school, with 34 nodes, 128 edges, and an im-
pressive variety of different communities. It is composed 
of a tight, small clique, a pair of dense and intercon-
nected larger communities, and a fourth relatively sparse 
community. These communities can be seen in Figure 1. 
A third small network suitable for comparisons against a 
ground truth community partition is the dolphin network, 
which was constructed from observations of 68 dolphins 
in New Zealand divided between two communities [8]. 

Other small networks used are the jazz network, which 
is a network of jazz musician collaboration, and the col-
lege football network [9,10]. 

The large networks included for study are called 
ca-HepTh, ca-HepPh, ca-CondMat, and ca-AstroPh [11]. 
These four are co-authorship networks from the arXiv 
e-print archive.1 The first, ca-HepTh is a co-authorship 
network of high energy theoretical physics publications. 
Ca-HepPh is from the high energy physics phenomenol-
ogy section. Ca-CondMat was produced using the co- 
authorship from arXiv’s condensed matter publications. 
Lastly ca-AstroPh is from the publications in the astro-
physics category. 

The last network used in this study is the Houghton 
College Twitter network developed by William Deitrick 
at Houghton College. It represents Twitter associations 
centered on the Twitter account @HoughtonCollege. It 
was assembled by crawling the followers and friends of 
@HoughtonCollege, representing follows between the 
users as undirected edges. Accounts following more than 
600 users were excluded. The @HoughtonCollege node 
and all nodes connected only to it were removed, pro-
ducing a network of 797 nodes and 5238 edges. This 
network is a valuable tool for studying the results of 
community detection algorithms on larger networks. 
 

 
Figure 1. Ground truth community membership of the Pil-
grim high school network. Each color represents a distinct 
community. 
1http://arxiv.org/ 
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Despite lacking a known ground truth community mem-
bership, there is a richness of information available about 
the different kinds of users in the network that is often 
lacking in large networks, which allows for a more tho-
rough evaluation of the quality of a partition than simply 
assigning it a fitness score such as modularity. 

3. Node Importance 
An algorithm to determine high quality leaders in a net-
work has more uses than merely community detection. 
The identities of influential nodes in the network are 
useful data in many other practical applications of the 
study of networks. Fields in which these data are useful 
include marketing, sociology, and virology. Influential 
nodes are generally divided into two categories, core 
nodes and bridge nodes. Core nodes, or leaders, are 
nodes at the heart of a community, around which com-
munities are formed. Bridge nodes act as connections 
between two or more communities. Many measures of 
the importance of a node in a network, called centrality, 
have been developed. The three most frequently used 
centrality functions are degree centrality, betweenness 
centrality, and distance centrality. 

Neighborhood similarity, proposed in [12], can also be 
adapted for use as a centrality function. In its original 
formulation, this measure compared the neighborhoods 
of two nodes at a given depth. It can be modified slightly 
for the purpose of determining fitness of individual nodes 
for leadership by summing a node’s similarity to its 
neighbors. The original function for neighborhood simi-
larity is 

( ) , ,

, ,

Γ Γ
sim , ,

Γ Γ
i j

ij
i j

i j A δ δ

δ δ

δ ⋅=

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         (1) 

where ,Γi δ  is the neighborhood of node i  at depth δ . 
The modified formulation of neighborhood similarity is 
straightforward to calculate for a given single node, as it 
is the average of the ratios of shared neighborhoods be-
tween it and neighbors. The δ  variable is set to 1 in 
this revised formulation, because as neighborhood depth 
increases, the number of nodes in common drastically 
increases, which will raise similarity scores dispropor-
tionately. The equation for the neighborhood similarity 
centrality function is 
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Neighborhood similarity is a measurement of the co-
hesiveness in the neighborhood of a node. This cohe-
siveness is integral to the definition of a community, as a 
good community has higher internal degree than its ex-
ternal degree. Nodes with highly interconnected neigh-
borhoods will be leaders, while nodes with disjoint 

neighborhoods often act as bridge nodes. Because of the 
way it focuses on the neighborhood, it is logical to per-
form a local maximization to determine leaders. Each 
node with a higher similarity score than any of its neigh-
bors is selected as a leader. The effect of this can be 
clearly seen in Figure 2, where the brightest nodes are 
nodes with neighborhood similarity values close to 1. 
Locally maximizing the function yields four nodes as 
leaders, one at the core of each of the ground truth com-
munities for the network, which are shown in Figure 1. 
It can also be seen why a global maximization of neigh-
borhood similarity would be ineffective; the three brigh-
test nodes in Figure 2 are together in a clique. There are 
methods to handle such instances, some of which are 
discussed in [5], but this function is naturally suited to 
local maximization. 

In some instances, low-degree nodes can be designated 
leaders according to neighborhood similarity, and in 
some of those cases the chosen node is not an optimal 
leader. In order to balance the degree of a node with its 
neighborhood similarity, a tuning parameter is applied 
following the equation 

( ), 1 .i m
i i

M m
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k kα α α

−
= + −

−
        (3) 

In this equation, ik  is the degree of node i , Mk  
and mk  are the maximum and minimum degree found 
on the network, respectively, and the tuning parameter is 

[ ]0,1α ∈ . 

4. The Algorithm 
The first step of the Neighborhood Similarity-Based Lea-
dership (NSL) community detection algorithm is the lea-
dership determination phase, which is shown in Algorithm 
1. In this phase of the algorithm, each node has its lea-
dership fitness assessed according to Equation (3). The 
fitness of each node is then compared against each of its 
neighbors. If it has the highest fitness, it is selected as a 
 

 
Figure 2. Heat map of neighborhood similarity scores on 
the Pilgrim high school network. Nodes in red have high 
similarity scores, while nodes in blue have low similarity 
scores. 
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leader. In the case of ties, the first node reached is chosen, 
as each is equally fit to lead. This subroutine then returns 
the set of leaders to the algorithm, which progresses to 
the clustering phase. Algorithm 2 is an overview of the 
clustering step. This subroutine is a modification of the 
clustering algorithm presented in [5], which places each 
node with its optimal leader. It does this by calculating 
the overlap between the neighborhood of the node in 
question and each leader. However, not all nodes are 
within two hops of their respective leaders, necessitating 
a depth parameter. This parameter defines the depth of 
the neighborhood for the node and the leaders it is com-
paring against, and the depth is incremented until only one 
leader is found or the maximum depth parameter, δ , is 
reached. The original algorithm includes a step to update 
leaders until the optimal leaders are found. In this version, 
an iterative refinement of community leaders is unneces-
sary as the optimal leaders have already been selected. 
 

Algorithm 1. Determine leaders for a network. 

Input: A network ( ),G V E=  and tuning parameter α  

for node i V∈  
calculate ,iLC α  (Equation (3)) 

truemaxima ←  
for node ij∈Γ  

if , ,j iLC LCα α>  
falsemaxima ←  

end for 
if maxima 

node i  is a leader 
end for 
return leaders 

 
Algorithm 2. Match nodes with leaders. 

Input: Network ( ),G V E= , set leaders, depth parameter δ  

for node i V∈  
if i leaders∉  

1dep ←  
potLead ←  leaders 
while 1potLead ≥  and dep δ≤   

, ,argmax c potLead dep i deppotLead ∈← Γ Γ  

1dep dep← +  
end while 
if 0potLead =  

add i  to unknown  
if 1potLead =  

assign i  to potLead  
if 1potLead >  

add i  to unknown  
end for 
for node i unknown∈  

assign i  to ( )mode
ijleader ∈Γ  

end for 
return membership 

5. Results 
We compared the NSL algorithm to several of the com-
munity detection algorithms found in the igraph library 
for R on the test networks [13,14]. The algorithms used 
were LPA, Infomap [15], the fast greedy modularity op-
timization algorithm [16], and the multi-level modularity 
optimization algorithm. The primary metrics used were 
modularity and normalized mutual information (NMI). 
NMI scores were calculated between community mem-
bership vectors produced by each algorithm and the 
ground truth community membership on each network. A 
value of 0 indicates that the two vectors are completely 
uncorrelated, while a value of 1 indicates a perfect 
match. 

5.1. Community Detection on Real Networks 
Table 1 contains modularity scores for the tests on small 
networks. These modularity scores show that NSL yields 
comparable modularity scores to modularity optimization 
algorithms. The primary exception is the jazz network, 
on which NSL and Infomap both performed poorly in 
terms of modularity. Figure 3 shows a graph of the jazz 
network with the membership found by NSL and the 
multi-level modularity optimization algorithm, which 
had the highest modularity score. From these images we 
can see that modularity in this case breaks up a natu-
ral-looking community in favor of three smaller ones, 
which is similar to what happens in the modularity- 
maximized karate network partition when compared with 
its ground truth. 

Figure 4 shows NMI scores compared against the 
available ground truth memberships. From this chart we 
see that NSL performed extremely well; it matched or 
outperformed every other algorithm on every network 
with only one exception. On the dolphin network, LPA 
achieved a higher NMI score than NSL by 0.0082. The 
NMI scores demonstrate the effectiveness of our algo-
rithm, and point out an interesting trend. In each ground 
truth NMI comparison, NSL outperformed Infomap, de-
spite how similar the two algorithms are in terms of mod-
ularity. Also, these improvements in NMI are correlated 
 
Table 1. Modularity scores for each of five small networks 
for each of five algorithms. Parenthetical numbers refer to 
the lowest α-value corresponding to the optimal result. 

 Dolphin Football Jazz Pilgrim Karate 

NSL 0.5203 (0.6) 0.5816 (0) 0.2816 (0.1) 0.4373 (0) 0.3715 (0) 

Infomap 0.5247 0.6005 0.2800 0.4406 0.4020 

Fast greedy 0.4955 0.5497 0.4389 0.4373 0.3807 

LPA 0.4927 0.5835 0.4428 0.4406 0.3715 

Multi-level 0.5185 0.6046 0.4431 0.4418 0.4188 
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Figure 3. Jazz network community partitions by NSL (up-
per) and multi-level (lower). 
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Figure 4. Bar graph of NMI scores with ground truth 
community partitions for NSL, the fast greedy algorithm, 
infomap, LPA, and the multi-level algorithm on each of the 
dolphin, Pilgrim, and karate networks. The alpha parame-
ter for NSL’s optimal result on the dolphin network was 0.4, 
while Pilgrim and karate both used an alpha of 0. 

with a drop in the modularity score, in keeping with the 
previously observed trend that modularity maximization 
often deviates from the ground truth communities ob-
served. 

The difficulty in determining quality of a partition is 
that ground truth membership vectors are rare, even for 
small networks. No comprehensive ground truth vectors 
exist for large networks, so in general modularity is the 
only measure of quality of large-network community 
partitions. Not all algorithms that work well on small 
networks can be said to have the same kind of perfor-
mance on large networks. Also, some algorithms are bet-
ter suited to dense networks, while others are better 
suited to sparse ones. Without a ground truth basis for 
observation, it is exceedingly difficult to determine per-
formance on large networks. Table 2 contains modulari-
ty scores for four algorithms on the large networks ex-
amined. The range of modularity scores on these is much 
broader than on small networks, as there are many more 
options for community partitions. Many of these mod-
ularity score ranges look similar to those from the jazz 
network, with NSL receiving lower modularity scores 
than other algorithms, with few exceptions. There may 
be some similarities in the structures of these networks 
that lends to the marked difference between the NSL 
clustering and optimal modularity clustering. This seems 
a reasonable hypothesis, as both jazz and the four 
co-authorship networks are collaboration networks. As 
was already seen, the communities found by NSL stand 
up better to visual examination in the case of the jazz 
network, but the arXiv networks are too large for such an 
examination to be possible in this format. The Houghton 
College Twitter network is not a collaboration network, 
however, and it is still small enough for such an exami-
nation to be possible. It also has a great deal of informa-
tion about the users available, which will be helpful in 
our analysis. 

5.2. Houghton College Twitter Network 
Community Analysis 

An investigation of the general affiliations of the accounts 
 
Table 2. Modularity scores on five large networks. Paren-
thetical numbers indicate the lowest α-value corresponding 
to the optimal modularity. The fast greedy algorithm’s im-
plementation was unable to run on some of these networks, 
so its results are omitted from the table. 

 ca- 
HepTh 

ca- 
HepPh 

ca- 
AstroPh 

ca- 
CondMat 

HC 
Twitter 

NSL 0.6944 (0.9) 0.5067 (0) 0.4964 (0) 0.6189 (0.4) 0.4162 (0) 

Infomap 0.6840 0.6114 0.5494 0.6438 0.4787 

LPA 0.6538 0.4511 0.2965 0.6292 0.3786 

Multi-level 0.7683 0.6617 0.6266 0.7311 0.5411 
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in the Houghton College Twitter network revealed that 
141 accounts belong to students at Houghton College, 
139 to alumni, 48 to other users affiliated with Houghton 
College, and 340 others, such as schools, businesses, 
churches, and many individuals not affiliated with the 
college. The remaining 129 accounts lack sufficient iden-
tifying information to determine an affiliation. The pri-
mary communities according to NSL and the fast greedy 
community detection algorithm are shown in Figure 5. 

The communities produced by the community detec-
tion algorithms used were compared using the function 

1 2

1 2 1 2

1 2

1 .
2C C

C C C C
sim

C C
 

= +  
 

 

         (4) 

The NSL algorithm found three large communities, 
which contained 390, 179, and 106 members, respec-
tively (communities 1, 2, and 3 in Figure 5). It also 
found several small communities. It was determined that 
community 1 according to NSL had a sim-value of 
0.8134 with the corresponding community as found by  
 

 
 

 
Figure 5. Houghton College Twitter Network with Com-
munities found by NSL (upper) and the fast greedy mod-
ularity optimization algorithm (lower). The nodes in yellow 
form community 1, while nodes in blue and green are in 
communities 2 and 3, respectively. The white nodes are 
members of other communities. 

the fast greedy algorithm. The fast greedy algorithm also 
found two other large communities, each with a high- 
sim-value to one of the two other large NSL communities, 
along with several small communities. The fast greedy 
algorithm had a modularity score of 0.4945, which is one 
of the highest modularity scores attained on this network. 
This coupled with the similarity of the communities 
found by the two algorithms makes it suitable for a more 
detailed analysis. Details about the large communities 
found by both algorithms are shown in Table 3. 

The compositions of community 1 are shown in Table 
4. From this table it can be seen that the two different 
boundaries found for the same community are both of 
high quality. The fast greedy algorithm discovered a tight 
community of most of the students in the network, with 
some of their older peers and others. NSL found a 
slightly broader community which contained nearly all of 
the students in the network and most of the alumni and 
other users associated with Houghton College. In Figure 
5 we can see that the tightness gained in community 1 
according to the fast greedy algorithm is balanced by a 
loss of tightness in community 3 relative to NSL. The 
versions of communities 2 and 3 found by NSL are more 
tightly defined than those of the fast greedy algorithm. In 
addition, Figures 6 and 7 show the most frequent labels 
attributed to users in communities 2 and 3, respectively, 
from the manual labeling process. From these data we 
see that the communities found by the NSL algorithm on 
the Houghton College Twitter network are of high quality. 
 
Table 3. Sizes and sim values of communities 1, 2, and 3 of 
the Houghton College Twitter network found by NSL and 
the fast greedy algorithm. 

Community Algorithm Size sim 

1 
NSL 390 

81.34% 
FG 247 

2 
NSL 179 

68.00% 
FG 251 

3 
NSL 106 

79.91% 
FG 248 

 
Table 4. Membership distributions of community 1 as found 
by NSL and the fast greedy algorithm. The denominator of 
the percentages is the total number of users in the category 
(e.g. students—NSL identified that 135 of 141 confirmed 
students in the network belong to one community (95.7%)). 

 Students Alumni Houghton Other Unidentified 

NSL 135 
(95.7%) 

103 
(74.1%) 

38 
(79.2%) 

47 
(13.8%) 

67 
(51.9%) 

Fast 
greedy 

126 
(89.4%) 

49 
(35.4%) 

24 
(50%) 

20 
(5.9%) 

28 
(21.7%) 
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Figure 6. Frequent account labels in community 2 of the 
Houghton College Twitter network as found by NSL. 
 

 
Figure 7. Frequent account labels in community 3 of the 
Houghton College Twitter network as found by NSL. 
 

One way of determining what a community represents 
is to examine its leader, which is the focus of the NSL 
algorithm. The leaders of communities 1, 2 and 3 are the 
accounts @HoughtonProbs, @CCCU_news, and @ 
JoAnneLyonGS, respectively. The @HoughtonProbs 
account is one of the many meme accounts found on 
Twitter, presumably taking inspiration from the “first 
world problems” meme; it publishes tweets referring to 
problems or “problems” peculiar to the subculture of 
Houghton, New York. The account @CCCU_news is 
operated by The Council for Christian Colleges and 
Universities, which describes itself as “an international 
association of intentionally Christian colleges and uni-
versities.”2 Houghton College is listed on the CCCU 
website as a member, along with 117 other colleges and 
universities.3 The account posts news stories relevant to 
those institutions. The third major leader in the network, 
@JoAnneLyonGS, is a prominent member of the Wes-
leyan denomination of the Protestant church, the official 
denomination of Houghton College. 

These three leaders have high degrees of correlation 
with their respective communities. The community mem- 
bership shown in Table 4 is the community led by 
@HoughtonProbs. Figures 6 and 7 correspond to the 
respective communities of @CCCU_news and @Jo- 
AnneLyonGS. From these figures it is clear that the 
communities found by the NSL algorithm are naturally 
aligned with their leaders. This demonstrates the effec-
tiveness of the NSL algorithm; it is able to find mea-
ningful communities across a wide range of networks, 
and find leaders who are representative of those com-

munities. 

6. Conclusion 
In this paper, we present a new algorithm, NSL, for de-
termining leaders of a given network and determining 
community memberships around those leaders. NSL’s 
results were compared against several other algorithms 
on the basis of modularity and also NMI scores with the 
true community memberships of some small networks. 
The NMI scores demonstrate that NSL is a very promis-
ing algorithm for finding realistic leaders and community 
structures for small networks. An in-depth examination 
of the Houghton College Twitter network indicates that it 
shows a promise on larger networks as well. In addition 
to the efficacy of the algorithm itself, the neighborhood 
similarity centrality function can be recognized as useful 
on its own for determining importance of nodes in a 
network. Further research should be conducted into its 
use and limitations. Potential expansions of the algorithm 
include extending it for use on directed networks, which 
could be done by using a modified similarity function 
which weights edges to a vertex over edges from it; 
modifying it for overlapping community detection by 
altering the clustering step, locally varying the tuning 
parameter ,α  and testing the effects of applying this 
parameter inside the neighborhood similarity function. 
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