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ABSTRACT 
In this paper, we focus on a type of inverse problem in which the data are expressed as an unknown function of 
the sought and unknown model function (or its discretised representation as a model parameter vector). In par- 
ticular, we deal with situations in which training data are not available. Then we cannot model the unknown 
functional relationship between data and the unknown model function (or parameter vector) with a Gaussian 
Process of appropriate dimensionality. A Bayesian method based on state space modelling is advanced instead. 
Within this framework, the likelihood is expressed in terms of the probability density function (pdf) of the state 
space variable and the sought model parameter vector is embedded within the domain of this pdf. As the mea- 
surable vector lives only inside an identified sub-volume of the system state space, the pdf of the state space vari- 
able is projected onto the space of the measurables, and it is in terms of the projected state space density that the 
likelihood is written; the final form of the likelihood is achieved after convolution with the distribution of mea- 
surement errors. Application motivated vague priors are invoked and the posterior probability density of the 
model parameter vectors, given the data are computed. Inference is performed by taking posterior samples with 
adaptive MCMC. The method is illustrated on synthetic as well as real galactic data. 
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1. Introduction 
The method of science calls for the understanding of selected aspects of behaviour of a considered system, given 
available measurements and other relevant information. The measurements may be of the variable W  
( )m∈ ⊆W   while the parameters that define the selected system behaviour may be ρ , ( )d∈ ⊆ ρ  or 
the selected system behaviour can itself be an unknown and sought function ( )ρ ⋅  of the known input variable 
vector X  ( )d∈ ⊆X  , so that :ρ → ⊆   . In either case, we relate the measurements with the model 
of the system behaviour as in the equation ( )=W ξ ρ  or ( )( )ρ=W Xξ  where the function ( )⋅ξ  is 
unknown. Alternatively, in either case the scientist aims to solve an inverse problem in which the operator 1−ξ , 
when operated upon the data, yields the unknown(s). 

One problem that then immediately arises is the learning of the unknown function ( )⋅ξ . Indeed ( )⋅ξ  is 
often unknown though such is not the norm—for example in applications in which the data is generated by a 
known projection of the model function onto the space   of the measurables, ( )⋅ξ  is identified as this 
known projection. Thus, image inversion is an example of an inverse problem in which the data are a known 
function of the unknown model function or model parameter vector [1-5, among others]. On the other hand, 
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there can arise a plethora of other situations in science in which a functional relationship between the 
measurable W  and unknown ( )ρ X  (or ρ ) is appreciated but the exact form of this functional relationship 
is not known [6-12, to cite a few]. 

This situation allows for a (personal) classification of inverse problems such that 
• in inverse problems of Type I, ( )⋅ξ  is known where ( )=W ξ ρ  or ( )( )ρ=W Xξ , 
• in inverse problems of Type II, ( )⋅ξ  is unknown.  

While inverse problems of Type I can be rendered difficult owing to these being ill-posed and/or ill- 
conditioned as well as in the quantification of the uncertainties in the estimation of the unknown(s), inverse 
problems of Type II appear to be entirely intractable in the current formulation of ( )=W ξ ρ  (or 

( )( )ρ=W Xξ ), where the aim is the learning of the unknown ρ  (or ( )ρ X ), given the data. In fact, 
conventionally, this very general scientific problem would not even be treated as an inverse problem but rather 
as a modelling exercise specific to the relevant scientific discipline. From the point of view of inverse problems, 
these entails another layer of learning, namely, the learning of ( )⋅ξ  from the data—to be precise, from  
training data [13-15]. Here by training data we mean data that comprises values of W  at chosen values of 
( )ρ x  (or at chosen ρ ). These chosen (and therefore known) values of ( )ρ x  (or ρ ) are referred to as the 

design points, so that values of W  generated for the whole design set comprise the training data.Having 
trained the model for ( )⋅ξ  using such training data, we then implement this learnt model on the available mea- 
surements—or test data—to learn that value of ρ  (or ( )ρ x ) at which the measurements are realised. 

It is in principle possible to generate a training data set from surveys (as in selected social science applications) 
or generate synthetic training data sets using simulation models of the system [16-18]. However, often the 
Physics of the situation is such that ( )⋅ξ  is rendered characteristic of the system at hand (as in complex 
physical and biological systems). Consequently, a simulation model of the considered system is only an 
approximation of the true underlying Physics and therefore risky in general; after all, the basic motivation 
behind the learning of the unknown ( )ρ x  (or ρ ) is to learn the underlying system Physics, and pivoting such 
learning on a simulation model that is of unquantifiable crudeness, may not be useful. 

Thus, in such cases, we need to develop an alternative way of learning ( )⋅ξ  or if possible, learn the un- 
known ( )ρ x  (or ρ ) given the available measurements without needing to know ( )⋅ξ . It may appear that 
such is possible in the Bayesian approach in which we only need to write the posterior probability density of the 
unknown ( )ρ x  (or ρ ), given the data. An added advantage of using the Bayesian framework is that extra 
information is brought into the model via the priors, thus reducing the quantity of data required to achieve 
inference of a given quality. Importantly, in this approach one can readily achieve estimation of uncertainties in 
the relevant parameters, as distinguished from point estimates of the same. In this paper, we present the 
Bayesian learning of the unknown model parameters given the measurements but no training data, as no training 
data set is available. The presented methodology is inspired by state space modelling techniques and is 
elucidated using an application to astronomical data. 

The advantages of the Bayesian framework notwithstanding, in systems in which training data is unavailable, 
fact remains that ( )⋅ξ  cannot be learnt. This implies that if learning of the unknown ( )ρ x  (or ρ ) is 
attempted by modelling ( )⋅ξ  as a realisation from a stochastic process (such as a Gaussian Process () or Ito 
Process or t-process, etc.), then the correlation structure that underlies this process is not known. However, in 
this learning approach, the posterior probability of the unknowns given the data invokes such a correlation 
structure. Only by using training data can we learn the covariance of the process that ( )⋅ξ  is sampled from, 
leading to our formulation of the posterior of the unknowns, given the measured data as well as the training data. 
To take the example of modelling ( )⋅ξ  using a high-dimensional , it might be possible of course to impose 
the form of the covariance by hand; for example, when it is safe to assume that ( )⋅ξ  is continuous, we could 
choose a stationary covariance function [19], such as the popular square exponential covariance or the Matern 
class of covariance functions [20], though parameters of such a covariance (correlation length, smoothness 
parameter) being unknown, ad hoc values of these will then need to be imposed. In the presence of training data, 
the smoothness parameters can be learnt from the data. 

For systems in which the continuous assumption is misplaced, choosing an appropriate covariance function 
and learning the relevant parameters from the measured data, in absence of training data, becomes even trickier. 
An example of this situation can arise in fact in an inverse problem of Type I—the unknown physical density of 
the system is projected onto the space of observables such that inversion of the available (noisy) image data will 
allow for the estimation of the unknown density, where the projection operator is known. Such a density 
function in real systems can often have disjoint support in its domain and can also be typically characterised by 
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sharp density contrasts as in material density function of real-life material samples [21]. Then, if we were to 
model this discontinuous and multimodal density function as a realisation from a , the covariance function of 
such a process will need to be non-stationary. It is possible to render a density function sampled from such a  
to be differently differentiable at different points, using for example prescriptions advanced in the literature [22], 
but in lieu of training data it is not possible to parametrise covariance kernels to ensure the representative 
discontinuity and multimodality of the sampled (density) functions. Thus, the absence of training data leads to 
the inability to learn the correlation structure of the density function given the measured image data. 

A way out this problem could be to make an attempt to construct a training data set by learning values of the 
unknown system behaviour function at those points in the domain of the density, at which measured data are 
available; effectively, we then have a set of data points, each generated at a learnt value of the function, i.e. this 
set comprises a training data. In this data set there are measurement uncertainties as well as uncertainty of 
estimation on each of the learnt values of the system function. Of course, learning the value of the function at 
identified points within the domain of the system function, is in itself a difficult task. Thus, in this paradigm, the 
domain d⊆   of the unknown system function ( )ρ x  is discretised according to the set of values of X , 
{ }1 2, , , nx x x , at which the n  measurements are available. In other words, the discretisation of X  is 
dictated by the data distribution. Over each X -bin, the function ( )ρ x  is held a constant such that for X  in 
the i-th bin, the function takes the value iρ , 1, 2, ,i n=  ; then we define ( )T

1 2: , , , nρ ρ ρ= ρ  and try to 
learn this vector, given the data. Unless otherwise motivated, in general applications, the probability distribution 
of iρ  is not imposed by hand. In the Bayesian framework this exercise translates to the computing of the joint 
posterior probability density of n  distribution-free parameters 1 2, , , nρ ρ ρ  given the data, where the 
correlation between iρ  and jρ  is not invoked, , 1, 2, , ;i j n i j= ≠ . Of course, framed this way, we can only 
estimate the value of the sought function ( )ρ x  at identified values of X —unless interpolation is used—but 
once the training data, thus constructed, is subsequently implemented in the modelling of ( )⋅ξ  with a  of 
appropriate dimensionality, statistical prediction at any value of X  may be possible. 

Above, we dealt schematically with the difficult case of lack of training data. However, even when a training 
data set is available, learning ( )⋅ξ  using such data can be hard. In principle, ( )⋅ξ  can be learnt using splines 
or wavelets. However, a fundamental shortcoming of this method is that splines and wavelets can fail to capture 
the correlation amongst the component functions of a high-dimensional ( )⋅ξ . Also, the numerical difficulty of 
the very task of learning ( )⋅ξ  using this technique, and particularly of inverting the learnt ( )⋅ξ , only increases 
with dimensionality. Thus it is an improvement to model such a ( )⋅ξ  with a high-dimensional . A 
high-dimensional ( )⋅ξ  can arise in a real-life inverse problem if the observed data is high-dimensional, eg. the 
data is matrix-variate [23]. 

Measurement uncertainties or measurement noise is almost unavoidable in practical applications and therefore, 
any attempt at an inference on the unknown model parameter vector ρ  (or the unknown model function 
( )ρ x ) should be capable of folding in such noise in the data. In addition to this, there could be other worries 

stemming from inadequacies of the available measurements—the data could be “too small” to allow for any 
meaningful inference on the unknown(s) or “too big” to allow for processing within practical time frames; here 
the qualification of the size of the data is determined by the intended application as well as the constraints on the 
available computational resources. However, a general statement that is relevant here is the fact that in the 
Bayesian paradigm, less data is usually required than in the frequentists’ approach, as motivated above. Lastly, 
data could also be missing; in particular, in this paper we discuss a case in which the measurable lives in a space 

⊂   where   is the state space of the system at hand. 
The paper is constructed as follows. In Section 2, we briefly discuss the outline of state space modelling. In 

the following Section 3, our new state space modelling based methodology is delineated; in particular, we 
explore alternatives to the suggested method in Subsection 3.1. The astrophysical background to the application 
using which our methodology is elucidated, is motivated in Section 4 while the details of the modelling are 
presented in Section 5. We present details of our inference in Section 6 and applications to synthetic and real 
data are considered in Section 7 and Section 8 respectively. We round up the paper with some discussions about 
the ramifications of our results in Section 9. 

2. State Space Modelling 
Understanding the evolution of the probability density function of the state space of a dynamical system, given 
the available data, is of broad interest to practitioners across disciplines. Estimation of the parameters that affect 

OPEN ACCESS                                                                                       AJCM 



D. CHAKRABARTY, P. SAHA 9 

such evolution can be performed within the framework of state space models or SSMs [24-27]. Basically, an 
SSM comprises an observation structure and an evolution structure. Assuming the observations to be con- 
ditionally independent, the marginal distribution of any observation is dependent on a known or unknown 
stationary model parameter, at a given value of the state space parameter at the current time. Modelling of errors 
of such observations within the SSM framework is of interest in different disciplines [28,29]. 

The evolution of the state space parameter is on the other hand given by another set of equations, in which the 
uncertainty of the evolved value of the parameter is acknowledged. A state space representation of complex 
systems will in general have to be designed to capacitate high-dimensional inference in which both the 
evolutionary as well as observation equations are in general non-linear and parameters and uncertainties are 
non-Gaussian. 

In this paper we present a new methodology that offers a state space representation in a situation when data is 
collected at only one time point and the unknown state space parameter in this treatment is replaced by the 
discretised version of the multivariate probability density function (pdf) of the state space variable. The focus is 
on the learning of the static unknown model parameter vector rather than on prediction of the state space 
parameter at a time point different to when the observations are made. In fact, the sought model parameter 
vector is treated as embedded within the definition of the pdf of the state space variable. In particular, the 
method that we present here pertains to a partially observed state space, i.e. the observations comprise 
measurements on only some—but not all—of the components of the state space vector. Thus in this paradigm, 
probability of the observations conditional on the state space parameters reduces to the probability that the 
observed state space data have been sampled from the pdf of the full state space variable vector, marginalised 
over the unobserved components. Here this pdf includes the sought static model parameter vector in its 
definition. In addition to addressing missing data, the presented methodology is developed to acknowledge the 
measurement errors that may be non-Gaussian. 

The presented method is applied to real and synthetic astronomical data with the aim of drawing inference on 
the distribution of the gravitational mass of all matter in a real and simulated galaxy, respectively. This 
gravitational mass density is projected to be useful in estimating the distribution of dark matter in the galactic 
system. 

3. Method in General 
Here we aim to learn the unknown model parameter vector ρ  given the data, where data comprises dataN  
measurements of some (h) components of the d-dimensional state space parameter vector X ; thus, h d< . 
Here ( )T

1 2, , , dX X X=X  . In fact, the data set is ( ){ } data

1

Ni

i=
u  where the i-th observation is the vector 

( ) ( ) ( ) ( )( )T

1 2, , ,i i i i
hX X X=U  . Let the state space be   so that ∈X  . Let the observable vector be 

∈ ⊂U   . Let [ ]( ) ( )Pr , d , df∈ + = XX x x x x xα , i.e. the probability density function of the state parameter 
vector X  is ( ),f x α , where the distribution is parametrised by the parameter j∈α . 

In light of this, we suggest that ( ),fX x α . Then had the observations lived in the state space  , we 
could have advanced the likelihood function in terms of ( ),f ⋅ ⋅ . However, here we deal with missing data that 
we know lives in the sub-space   within  . Therefore, the data must be sampled from the density ( ),ν u α  
that is obtained by marginalising the pdf ( ),f x α  over 1 2, , ,h h dX X X+ +  . In other words, the pdf ( ),f x α  
is projected onto the space of the observables, i.e. onto  ; the result is the projected or marginalised density 
( ),ν u α  of the observables. Then under the assumption of the observed vectors being conditionally iid, the 

likelihood function is  

( ){ } ( )( )datadata

1 1
Pr ,

NNi i

i i
ν

= =

  = 
  ∏u uα α                             (1) 

where 
( )( ) ( ) ( )( )

1

1 1 1, , , , , , , d d .
h d

i i i
h h d h d

X X

f x x x x x xν
+

+ += ∫ ∫u    α α                   (2) 

While the likelihood is thus defined, what this definition still does not include in it is the sought model 
parameter vector ρ . In this treatment, we invoke a secondary equation that allows for the model parameter 
vector ρ  to be embedded into the definition of the likelihood. This can be accomplished by eliciting 
application specific details but in general, we suggest ( ) ( ) ( ) ( )( )T

1 2: , , , jξ ξ ξ= = α ξ ρ ρ ρ ρ  and construct 
the general model for the state space pdf to be  
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( ) ( ) ( )( ), ,f f≡x xα η ξ ρ                                   (3) 

where ( )⋅η  is a t-dimensional vector function of a vector. 
Given this rephrasing of the state space pdf, the projected density that the i-th measurement ( )iu  is sampled 

from, is re-written as 
( )( ) ( ) ( )( ) ( )( )

1

1 1 1, , , , , , , d d
h d

i i i
h h d h d

X X

f x x x x x xν
+

+ += ∫ ∫u    ρ η ξ ρ                   (4) 

so that plugging this in the RHS of Equation (1), the likelihood is  

( ){ } ( )( )datadata

1 1
Pr ,

NNi i

i i
ν

= =

  = 
  ∏u uρ ρ                                (5) 

However, it is appreciated that the pdf of the state space vector X  may not be known, i.e. ( ),f ⋅ ⋅  is 
unknown. This motivates us to attempt to learn the state space pdf from the data, simultaneously with ρ . We 
consider the situation that training data is unavailable where training data would comprise a set of values of U  
generated at chosen values of ( )ρ X . However, since the very functional relationship ( ( )⋅ξ  in the notation 
motivated above) between U  and ( )ρ X  is not known, it is not possible to generate values of U  at a 
chosen value of ( )ρ X , unless of course, an approximation of unquantifiable crudeness for this functional 
relationship is invoked. Here we attempt to improve upon the prospect of imposing an ad hoc model of ( )⋅ξ . 
Then in this paradigm, we discretise the function ( ) ( )( ),f xη ξ ρ . 

This is done by placing the relevant ranges of the vectors ( )xη  and ( )ξ ρ  on a grid of chosen cell size. 
Thus, for ( )⋅η  and ( )⋅ξ  being discretised into t  and j-dimensional vectors respectively, the discretised 
version of ( ) ( )( ),f xη ξ ρ  is then represented as the t j× -dimensional vector f  such that the p-th 
component of this vector is the value of ( ) ( )( ),f xη ξ ρ  in the p-th “ −η ξ -grid cell”. Here, such a grid-cell is 
the p-th of the ones that the domain of ( ),f ⋅ ⋅  is discretised into, max1, 2, ,p p=  . 

Given this discretisation of ( ),f ⋅ ⋅ , the RHS of Equation (4) is reduced to a sum of integrals over the 
unobserved variable in each of the grid-cells. In other words,  

( )( ) ( ) ( )( )
( ) ( )( )max

1

,

,1
, , d

p i

p i

p
i

p
p

fν −
=

 
′=  

 
∑ ∫

y u

y u
u f y

ρ

ρ
ρ                        (6) 

where ( ) ( )( ),p iy u ρ  is the value that the vector of the unobserved variables takes up in the p-th −η ξ
-grid-cell. The integral on the RHS of Equation (6) represents the volume that the p-th −η ξ -grid-cell occupies 
in the space of the unobserved variable vector ( )T

1 2, , ,h h dX X X+ +=Y  . The value of Y  in the p-th −η ξ
-grid-cell is dependent in general on ρ  for a given data vector ( )iu ; hence the notation ( ) ( )( ),p iy u ρ . 

In other words, to compute the integral for each p (on the RHS of Equation (6)) we need to identify the 
bounds on the value of each component of Y  imposed by the edges of the p-th −η ξ  grid-cell. This 
effectively calls for identification of the mapping between the space of ( )xη  and ( )ξ ρ , and the space of the 
unobserved variables Y . Now the observation ∈ ⊂U   . Then ∈Y  , where ⊕ =   . Indeed, this 
mapping will be understood using the physics of the system at hand. We will address this in detail in the context 
of the application that is considered in the paper. 

The likelihood function is then again rephrased as  

( ){ } ( )( ) ( ) ( )( )
( ) ( )( )data data maxdata

1

,

,1 11 1
Pr , , , d

p i

p i

N N pNi i
pi pi i

fν −
= == =

   ′= =      
∑∏ ∏ ∫

y u

y u
u f u f y

ρ

ρ
ρ ρ                 (7) 

using Equation (6). 
However, the observed data is likely to be noisy too. To incorporate the errors of measurement, the likelihood 

is refined by convolving ( )( ), ,iν u fρ  with the density of the error ε  in the value of the observed vector U , 
where the error distribution is assumed known. Let the density of the error distribution be ( );g u ε  where ε  
are the known parameters. Then the likelihood is finally advanced as 

( ){ } ( )( ) ( )( )datadata

1 1
Pr , , , ;

NNi i i

i i
gν

= =

  = ∗ 
  ∏u f u f uρ ρ ε                         (8) 

In a Bayesian framework, inference is pursued thereafter by selecting priors for the unknowns ρ  and f , 
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and then using the selected priors in conjunction with the likelihood defined in Equation 8, in Bayes rule to give  

the posterior of the unknowns given the data, i.e. ( ){ } data

1
π ,

Ni

i=

 
 
 

f uρ . In the context of the application at hand,  

we will discuss all this and in particular, advance the data-driven choice of the details of the discretisation of the 
( ) ( )( ),f xη ξ ρ  function. Posterior samples could be generated using a suitable version of Metropolis-Hastings 

and implemented to compute the 95% HPD credible regions on the learnt parameter values. 

Alternative Methods 
We ask ourselves the question about alternative treatment of the data that could result in the estimation of the 
unknown model parameter vector ρ . Let the sought model parameter be s-dimensional while the observable 
U  is an h-dimensional vector valued variable and there are dataN  number of measurements of this variable 
available. Then the pursuit of ρ  can lead us to express the data as a function of the model parameter vector, i.e. 
write ( )=U ρΞ , where ( )⋅Ξ  is an unknown, h-dimensional vector valued function of an s-dimensional 
vector. In order to learn ρ , we will need to first learn ( )⋅Ξ  from the data, as was motivated in the 
introductory section. 

As we saw in that section, the learning of this high-dimensional function from the data and its inversion are 
best tackled by modelling the unknown high-dimensional function with a Gaussian Process. [23] present a 
generic Bayesian method that performs the learning and inversion of a high-dimensional function given 
matrix-variate data within a supervised learning paradigm; the (chosen) stationary covariance function 
implemented in this work is learnt using training data and is subsequently used in the computation of the 
posterior probability of the unknown model parameter vector given the measured or test data, as well as the 
training data. In the absence of available training data, such an implementation is not possible, i.e. such a 
method is not viable in the unsupervised learning paradigm. In the application we discuss below, training data is 
not available and therefore, the modelling of the functional relation between data and ρ , using Gaussian 
Processes appears to not be possible. This shortcoming can however be addressed if simulations of the system at 
hand can be undertaken to yield data at chosen values of ρ ; however, the very physical mechanism that 
connects ρ  with the data may be unknown (as in the considered application) and therefore, such a simulation 
model is missing. Alternatively, if independently learnt ρ , learnt with an independent data set, is available, the 
same can be used as training data to learn ρ  given another data set. On such instances, the Gaussian Process 
approach is possible but in lieu of such training data becoming available, the learning of ρ  given the 
matrix-valued data can be performed in the method presented above. On the other hand, a distinct advantage of 
the method presented below is that it allows for the learning of the state space density in addition to the 
unknown model parameter vector. 

If the suggestion is to learn the unknown system function ( )ρ X  as itself a realisation of a , the question 
that then needs to be addressed is how to parametrise the covariance structure of  in situations in which the 
data results from measurements of the variable U  that shares an unknown functional relation with ( )ρ X . In 
other words, in such situations, the unknown system function ( )ρ X  has to be linked with the available data 
via a functional relation, which however is unknown, as motivated above; we are then back to the discussion in 
the previous paragraph. 

4. Case Study 
Unravelling the nature of Dark Matter and Dark Energy is one of the major challenges of today’s science. While 
such is pursued, the gathering of empirical evidence for/against Dark Matter (DM) in individual real-life 
observed astronomical systems is a related interesting exercise. 

The fundamental problem in the quantification of dark matter in these systems is that direct observational 
evidence of DM remains elusive. In light of this, the quantification is pursued using information obtained from 
measurable physical manifestations of the gravitational field of all matter in an astronomical system, i.e. dark as 
well as self-luminous matter. Indeed, such measurements are difficult and physical properties that manifest the 
gravitational effect of the total gravitational field of the system would include the density of X-rays emitted by 
the hot gas in the system at a measured temperature [30], velocities of individual particles that live in the system 
and play in its gravitational field [31-35] and the deviation in the path of a ray of light brought about by the 
gravitational field of the system acting as a gravitational lens [36]. 

The extraction of the density of DM from the learnt total gravitational mass density of all matter in the system, 
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is performed by subtracting from the latter, the gravitational mass density of the self-luminous matter. The 
density of such luminous matter is typically modelled astronomically using measurements of the light that is 
observed from the system. A reliable functional relationship between the total gravitational mass density and 
such photometric measurements is not motivated by any physical theories though the literature includes such a 
relationship as obtained from a pattern recognition study performed with a chosen class of galaxies [37]. 

In this work, we focus our attention to the learning of the total gravitational mass density in galaxies, the 
images of which resemble ellipses—as distinguished from disc-shaped galaxies for which the sought density is 
more easily learnt using measurement of rotational speed of resident particles. By a galactic “particle” we refer 
to resolved galactic objects such as stars. There could also be additional types of particles, such as planetary 
nebulae (PNe) which are an end state of certain kinds of stars; these bear signature marks in the emitted spectral 
data. Other examples of galactic particles could include old clusters of stars, referred to as globular clusters 
(GCs). 

Data 
As defined above, the space of all states that a dynamical system achieves is referred to as the system’s state 
space  . Now, the state that a galaxy is in, is given by the location and velocity coordinates of all particles in 
the system. Here, the location coordinate is 3∈X   as is the velocity coordinate vector V . Thus, in our 
treatment of the galaxy at hand,   is the space of the particle location and velocity vector i.e. the space of the 
vector ( )TT T,=W X V . We model the galactic particles to be playing in the average (gravitational) force field 
that is given rise to by all the particles in this system. Under the influence of this mean field, we assume the 
system to have relaxed to a stationary state so that there is no time dependence in the distribution of the vector 

( )TT T,=W X V , where the 3-dimensional vector ( )T
1 2 3, ,X X X=X  and ( )T

1 2 3, ,V V V=V . Then the pdf of the 

variable ( )TT T,X V  is ( )1 2 3 1 2 3, , , , , ,f X X X V V V α , where α  is a parameter vector. 

Our aim is to learn the density function of gravitational mass of all matter in the galaxy, given the data  
{ } data

1

N
i i=

= uD , where ( )T
1 2 3, ,X X V=U . The physical interpretation of these observables is that 3V  is the  

component of the velocity of a galactic particle that is aligned along the line-of-sight that joins the particle and 
the observer, i.e. we can measure how quickly the particle is coming towards the observer or receding away but 
cannot measure any of the other components of V . Similarly, we know the components 1X  and 2X  of the 
location X  of a galactic particle in the galactic image but cannot observe how far orthogonal to the image plane the  
particle is, i.e. 3X  is unobservable. Thus ( )T

1 2 3, ,X X V= ∈U   but ( )T
1 2 3 1 2 3: , , , , ,X X X V V V= ∈W   with 

⊂  . It merits mention that in the available data, values of 1X  and 2X  appear in the form of 2 2
1 2x x+ . 

Then the data { } ( )( ) ( )( ) ( )
data

data
2 2

1 2 31
1

,
N

N k k k
i i

i

x x v
=

=

 
= ≡ + 

 
uD . 

Here dataN  is typically of the order of 102. While for more distant galaxies, dataN  is lower, recent 
advancements is astronomical instrumentation allows for measurement of 3V  of around 750 planetary nebulae 
or PNe (as in the galaxy CenA, Woodley, &  Chakrabarty, under preparation). Such high a sample size is 
however more of an exception than the rule—in fact, in the real application discussed below, the number of 3V  
measurements of globular clusters (or GCs) available is only 29. In addition, the measurements of 3V  are 
typically highly noisy, the data would typically sample the sub-space   very sparsely and the data sets are 
typically one-time measurements. The proposed method will have to take this on board and incorporate the 
errors in the measurement of 3V . Given such data, we aim to learn the gravitational mass density of all matter— 
dark as well as self-luminous—at any location X  in the galaxy. 

5. Modelling Real Data 
In the Bayesian framework, we are essentially attempting to compute the posterior of the unknown gravitational 
mass density function ( )ρ X , given data D . Since gravitational mass density is non-negative, 3

0:ρ ≥→  . 
That we model the mass density to depend only on location X  is a model assumption1. 

 

 

1We assume that (the system is Hamiltonian so that) the gravitational potential of the galaxy is independent of velocities and depend only on 
location; since gravitational potential is uniquely determined for a given system geometry, by the gravitational mass density (via Poisson 
Equation), the latter too is dependent only on X. 
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From Bayes rule, the posterior probability density of ( )ρ X  given data D  is given as proportional to the 
product of the prior and the likelihood function, i.e. the probability density of D  given the model for the 
unknown mass density. Now, the probability density of the data vector U  given the model parameters α  is 
given by the probability density function ( ),ν U α  of the observable U , so that, assuming the dataN  data 
vectors to be conditionally independent, the likelihood function is the product of the pdfs of U  obtained at the 

dataN  values of U : 

( ) ( ) ( ) ( )( )data

1 2 3
1

, , , .
N

k k k

k
x x vν

=

= ∏D α α                              (9) 

This is Equation (7) written in the context of this application. Given that ∈ ⊂U   , the pdf of U  is 
related to the pdf ( ), ,f X V α  of the vector-valued variable ( )TT T,≡W X V  as 

( ) ( )
3 1 2

1 2 3 1 2 3 1 2 3 3 1 2, , , , , , , , , d d d .
X V V

x x v f x x x v v v x v vν = ∫ ∫ ∫α α                    (10) 

However, this formulation still does not include the gravitational mass density function ( )ρ x  in the 
definition of ( ),f X V , we explore the Physics of the situation to find how to embed ( )ρ x  into the definition 
of the pdf of the state space variable W , and thereby into the likelihood. This is achieved by examining the 
time evolution of this pdf of the state space variable; we discuss this next. 

5.1. Evolution of f(X,W) and Embeddin ρ(X) in it 

Here we invoke the secondary equation that tells of the evolution of ( ),f X V . In general, the pdf of the state 
space variable is a function of X , V  and time T . So the general state space pdf is expected to be written as 
( ), ,f TX V , with 0:f ≥× →   . It is interpreted as the following: at time t  ( )t∈ , the probability for 
[ ], d∈ +X x x x  and [ ], d∈ +V v v v  for a galactic particle is ( ) 3 3, , d df tx v x v . However, we assume that the 

particles in a galaxy do not collide since the galactic particles inside it, (like stars), typically collide over 
time-scales that are   the age of galaxies [38]. Given this assumption of collisionlessness, the pdf of 

( )TT T,=W X V  remains invariant. Thus, the evolution of ( ), ,f tx v  must is guided by the Collisionless 
Boltzmann Equation (CBE): 

3 3

1 1

d 0.
d i i

i ii i

f f f fx v
t t x v= =

∂ ∂ ∂
= + + =
∂ ∂ ∂∑ ∑                           (11) 

This equation suggests that when the state space distribution has attained stationarity, so that 0f
t

∂
=

∂
,  

( ),f x v  is a constant ,∀x v  at a given time. This is referred to as Jeans theorem [38]. In fact, the equation 
more correctly suggests that as long as the system has reached stationarity, at any given time, ( ),f x v  is a 
constant ,∀x v  inside a well-connected region ⊆ . Given this, the state space pdf can be written as a 
function of quantities that do not change with time2. 

Theorem 5.1. Any function ( ),I x v  is a steady-state or stationary solution of the Collisionless Boltzmann  

Equation i.e. a solution to the equation d 0
d
f
t
=  if and only if ( ),I x v  is invariant with respect to time, for all  

x  and v  that lie inside a well-connected region ⊆ . 
Proof. The proof is simple; for the proof we assume X  and V  to take respective values of x  and v  

inside a well-connected sub-space of  . Let a function of the vectors x , v  be ( ),I x v  such that it remains 

a constant w.r.t. time. Then ( )d ,
0

d
I

t
=

x v
 ⇒ this function is a solution to the equation d 0

d
f
t
= . 

Let the equation 0f
t

∂
=

∂
 have a solution ( ), ,J tx v . This implies ( )d , ,

0
d

J t
t

=
x v

, i.e. ( ), ,J tx v  is a 

constant with respect to time. For this to be true, ( ) ( ), , ,J t I≡x v x v . Therefore the solution to d 0
d
f
t
=  is a  

function of x  and v  that is a constant w.r.t. time.□  

 

 

2To be precise, the state space pdf should be written as a function of integrals of motion, which remain constant along the trajectory from 
one point in W to another, during the motion. 
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In fact, any function of a time-invariant function of vectors X  and V  is also a solution to the CBE. 
Now, in our work we assume the system to have attained stationarity so that the pdf of the state space variable has no 

time dependence. Then the above theorem suggests that we can write ( ) ( ) ( ) ( )( )1 2, , , , , , ,nf g I I I=x v x v x v x v  
for any n +∈ , where ( ),iI ⋅ ⋅  is any time-independent function of 2 vectors, for 1, 2, ,i n=  . 

Now, upon eliciting from the literature in galactic dynamics [39,40] we realise the following. 
• The number n  of constants of motion can be at most 5, i.e. 1, 2,3, 4,5n = . 
• The pdf of the state space variable has to include particle energy ( ),E X V , (which is one constant of 

motion), in its domain. Thus, we can write. 

( ) ( ) ( ) ( )( )2 5, , , , , , ,f f E I I=X V X V X V X V . 

• Energy ( ),E X V  is given as the sum of potential energy ( )XΦ  and kinetic energy 2⋅V V , i.e.  

( ) ( ), 2 ,E = + ⋅X V X V VΦ                               (12) 

( )T2 2 2
1 2 3 1 2 3, with , , ,X X X X X X≡ ⋅ ≡ + + =X X X X                   (13) 

( )T2 2 2 2
1 2 3 1 2 3, with , , .V V V V V V⋅ ≡ ≡ + + =V V V V                      (14) 

Here ⋅  is the Euclidean norm. That the potential is maintained as dependent only of the location vector 
X  and not on V  stems from our assumption that there is no dissipation of energy in this system, i.e. we 

model the galaxy at hand to be a Hamiltonian system. Here, a basic equation of Physics relates the potential of 
the galaxy to the gravitational mass density of the system, namely Poisson Equation: 

( ) ( )2 4R G RρΦ = − π∇                                 (15) 

where 
2 2 2

1 2 3: ,R X X X= = + +X                               (16) 
2∇  is the Laplace operator (in the considered geometry of the galaxy) and G  is a known constant (the 

Universal gravitational constant). 
On the basis of the above, we can write  

( ) ( ) ( ) ( )( )2 5, , , , , , ,f f E I I=X V X V X V X V                          (17) 

( )( )( ) ( ) ( )( )
( ) ( ) ( )( )

2 5

2 5

, , , , , ,

, , , , , ,

f E R I I

f E I I

ρ= Φ ⋅

= ⋅ ⋅

V V X V X V

X X V V X V X V





                        (18) 

At this point we recall the form of an isotropic function of 2 vectors [41-43]. 
Remark 5.2. A scalar function ( ),h ⋅ ⋅  of two vectors m∈a   and m∈b   is defined as isotropic with 

respect to any orthogonal transformation ( )m m×Q  if ( ) ( ), ,h h=a b Qa Qb . Here T =Q Q I , the identity matrix 
and 1det = ±Q . Under any such orthogonal transformation Q , only the magnitudes of the vectors a  and b ,  

and the angle between them remain invariant, where the angle between a  and b  is ⋅
⋅ ⋅
a b

a a b b
. Therefore,  

it follows that 

( ) ( ) ( ) ( ), is isotropic , , , ,h h h h⋅ ⋅ ⇔ = = ⋅ ⋅ ⋅a b Qa Qb a a b b a b . 

We also recall that in this application, 0⋅ =X V  by construction. 
This leads us to identify any pdf of the state space variable ( )TT T,=W X V  as isotropic if the pdf is 

expressed as a function of energy ( ),E X V  alone. This follows from Equation 18 since ( ) ( ),f f E=X V  ⇒ 

( ) ( )( )( ) ( ) ( ), , , , since 0f f R fρ= Φ ⋅ = ⋅ ⋅ ⋅ ⋅ =X V V V X X V V X V X V          (19) 

which is compatible with the form of isotropic functions as per Remark 5.2. Thus, if the pdf of the state space 
variable is dependent on only 1 constant of motion—which by the literature in galactic dynamics has to be 
energy ( ),E X V —then ( ),f X V  is an isotropic function of X  and V . 

However, there is no prior reason to model a real galaxy as having an isotropic probability distribution of its 
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state space. Instead, we attempt to 
• use as general a model for the state space distribution of the system as possible, 
• while ensuring that the degrees of freedom in the model are kept to a minimum to ease computational ease. 

This leads us to include another time-invariant function ( ),L X V  in the definition of the pdf of the state 
space variable in addition to ( ),E X V , such that the dependence on X  and V  in ( ),L ⋅ ⋅  is not of the form 
that renders ( ),f E L  compatible with the definition of isotropic function, as per Remark 5.2, unlike ( )f E . 

This is so because  

( ), :L = ×X V X V                                (20) 

where ×  represents the “cross-product” of the two 3-dimensional vectors X  and V , i.e. 

( )T 2 3 1 3 1 2

2 3 1 3 1 2

:
X X X X X X
V V V V V V

 
× = − + 

 
X V                     (21) 

so that  

( ) ( )T
2 3 3 2 3 1 1 3 1 2 2 1, , ,L X V X V X V X V X V X V= − − −X V                (22) 

Then, we set ( ) ( ), , ,f E L f≡ ⋅ ⋅ ×X X V V X V  which is not compatible with the form of an isotropic 
function of the 2 vectors X  and V . In other words, if the support of the pdf of X  and V  includes 
( ),E X V  and ( ),L X V , then the state space distribution is no longer restricted to be isotropic. 
Such a general state space is indeed what we aimed to achieve with our model. At the same time, adhering to 

no more than 1 constant of motion in addition to energy ( ),E X V  helps to keep the dimensionality of the 
domain of the pdf of the state space function to the minimum that it can be, given our demand that no stringent 
model-driven constraint be placed on the state space geometry. Thus, we use n = 2 in our model. 

So now we are ready to express the unknown gravitational mass density function as embedded within the pdf 
of X  and V  as: 

( ) ( )( )( ) ( )( )
( )( )( )2 2 2 2 2 2

1 2 3 1 2 3

, 2 , ,

, ,

f f E R L

f X X X V V V

ρ

ρ

= Φ + ⋅

≡ Φ + + + + ×

X V V V X V

X V
               (23) 

using Equation (20). To cast this in the form of Equation (3), we realise that the unknown gravitational mass 
density function will need to be discretised; we would first discretise the range of values of R  over which the 
gravitational mass density function ( )Rρ  is sought. Let R r=  such that [ ]min max,r r r∈  and let the width of 
each R -bin be rδ . Then ( )rρ  is discretised as the unknown model parameter vector  

( )T

1 2: , , , ,
xNρ ρ ρ= ρ                                 (24) 

where  

( ) ( ): for 1 , 1,2, ,b r r xr r b b b Nρ ρ δ δ= ∈ − =                         (25) 

where max min: int 1x
r

r r
N

δ
 −

= + 
 

. 

Then following on from Equation (23) we write  

( ) ( )2 2 2
1 2 3, , ,f f V V V= + + ×X V X Vρ                          (26) 

This is in line with Equation (3) if we identify the function of the unknown model parameter vector ( )ρξ  in 
the RHS of Equation (3) with the unknown gravitational mass density vector ρ . Then the pdf of the state space 
variables X  and V  depends of ρ  and X  and V . Then the equivalent of Equation (4) is 

( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )
3 2 1

T T2 2 2
1 2 3 1 2 3 1 2 3 1 2 3 3 2 1, , , , , , , , , d d d ,

k kk k k k k k

X V V

x x v f v v v x x x v v v x v vν  = + + × 
 ∫ ∫ ∫ρ ρ    (27) 

data1, 2, ,k N=  . Then plugging this in the RHS of Equation (1), the likelihood is 
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( ){ } ( )( )datadata

1 1
Pr ,

NNk k

k k
ν

= =

  = 
  ∏u uρ ρ                             (28) 

Then to compute the likelihood and thereafter the posterior probability of ρ  given data D , we will need to 
compute the integral in Equation (27). According to the general methodology discussed above in Section 3, this 
is performed by discretising the domain of the pdf of the state space variable, i.e. of ( ),f E L . In order to 
achieve this discretisation we will need to invoke the functional relationship between ( ),E X V  and ( ),L X V . 
Next we discuss this. 

5.2. Relationship between E(X,V) and L(X,V) 

We recall the physical interpretation of ( ),L X V  as the norm of the “angular momentum” vector, i.e. 
( )2

2

,L
R
X V

 

is the square of the speed ( ),cV X V  of circular motion of a particle with location X  and velocity V ; here, 
“circular motion” is motion orthogonal to the location vector X , distinguished from non-circular motion that is 
parallel to X  and the speed of which is ( ),ncV X V . Then as these two components of motion are mutually 
orthogonal, square of the particle's speed is  

( )2
2 2 2 2

2

,
,c nc nc

L
V V V V

R
≡ ⋅ = + = +

X V
V V                          (29) 

where ncV  is the magnitude of the component of V  that is parallel to X , i.e.  

ncV ⋅
=

V X
X

                                      (30) 

But we recall that energy  

( ) ( )( ), 2E Rρ= Φ + ⋅X V V V . 

This implies that 

( ) ( )( ) ( )( ) ( )

( )( )
( )

2 22

2

2T
2 2 3 3 2 3 1 1 3 1 2 2 1

2

,
,

2 22

, ,

2 2

nc

nc

L VVE R R
R

X V X V X V X V X V X VV
R

R

ρ ρ

ρ

= Φ + = Φ + +

− − −
= Φ + +

X V
X V

              (31) 

where in the last equation, we invoked the definition of ( ),L X V  sing Equation (22). 
At this stage, to simplify things, we consciously choose to work in the coordinate system in which the vector 

X  is rotated to vector ( )T
1 2 3, ,S S S=S  by a rotation through angle 1 2

2 2
1 2

: cos
X

X X
θ −=

+
, i.e. 

1 1

2 2

3 3

cos sin 0
sin cos 0

0 0 1

S X
S X
S X

θ θ
θ θ

−    
    =    

    
    

                           (32) 

Then by definition, 1 0S = , i.e. the projection of the ( )T
1 2 3, ,S S S  vector on the 3 0S =  plane lies entirely 

along the 2S -axis. 
This rotation does not affect the previous discussion since 

• the previous discussion invokes the location variable either via 2 2 2 2 2 2
1 2 3 1 2 3R X X X S S S= + + = + + ,  

• or via 2 2 2 2
1 2 1 2x x s s+ = +  as within the data structure:  

( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ){ }
data data

data2 2 2 2 ( )
1 2 3 1 2 3 1 2 3 1

1 1

, , , ,
N N

Nk k k k k k k kk

k
k k

x x v s s v s s v
=

= =

   
= + = + ≡   
   

D . 
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Having undertaken the rotation, we refer to ( ),E X V  and ( ),L X V  as ( ),E S V  and ( ),L S V  res- 
pectively. 

This rotation renders the cross-product in the definition of ( ),L ⋅ ⋅  simpler; under this choice of the coordinate 
system, as 1 0S =   

( ) ( )

( )

( )

22 T2
2 3 3 2 3 1 2 1

2T
3 2 1 1

22 2
1 2 3

, , ,

sin cos , cos , sin

cos sin

L S V S V S V S V

RV RV RV RV

R V V V

γ γ γ γ

γ γ

= × = − −  

= − −

 = + − 

S V S V

              (33) 

where  

3 3

2 2 2
1 2 3

: cos
S S
R S S S

γ= =
+ +

                            (34) 

so that 2 2
2 2 2

1 2 3

sin
S S

RS S S
γ= =

+ +
, so that in this rotated coordinate system, from Equation (31)  

( ) ( )( )
( )22 21 2 3cos sin

, .
2 2

nc
V V V V

E R
γ γ

ρ
 + − = Φ + +S V                 (35) 

Also, the component of V  along the location vector S  is ( )2 2 3 3ncV R V S V S R= ⋅ = +V S . 
From Equation (31) it is evident that for a given value   of ( ),E S V , the highest value ( )max   of 
( ),L S V  is attained if 0ncV =  (all motion is circular motion). This is realised only when the radius cR  of the 

circular path of the particle takes a value cr  such that  

( ) ( )2 2
max 2 c cr r = −Φ                                 (36) 

The way to compute cr  given   is defined in the literature [38] as the positive definite solution for r  in 
the equation  

( ) ( )2 3 d
2

d
r

r r r
r

Φ
−Φ = −                                (37) 

We are now ready to discretise the domain of the pdf of the state space variable, i.e. of ( ),f E L  in line with 
the general methodology discussed above in Section 3 with the aim of computing the integral in Equation (27). 

5.3. Discretisation of f(E,L) 
We discretise the domain of ( ),f E L  where this 2-dimensional domain is defined by the range of values 

[ ]min max,E = ∈    and [ ]min max,L = ∈   , by placing a uniform 2-dimensional rectangular grid over 
[ ] [ ]min max min max, ,×     such that the range [ ]min max,   is broken into E-bins each δ  wide and the range 
[ ]min max,   is broken into L -bins each δ



 wide. Then each 2-dimensional E L− -grid cell has size δ δ×
 . 

Then,  

( ) ( )
( )

, min min

min min

: , for 1 , ,

1 , , 1, 2, , , 1, 2, , ,
c df f c c

d d c N d N

δ δ

δ δ

= ∈ + − +  
∈ + − + = =    



    

 



   
          (38) 

where the number of E-bins is max min: int 1N
δ

 −
= + 

 




   and the number of L-bins is max min: int 1N
δ

 −
= + 

 




  . 

We then define the N N×
 -dimensional matrix 

,: .c d N N
F f

×
 =  


                               (39) 

In our model this is the discretised version of the pdf ( ),f E L  of the state space variable ( )TT T,=W S V . 

In this application, a particle with a positive value of energy is so energetic that it escapes from the galaxy. 
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We are however concerned with particles that live inside the galaxy, i.e. are bound to the galaxy and therefore, 
the maximum energy that a galactic particle can attain is 0, i.e. max 0= . Given the definition of energy 
( ) ( ), 2E R= Φ + ⋅S V V V  we realise that the value of ( ),E S V  is minimum, i.e. as negative as it can be, if 

0⋅ =V V , (i.e. velocity is zero) and ( )RΦ  is minimum, which occurs at 0R = . In other words, the minimum 
value of E  is ( )0Φ  which is negative. In our work we normalise the value   of E  by ( )0−Φ , so that 

[ ]1,0∈ − . In other words, the aforementioned min 1= −  and max 0= . 
We normalise the value   of ( ),L S V  with the maximal value ( )max   that   can attain for a given 

value   of E  (Equation (36)). The maximum value that can be attained by L  is for 0= ; having 
computed cr  from Equation (37), ( )max 0  is computed. Then, as normalised by ( )max 0 , the maximal value 
of L  is 1. Also the lowest value of L  is 0, i.e. min 0= . In light of this, we rewrite Equation (38) as  

( ) ( )
( )

, : , for 1 1 , 1 ,

1 , , 1, 2, , , 1, 2, , .
c df f c c

d d c N d N

δ δ

δ δ

= ∈ − + − − +  
∈ − = =    



  

 



 
                  (40) 

The E-binning and L-binning are kept uniform in the application we discuss below, i.e. δ  and δ


 are 
constants. 

Data-Driven Binning 
There are N



 L-bins and N  E-bins. Above we saw that as the range covered by normalised values of E  is 
[ ]1,0− , the relationship between N  and E-bin width δ  is 1 Nδ =  . We make inference on N



 within 
our inference scheme while the Physics of the situation drives us to a value of N . It could have been possible 
to also learn N  from the data within our inference scheme but that would have been tantamount to wastage of 
information that is available from the domain of application. 

We attempt to learn N


 from the data within our inference scheme; for a given N


, N  is fixed by the 
data at hand. To understand this, we recall the aforementioned relation ( ) 2 2 22 2ncr v r= Φ + +  . Let in the 
available data set, 

1) the minimum value of 2 2
1 2S S+  be minr , 

2) the maximum value of 2 2
1 2S S+  be maxr  so that the value of ( )Φ ⋅  is no less than ( )maxrΦ ,  

3) the maximum value of 3V  be ( )max
3v  so that the unnormalised value of E  is no less than  

( )
( ) ( )

2max 2
3 max

max max 2
min

0
:

2 2

v N
r

r

      = Φ + + 



                      (41) 

4) and the unnormalised   is no more than ( )0Φ . 
Thus, it is clear that the E-binning should cover the interval beginning at a normalised value of −1 and should 

at least extend to ( )max 0−Φ   . 
Then we set E-bin width 1 Nδ =   and learn number of L-bins, N



, from the data within our inference 
scheme. Then at any iteration, for the current value of N



 and the current ρ  (which leads to the current value 
of ( )rΦ  according to Equation (16)), placing ( )max 0−Φ    at the centre of the N -th E-bin gives us  

( ) ( )max 1 0.5
0

N δ= − + −
−Φ  


                           (42) 

i.e. ( ) [ ]( )maxint 0 2N = Φ  . 

Experiments suggest that for typical galactic data sets, N


 between 5 and 10 implies convergence in the 
learnt vectorised form of the gravitational mass density ρ . This leads us to choose a discrete uniform prior over 
the set { }5,6, ,10 , for N



: 

( )0
1 .
5

Nπ =


                               (43) 

Again, the minimum and maximum values of 2 2
1 2S S+  in the data fix minr  and maxr  respectively, so that 

( )max min 1r xr r Nδ= + − . The radial bin width rδ  is entirely dictated by the data distribution such that there is at 
least 1 data vector in each radial bin. Thus, xN  and rδ  are not parameters to be learnt within the inference 
scheme but are directly determined by the data. 
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5.4. Likelihood 
Following Equation (7), we express the likelihood in this application in terms of the pdf of S  and V , 
marginalised over all those variables that we do not have any observed information on. Then for the data vector 

( ) ( ) ( )( )T

1 2 3, ,k k ks s v , the marginal pdf is 
( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )( )

3 1 2

1 2 3 1 3 1 2 2 3 1 2 3 1 2, , , , , , , , , , d d d ,k k k k k k k k

S V V

s s v f g r v v v g r v v v s v vν γ= ∫ ∫ ∫  

where 

( ) ( )( ) ( )( )
( )( )22 2

1 2 3

1 3 1 2, , , :
2

k

k k k
v v v

g r v v v r

 + +  = Φ +  

( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( )( )22 2
2 3 1 2 1 2 3, , , , : cos sink k k k k k kg r v v v r v v vγ γ γ = + −  

, 

with ( ) 2
,L  S V  recalled from Equation 33, and we have used  

( ) ( )( ) ( )( )2 2 2
1 2 3:k k kr s s s= + +                        (44) 

and ( )
( )
3cos :k
k

s
r

γ = . 

Then given that the range of values of E  and L  is discretised, we write 

( ) ( ) ( )( ) ( ){ } ( ){ } ( ){ }, , ,
3 1 2

1 2 3 , 3 1 2, ,
1 1

, , d d d ,c d c d c d

N N
k k k

c d s v v
c d

s s v f s v vν
= =

 
=  

 
∑∑ ∫



ρ ρ ρ



              (45) 

where ( ){ },
3
c ds ρ  refer to the values taken by 3S  for a given ρ , inside the cd-th E L− -grid-cell. Similarly, 

( ){ },
1

c dv ρ  and ( ){ },
2
c dv ρ  refer to the values of 1V  and 2V  inside the cd-th E L− -grid-cell respectively, 

given ρ . 
Indexing the values of any of the unobserved variables in this grid-cell as conditional on ρ , is explained as 

follows. ( ){ },
3
c ds , ( ){ },

1
c dv  and ( ){ },

2
c dv  are determined by the mapping between the space of E  and L  and 

the space of the unobservables, namely 3 1 2, ,S V V . This mapping involves the definition of E  and L  in terms 
of the state space coordinates ( )TT T,S V , which in turn depends upon the function ( )rρ  or its discretised 
version, ρ . Hence the values taken by any of the 3 unobservables in the cd-th E L− -grid-cell depend on ρ . 
Here 1,2, ,c N=    and 1,2, ,d N=



 . 
We realise that the integral on the RHS of Equation (45) represents the volume occupied by the E L− - 

grid-cell inside the space of the unobserved variables. The computation of this volume is now discussed. 

5.5. Volume of any E-L-Grid-Cell in Terms of the Unobservables 
We begin by considering the volume of any E L− -grid-cell in the space of the 2 observables, 1V  and 2V , at a 
given value of 3S . Thereafter, we will consider the values of the 3rd unobservable, 3S , in this grid-cell. 

The definition ( ) ( )( ) ( )( ) ( ) ( ), 2k k k k kE r= Φ + ⋅s v v v  (Equation refeqn:ljhamela) implies that for the k-th data 

vector ( ) ( ) ( )( )T

1 2 3, ,k k ks s v , all particles with 3 3S s=  and energy ( ) ( )( ),k k
cE =s v   will obey the equation  

( )( ) ( )( )22 2
1 2 32 ,k k

cv v r v + = −Φ −                            (46) 

i.e. for 3 3S s= , all particles lying in the c-th E-bin will lie in the space of 1V  and 2V , within a circular annulus 
that is centred at (0,0) and has radii lying in the interval [ ]1,c cε ε+  where  

( )( ) ( )( ){ } ( )( ) ( )( ){ }2 2

1 1 3 3: 2 2 : 2 2 .k k k k
c c c cr v r vε ε+ += − Φ − = − Φ −                  (47) 
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For 3 3S s= , the definition ( ) ( )( ) ( ) ( ),k k k kL = ×s v s v  provides a representation for all particles in the d-th 
L-bin with given observed values of 1S , 2S  and 3V . 

It then follows from ( ) ( )( ) ( )( ) ( ){ }2 2 22
1 2 3, cos sink k k kL r v v vγ γ   = + −    

s v , (Equation (33)) that for the k-th 

data vector, all particles with 3 3S s= , and in the d-th L-bin ( ) ( )( )( ),k k
dL =s v   will obey the equation  

( )( ) ( )( )
( ) ( ) ( )( )

2 22 2
1 2 32 2 2

1 2 3

tan .cos k k kd

k k
v v v

s s s
γ γ = + −  + +



                   (48) 

where we have recalled ( )kr  from Equation (44). This implies that for 3 3S s= , all particles lying in the d-th 
L-bin, will lie in the space of 1V  and 2V , along an ellipse centred at ( ) ( )( )30, tank kv γ  with semi-minor axis  

lying in the interval of [ ]1,d dλ λ+  and semi-major axis lying in the interval 
( ) ( )
1 ,

cos cos
d d

k k

λ λ
γ γ
+ 

 
 

. Here, 

( )( ) ( )( ) ( )( ) ( )( )
1

1 2 2 2 22 2
1 2 3 1 2 3

: :d d
d d

k k k ks s s s s s
λ λ+

+ = =
+ + + +

 

                   (49) 

Collating the implications of Equation (46) and Equation (48), we get that at a given value of 3S , particles 
with observed data ( ) ( ) ( )( )T

1 2 3, ,k k ks s v , (with energies) in the c-th E-bin and (momenta) in the d-th L-bin will lie in 
the space of 1V  and 2V , within an area bound by the overlap of  

1) the circular annular region centred at 1 20, 0V V= = , extending in radii between 1cε +  and cε . 
2) the elliptical annular region centred at ( )

1 2 30, tankV V v γ= = , extending in semi-minor between 1dλ +  and  

dλ  and semi-major axis in [ ]1cos , cosd dλ γ λ γ+ , where  

( )( ) ( )( )
3

2 2 2
1 2 3

cos
k k

s

s s s
γ =

+ +
. 

The area of these overlapping annular regions represents the volume of the cd-th E L− -grid-cell in the space 
of 1V  and 2V , at the value 3s  of 3S . Thus, the first step towards writing the volume of the cd-th E L− - 
grid-cell in terms of the unobservables, is to compute the area of these overlapping annular regions in the space 
of 1V  and 2V . Such an area of overlap is a function of 3s . At the next step, we integrate such an area over all 
allowed 3s , to recover the volume of the cd-th E L− -grid-cell in the space of 1V , 2V  and 3S , i.e. the 
integral on the RHS of Equation (45). 

There can be multiple ways these annular regions overlap; three examples of these distinct overlapping 
geometries are displayed in Figure 1. In each such geometry, it is possible to compute the area of this region of 
overlap since we know the equations of the curves that bound the area. However, the number of possible 
geometries of overlap is in excess of 20 and identifying the particular geometry to then compute the area of 
overlap in each such case, is tedious to code. In place of this, we allow for a numerical computation of the area 
of overlap; this method works irrespective of the particulars of the geometry of overlap. We identify the 
maximum and minimum values of 2V  allowed at a given value of 1V , having known the equations to the 
bounding curves, and compute the area of overlap in the plane of 1V  and 2V  using numerical integration. 

This area of overlap in the plane defined by 1V  and 2V  is a function of 3S  since the equations of the 
bounding curves are expressed in terms of 3s . The area of overlap is then integrated over all values that 3S  is 
permitted to take inside the cd-th E L− -grid-cell. For any E L− -grid-cell, the lowest value 3S  can take is 
zero. For [ ]1,c c+∈   , and [ ]1,d d +∈   , the maximum value of 3S  is realised (by recalling Equation (35)) as 
the solution to the equation 

( )( )
2

2
22 d

c ncr v
r

−Φ = +


                                    (50) 

where ncv  is the projection of v  along the s  vector (discussed in Section 5.2). Thus, ncv  is given by the 
inner product of v  and the unit vector parallel to s :  

,ncv ⋅
=

v s
s

                                    (51) 
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Figure 1. Figure showing 3 of the many ways of overlap between the contours drawn in the space of V1 and V2, at 
neighbouring values of E (the circular contours in red) and at neighbouring values of L (the elliptical contours in 
black). 
 
where r≡s . Under our choice of coordinate system, Equation (51) gives  

3 3 32 2
2 3sin cos where cos :nc

v s sv sv v v
r r r

γ γ γ= + = + =                 (52) 

Using this in Equation (50) we get  

( )( )2 2 2 2 2 2
2 2 3 3 3 2 2 32 2 .c dr r v s v s v v s s−Φ = + + +                      (53) 

This implies that given the observations represented by the k-th data vector ( ) ( ) ( )( )1 2 3, ,k k ks s v , 

( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )2 2 2 22 2 2 2
1 2 3 2 2 3 3 3 2 2 32 2 .k k k k k k

c ds s s r v s v s v v s s + + −Φ = + + +    
          (54) 

The highest positive root for 3s  from Equation (54) as the highest value that 3S  can attain in the cd-th 
E L− -grid-cell. Thus, for the cd-th cell, the limits on the integration over 3s  are 0 and the solution to Equation 
(54). 

So now we have the value of the integral over 1v  and 2v  and hereafter over 3s , for the cd-th E L− - 
grid-cell. This triple integral gives the volume of the cd-th E L− -grid-cell in the space of the unobservables, i.e. 
of 1 2 3, ,V V S . This volume is multiplied by the value ,c df  of the discretised pdf of the state space variable in 
this E L−  cell and the resulting product is summed over all c  and d , to give us the marginalised pdf 

( ) ( ) ( )( )1 2 3, ,k k ks s vν  (see Equation (45)). Once the marginalised pdf is known for a given k , the product over all ks 
contributes towards the likelihood. 

5.6. Normalisation of the Marginal PDF of the State Space vector 

As we see from Equation (45), the marginal pdf of S  and V  is dependent on ρ , so this normalisation will 
not cancel within the implementation of Metropolis-Hastings to perform posterior sampling. In other words, to 
ensure that the value of ( ), ,ν ⋅ ⋅ ⋅ —and therefore the likelihood—is not artificially enhanced by choosing a high 
ρ , we normalise ( ) ( ) ( )( )1 2 3, ,k k ks s vν  for each k , by the pdf integrated over all possible values of 1S , 2S  and 

3V , i.e. by  

( )
1 2 3

1 2 3 1 2 3, , d d d
S S V

s s v s s vν∫ ∫ ∫                                 (55) 

where the possible values of 3V  are in the interval ( ) ( )2 2 2 2
1 2 1 22 , 2s s s s − − Φ + − Φ +  

, of 2S  in the interval 
2 2 2 2
1 min max 1,s r r s − −  

 and of 1S  in [ ]min max,r r . Hereafter, by ( ), ,ν ⋅ ⋅ ⋅  we will imply the normalised 
marginal pdf. 

5.7. Incorporating Measurement Uncertainties 
Following Equation (8) the likelihood is defined as the product over all data, of the convolution of the error 
distribution at the k-th datum and value of the marginalised pdf for this k  (assuming the data to be 
conditionally iid). In this application the measurement of the location of the galactic particle projected onto the 
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image plane of the galaxy, i.e. ( )1 2,S S , is constrained well enough to ignore measurement uncertainties in. 
However, the measurement errors in the line-of-sight component of the particle velocity, 3V , can be large. This 
measurement error in 3V  is denoted as 3Vδ . The distribution of this error is determined by the astronomical 
instrumentation relevant to the observations of the galaxy at hand and are usually known to the astronomer. In 
the implementation of the methodology to real and simulated data, as discussed below, we work with a Gaussian 
error distribution with a known variance 

3

2
Vσ . Thus, ( )3

2
3 0, VV Nδ σ . For this particular error distribution, the 

likelihood is defined as   

( ) ( ) ( )( ){ } ( ) ( ) ( )( )
( )

( )( )
( )

data data

3 3

2

T 3

1 2 3 1 2 3 2
1 1

1Pr , , , , , exp .
2k k

kN N
k k k k k k

k k
v v

v
s s v s s vν

σ σ= =

  −    = ∗    
      

∏Fρ            (56) 

For any other distribution of the uncertainties in the measurement of 3V , the likelihood is to be rephrased as 
resulting from a convolution of ( ), ,ν ⋅ ⋅ ⋅  and that chosen error distribution. 

5.8. Priors 
In the existing astronomical literature, there is nothing to suggest the pdf of the state space variable in a real 
galaxy though there are theoretical models of the functional dependence between stellar energy (E) and angular 
momentum (L) and pdf of S  and V  [38]. Given this, we opt for uniform priors on ,c df , 1, 2, ,c N=   , 

1, 2, ,d N=


 . However, in our inference, we will use the suggestion of monotonicity of the state space pdf, as 
given in the theoretical galactic dynamics literature. We also use the physically motivated constraint that 

, 0c df ≥ , ,c d∀ . Thus, we use ( ), 1,0c df   , where ( ),⋅ ⋅  denotes the uniform distribution over the 
interval [ ],⋅ ⋅ . 

As far as priors on the gravitational mass density are concerned, astronomical models are available [38]. All 
such models suggest that gravitational mass density is a monotonically decreasing function of R . A nu- 
merically motivated form that has been used in the astrophysical community is referred to as the NFW density 
[44], though criticism of predictions obtained with this form also exist [45, among others]. For our purpose we 
suggest a uniform prior on bρ  such that  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

0
0 0

3 3
0 0 0 0

0
0 min2

1π
, ,

where , 10 , , 10 ,

with , : , : 0.5

1

b b b
hi s lo s

b b b b
lo s NFW s hi s NFW s

b
NFW s b r

b b

s s

R R

R R R R

R r r b
r r
R R

ρ
ρ ρ

ρ ρ ρ ρ ρ ρ

ρ
ρ ρ δ

−

=
ϒ − ϒ

ϒ = ϒ =

= = + −
 
+ 

 

         (57) 

i.e. ( ) ( )0,b
NFW sRρ ρ  is the gravitational mass density as given by the 2-parameter NFW form, for the particle 

radial location ( )min max1 ,r rr r b r bδ δ∈ + − +   , 1, 2, , xb N=  . In fact, this location is summarised as br , the 
mid-point of the b-th radial bin. sR  and 0ρ  are the 2 parameters of the NFW density form. In our work these are 
hyperparameters and we place uniform priors on them: ( ) ( )0 max minπ 1sR r r= −  and ( ) ( )14 9

0 0π 1 10 10ρ = − , 
where these numbers are experimentally chosen. 

5.9. Posterior 
Given the data, we use Bayes rule to write down the joint posterior probability density of  

1 2 1,1 ,1 1,2 , 0, , , , , , , , , , , ,
xN N N N sf f f f R Nρ ρ ρ ρ





  

 
. This is 

( ) ( ) ( ) ( )( )
( )

( )( )
( )

( ) ( ) ( ) ( )

data

data

3 3

2

3

0 1 2 1 2 3 2
1

14 9
1 max min0 0

1, , , , , , , , , exp
2

1 1 1 1 .
510 10, ,

k k

x

k
N

k k k
s N

k
v v

N

b b
b hi s lo s

v
R N s s v

r rR R

π ρ ν
σ σ

ρ ρ

=

=

  −  ∝ ∗  
    

 
× × × × 

− −ϒ − ϒ  

∏

∏

F u u u


ρ

         (58) 
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where we used ( )0 ,π 1c df = , 1, 2, , , 1, 2, ,c N d N∀ = =


  . Here, the factor 14 9
max min

1 1 1
510 10r r

× ×
− −

 is a  

constant and therefore can be subsumed into the constant of proportionality that defines the above relation. 
We marginalise 0ρ  and sR  out of ( )data0 1 2π , , , , , , ,s NR NρF u u u



ρ  to achieve the joint posterior 
probability of ρ , F  and N



 given the data. The marginalisation involves only the term  

( ) ( ) ( ) ( )
( )( )

( )
2

min min
1 1 3 3 3

00 0

0.5 0.51
10 10, ,

x xN N r r s r r
b bb b

shi s lo s

r b R r b
RR R

δ δ δ δ

ρρ ρ= = −

   − + + − +
 = 
 −ϒ − ϒ    

∏ ∏  

(recalling Equation (57)). Integrating this term over a fixed interval of vales of sR  and again over a fixed 
interval of 0ρ , result in a constant that depends on dataN , minr  and rδ . Thus the marginalisation only results 
in a constant that can be subsumed within the unknown constant of proportionality that we do not require the 
exact computation of, given that posterior samples are generated using adaptive Metropolis-Hastings [46]. Thus 
we can write down the joint posterior probability of ρ , F  and N



 given the data as:  

( ) ( ) ( ) ( )( )
( )

( )( )
( )

data

data

3 3

2

3

1 2 1 2 3 2
1

1π , , , , , , , exp
2k k

k
N

k k k
N

k
v v

v
N s s vν

σ σ=

  −  ∝ ∗  
    

∏F u u u


ρ        (59) 

We discuss the implemented inference next. 

6. Inference 
We intend to make inference on each component of the vector ρ  and the matrix F , along with N



. We do 
this under the constraints of a gravitational mass density function ( )Rρ  that is non-increasing with R  and a 
pdf ( ),f E L  of the state space variable that is non-increasing with E . Motivation for these constraints is 
presented in Section 5.8. In other words, 1b bρ ρ +≥  and , 1,c d c df f +≤  for 1, 2, , xb N=   and 1 : 0

xNρ + = . Also, 
here 1, 2, , 1c N= −   and 1,2, ,d N=



 . 
First we discuss performing inference on ρ  using adaptive Metropolis-Hastings [46], while maintaining this 

constraint of monotonicity. We define  

1 1: , 1, 2, , , with : 0.
xb b b x Nb Nρ ρ ρ+ +∆ = − = =                      (60) 

It is on the parameters 1 2 1, , ,
xN −∆ ∆ ∆  that we make inference. Let within our inference scheme, at the n-th 

iteration, the current value of b∆  be ( )n
bδ . Let in this iteration, a candidate value ( )n

bδ  of b∆  be proposed 
from the folded normal density ( )2

folded ,b bµ σ , i.e.  
( ) ( )2

folded ,n
b b bδ µ σ

                                   (61) 

where the choice of a folded normal [47] or truncated normal proposal density is preferred over a density that 
achieves zero probability mass at the variable value of 0. This is because there is a non-zero probability for the 
gravitational mass density to be zero in a given radial bin. Here bµ  and 2

bσ  are the mean and variance of the 
proposal density that b∆  is proposed from. We choose the current value of b∆  as bµ  and in this adaptive 
inference scheme, the variance is given by the empirical variance of the chain since the 0n -th iteration, i.e. 

( )

( ) ( )

0 0

21 12

2

0 0

n
b b

n n
q q

b b
q n q n

b n n n n

µ δ

δ δ
σ

− −

= =

=

     
 = −
 − −
 
 

∑ ∑                                (62) 

We choose the folded normal proposal density given its ease of computation:  

( )( )
( )( ) ( )( )2 2

2
2 2

1; , exp
2 2 2

n n
b b b bn

b b b
b b b

q
δ µ δ µ

δ µ σ
σ σ σ

 − + = − − π
  

 

                   (63) 
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It is evident that this is a symmetric proposal density. We discuss the acceptance criterion in this standard 
Metropolis-Hastings scheme, after discussing the proposal density of the components of the matrix F  and the 
parameter N



. 
If ( )n

bδ  is accepted, then the updated b-th component of ρ  in the n-th iteration is ( ) ( ) ( )
1

n n n
b b bρ ρ δ+= +  . If the 

proposed candidate is rejected then ( )n
bρ  resorts back to ( ) ( ) ( )

1
n n n

b b bρ ρ δ+= + . 
Along similar lines, we make inference directly on  

, , 1, ,, 1, 2, , 1, 1, 2, , , 0.c d c d c d N df f c N d N f+Γ = − = − = =


 

                (64) 

Let in the n-th iteration, the current value of ,c dΓ  be ( )
,
n

c dγ  and the proposed value be ( )
,
n

c dγ  where the  

proposed candidate is sampled from the folded normal density ( ) ( )( )2

folded , ,,n n
c d c dN γ τ 

 
 

 where the variance ( )( )2

,
n

c dτ   

is again the empirical variance of the chain between the 0n′ -th and the 1n − -th iteration. Then the updated 
general element of the state space pdf matrix in this iteration is ( ) ( ) ( )

, 1, ,
n n n

c d c d c df f γ+= +  , if the proposed value as 
accepted, otherwise, ( ) ( ) ( )

, 1, ,
n n n

c d c d c df f γ+= + . Thus, the proposal density that a component of the F  matrix is 
proposed from is also symmetric. 

We propose N


 from the discrete uniform distribution, i.e. the proposed value of N


 in the n-th iteration is 

[ ]discrete 1 2,N z z


                                    (65) 

where the bounds of the interval [ ]1 2,z z  are found experimentally given the data at hand. 

Given that we are making inference on the { } 1
xN

b b=
∆  and { } ,

, 1, 1

N N
c d c d= =

Γ  , we rephrase the posterior probability 

of the unknowns as ( )data1 1,1 , 1π , , , , , , , ,
xN N N NN∆ ∆ Γ Γ u u





  


. This posterior density is proportional to the  

RHS of Equation (59). 
Then given that the proposal densities that components of ρ  and of F  are sampled from and that the 

proposal density for N


 is uniform. The Metropolis-Hastings acceptance ratio is reduced to the ratio of the 
posterior of the proposed state space vector value to that of the current state space vector, i.e. the proposed state 
space vector ( )T

1 1,1 ,, , , , , ,N N Nx
N∆ ∆ Γ Γ







   

 


 is accepted if 
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data
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1 1,1 1,
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N NN N

N N N N

N
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<
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u u



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


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  

  





                      (66) 

where the uniform random variable [ ]0,1u   . 

7. Illustration on Synthetic Data 
In this section we illustrate the methodology on synthetic data set simulated from a chosen models for the pdf of 

( )TT T,=W S V . data 198N = . The chosen models for this pdf are ( ) ( )( ), , ,WDf E LS V S V  or ( ),WDf E L  and 
( )Michie ,f E L . These are given by:  

( )

( )

2

2 22

2

Michie 2 22

1, exp exp ,
2

1, exp exp 1 ,
2

WD
a

a

L Ef E L
r

L Ef E L
r

σ σσ

σ σσ

  − = −   
 π  

   −  = − −      π  

                   (67) 

where ( ) ( )( ) 2
Model, 2E R Vρ= Φ +S V  with ( )Model Rρ  chosen in both models for the state space pdf to be 

( )
5 22

Model 3 2

3 1
4

M rR
a a

ρ
−

  = +  π  
. Here the model parameters 0ar >  and 0σ  are assigned realistic numerical  

values. From these 2 chosen pdfs, dataN  values of U  were sampled; these 2 samples constituted the 2 
synthetic data sets WDD  and MichieD . The learnt gravitational mass density parameters and discretised version 
of the state space pdf are displayed in Figure 2. Some of the convergence characteristics of the chains are 
explored in Figure 3. The trace of the joint posterior probability of the unknown parameters given the data is 
shown along with histograms of 2ρ  learnt from 3 distinct parts of the chain that is run using data WDD . 
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Figure 2. Left: gravitational mass density parameters learnt using synthetic data sets WDD  and MichieD  that are 
sampled from the chosen models of the pdf of the state space variable, at the chosen model of the gravitational mass 
density function ( )RρModel  which is shown in the black solid line. The 95% highest probability density (HPD) 
credible region is represented as the error bar on each estimated parameter while the parameter value at the mode of 
its marginal posterior probability is shown by the filled circle. The density parameters ( ) ( )b

NFW sRρ ρ0, , xb N= 1,2, , , 
are joined with the dotted lines in red and black where the prior on the sought parameter bρ  is defined in terms of 

( ) ( )b
NFW sRρ ρ0,  (see Equation 57). Right: discretised pdf of S  and V  learnt using data WDD , plotted against 2

  i.e. 
square of the value of ( )L S V, , at 5 different values of ( )E S V, . The true values of the parameters are joined in 
dotted lines. 
 

 
Figure 3. Left: Trace of the joint posterior probability density of all the unknowns, given the synthetic data sets WDD  
and MichieD , in black and red. Right: Histograms of values of the parameter ρ2  in 3 equally sized and non- 
overlapping parts of the chain run with WDD , where all 3 parts were sampled post burnin, between iteration number 
600,000 and 800,000. The true vale of ρ2  is marked by the black solid line. 

8. Illustration on Real Data 
In this section we present the gravitational mass density parameters and the state space pdf parameters learnt for 
the real galaxy NGC3379 using 2 data sets PNeD  and GCD  which respectively have sample size 164 [48] and 
29 [49]. An independent test of hypothesis exercise shows that there is relatively higher support in GCD  for an 
isotropic pdf of the state space variable ( )TT T,=W S V  than in PNeD . Given this, some runs were performed 
using an isotropic model of the state space pdf; this was achieved by fixing the number N



 of L-bins to 1. Then 
L  identically takes the value 1  and is rendered a constant. This effectively implies that the domain of 
( ),f E L  is rendered uni-dimensional, i.e. the state space pdf is then rendered ( )f E . Recalling the definition 

of an isotropic function from Remark 5.2, we realise that the modelled state space pdf is then an isotropic 
function of S  and V . Results from chains run with such an isotropic state space pdf were overplotted on 
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results from chains run with the more relaxed version of the pdf that allows for incorporation of anisotropy; in 
such chain, eN ll  is in fact learnt from the data. 

9. Discussions 
In this work we focused on an inverse problem in which noisy and partially missing data on the measurable 

TVXX ),,(= 321U  is used to make inference on the model parameter vector ρ  which is the discretisation of 
the unknown model function ( ) ( )ρ ρ≡X S , where S  is an orthogonal transformation of X  and 

TXXX ),,(= 321X . The measurable is an unknown function of the sought function. Given that the very Physics 
that connects U  to )(Rρ  is unknown—where :R PSP= —we cannot construct training data, i.e. data 
comprising a set of computed u  for a known )(rρ . In the absence of training data, we are unable to learn the 
unknown functional relationship between data and model function, either using splines/wavelets or by modelling 
this unknown function with a Gaussian Process. We then perform the estimation of )(Rρ  at chosen values of 
R , i.e. discretise the range of values of R  and estimate the vector ρ  instead, where iρ  is the value of 

)(rρ  for r  in the i -th R -bin. We aim to write the posterior of ρ  given the data. The likelihood could be 
written as the product of the values of the pdf  of the state space vector TTT ),(= VXW  achieved at each 
data point, but the data being missing, the pdf  is projected onto the space of U  and the likelihood is written 
in terms of these projections of the pdf . ρ  is embedded within the definition of the domain of the pdf  of 
W . The projection calls for identification of the mapping between this domain and the unobserved variables 

213 ,, VVX ; this is an application specific task. The likelihood is convolved with the error distribution and vague 
but proper priors are invoked, leading to the posterior probability of the unknowns given the data. Inference is 
performed using adaptive MCMC. The method is used to learn the gravitational mass density of a simulated galaxy 
using synthetic data, as well as that in the real galaxy NGC3379, using data of 2 different kinds of galactic particles. 
The gravitational mass density vector estimated from the 2 independent data sets are found to be distinct. 

The distribution of the gravitational mass in the system is indicated by the function ( ) ( ) ( )2

0
4 d

r

r
M r r r rρ

′=
′ ′ ′= π∫ . 

the discretised form of this function defines the parameters iM , 1, 2, , xi N=  . These are computed using the 
learnt value of the iρ  parameters and plotted in Figure 4. We notice that the estimate of irho  can depend on 
the model chosen for the state space pdf; thus, the same galaxy can be inferred to be characterised by a higher 
gravitational mass distribution depending on whether an isotropic state space is invoked or not. Turning this 
result around, one can argue that in absence of priors on how isotropic the state space of a galaxy really is, the 

 

 
Figure 4. Left: The left panel represents the ( )f E L,  plotted as in red and blue against (the value of ( )E S V, )  , 
at two different  , recovered from a chains that use data PNeD . The modal value of the learnt number of L -bins is 
7 for this run. The state space pdf parameters recovered using data GCD  are shown in black. Middle: Gravitational 
mass density parameters iρ  estimated from a chain run with PNeD  are shown in magenta, over-plotted on the same 
obtained using the same data, from a chain in which the number of L-bins, N = 1



. When N


 is fixed as 1, it 

implies that ( )L S V,  is then no longer a variable and then ( )f E L,  is effectively univariate, depending on 

( )E S V,  alone. Such a state space pdf is an isotropic function of S  and V  (see Remark 5.2). The iρ  estimated 
from such an isotropic pdf of the state space variable is shown here in green. The mass density parameters learnt 
using the data GCD —again learnt from an isotropic state space pdf—are shown in black. Right: Figure showing 

estimates of ( )( )∑ i
i j rj

M j jρ δπ − − 22 2
=1

= 4 1 , against R . Here xi N= 1,2, , . The parameters in magenta are 

obtained from the same chain that produce the iρ  parameters in the middle panel using PneD  while those in green 
and black are obtained using the iρ  that were represented in the middle panel in the corresponding colours. 
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learnt gravitational mass density function might give an erroneous indication of how much gravitational mass 
there is in this galaxy and of corse how that mass is distributed. It may be remarked that in lieu of such prior 
knowledge about the topology of the system state space, it is best to consider the least constrained of models for 
the state space pdf, i.e. to consider this pdf to be dependent on both ( ),E S V  and ( ),L S V . 

It is also to be noted that the estimate for the gravitational mass density in the real galaxy NGC3379 appears 
to depend crucially on which data set is being implemented in the estimation exercise. It is possible that the 
underlying pdf of the variable ( )TT T,=W S V  is different for the sub-volume of state space that one set of data 
vectors are sampled from, compared to another. As these data vectors are components of S  and V  of 
different kinds of galactic particles, this implies that the state space pdf that the different kinds of galactic 
particles relax into, are different. 
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