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ABSTRACT 
This paper presents a probabilistic approach for studying the reliability of cementless hip prostheses in the 
presence of mechanical uncertainties and its application to the investigation of the influence of bone-implant in-
terface properties. The non-linear deterministic model of the bone-implant coupled system and its finite element 
implementation are described, and the proposed reliability analysis is exposed. It is demonstrated that the dis-
tribution (uniform, truncated Gaussian and truncated lognormal distribution) of the two chosen parameters and 
the truncation lengths have a minor influence on the Hasofer-Lind index. This index logically increases as the 
failure threshold increases. FORM and SORM approximations are compared with the results obtained using a 
crude Monte-Carlo method for the estimation of failure probability. The performance of three Monte-Carlo 
methods is studied in terms of the necessary number of FE calculations. The method based on the Directional 
Simulation (DS) technique is efficient and less time-consuming. The validity and operational capacity of the 
proposed approach would not be compromised by an increase in the number of uncertain parameters. 
 
KEYWORDS 
Probabilistic Analysis; Cementless Hip Prosthesis; Bone-Implant Interface; Primary Stability 

1. Introduction 
The amount of relative micro-movement between bone 
and implant plays a crucial role in the success of Total 
Hip Replacement (THR) [1]. Ideally, to promote the Pri-
mary Stability of the prosthesis, the amount of relative 
micro-movement between bone and implant induced early 
after the operation, before any biological process takes 
place, must remain lower than a prescribed threshold. If 
not, the lack of Primary Stability may lead to the aseptic 
loosening of the implant [1]. The primary stability of a 
cementless hip stem is not only affected by the implant 
design, but also by biomechanical properties, among which 
the coefficient of friction at the bone-implant interface or 
the elastic properties of the cancellous bone are known to 
play a crucial role. The natural variability of these para-
meters has to be taken into account to predict the Primary 
Stability of the THR. This is practically unfeasible expe- 

rimentally, due to the great number of tests which would 
have to be carried out. The combination of numerical 
models and probabilistic methods offers a promising al-
ternative. 

Probabilistic methods enable the estimation of the ef-
fects of parameter variability in the resulting statistical 
variation of the system response to be determined. Each 
parameter is generally represented as a random variable, 
and the propagation of their randomness into the system 
response is predicted. By understanding the distribution 
of performance, evaluations of quality and risk assessment 
can be performed. Recent studies have proposed proba-
bilistic approaches to assessing the structural integrity of 
orthopaedic implants [2-8]. Previously, Browne et al. [9] 
applied reliability theory to aid in fracture mechan-
ics-based life prediction procedures for a tibial tray 
component represented as a cantilever beam subjected to  
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constant amplitude loading. Dar et al. [10] demonstrated 
how Taguchi and probabilistic methods could comple-
ment each other to account for uncertainties when pre-
dicting stresses with finite element analysis, in a study of 
a fixation plate represented as a cantilever beam. The 
femoral stem component of a total hip replacement has 
been the subject of several probabilistic structural integr-
ity studies [11]. Bah and Browne [12] used an idealized 
cylindrical finite element model to represent an im-
planted cemented hip stem in order to assess the most 
likely failure mode and to identify which parameters had 
the largest contribution, where geometry, material prop-
erties and loading were considered as random variables. 
The latest studies concerning the application of probabil-
istic approaches to cementless hip prostheses have fo-
cused on the effect of femur characteristics and implant 
design geometry [13] or implant positioning on Primary 
Stability [14]. 

This paper presents a probabilistic approach for stud-
ying the reliability of cementless hip prostheses in the 
presence of mechanical uncertainties and its application 
to the investigation of the influence of bone-implant in-
terface properties. In Section 2, the nonlinear determinis-
tic model of the bone-implant coupled system and its 
finite element implementation are concisely presented. 
The uncertain parameters of the problem, the control 
variable and the associated failure criterion defining Pri-
mary Stability are then detailed. Section 3 is dedicated to 
the probabilistic modelling of the problem. Section 4 
exposes the proposed reliability analysis. In Section 5, 
numerical experiments are presented in order to quantify 
the influence of the statistical characteristics of the ran-
dom parameters, the Young modulus of the cancellous 
bone and the friction coefficient at the interface between 
the cancellous bone and the stem on the reliability of the 
bone-implant coupled system. 

2. Deterministic Modelling 
In this section we first concisely present the deterministic 
model used in this study, from its mechanical formula-
tion to its practical implementation, as well as its finite 
element formulation. Then we highlight the uncertain 
parameters of the model, we introduce a failure criterion 
for the latter and we express this criterion in terms of the 
selected uncertain parameters. 

2.1. Mechanical Formulation and Associated 
Numerical Model 

The mechanical problem to solve consists of the contact 
with friction of two three-dimensional deformable bodies 
B1 and B2 occupying the domains V1 and V2 of 3

  with 
boundaries 1V∂  and 2V∂ . Denoting by cS  the con-
tact surface between B1 and B2, and considering the prin- 

ciple of virtual work, this problem may be formulated in 
the following way (variational formulation): 
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where dV  and dS  are the volume and surface mea-
surements, respectively, σ  is the Cauchy stress vector  
defined as ( )T

11 22 33 12 13 23, , , , ,σ σ σ σ σ σ=σ ,  

( )T
11 22 33 12 13 23, , , 2 , 2 , 2δε δε δε δε δε δε=δε  is the associ- 

ated virtual strain vector corresponding to the imposed 
virtual displacement vector ( )1 2 3, ,u u uδ δ δ=δu ,  

( )1 2 3

T
, ,V V Ve e e=Ve  is the vector of known externally  

applied force per unit volume, ( )1 2 3

T
, ,S S Se e e=Se  is the 

vector of the known externally applied surface tractions  

and ( )1 2 3

T
, ,c c ce e e=ce  is the vector of the unknown  

surface tractions applied to body 1 due to its contact with 
body 2. 

The term 12d
c

T
S

S∫ ce δu  in Equation (1) corresponds to  

the virtual work due to contact tractions and  
12 1 2= −δu δu δu  denotes the relative virtual displace-

ment vector field of the two bodies in the contact zone. 
The contact tractions acting on the contact surface cS  

may be decomposed into normal and tangential compo-
nents as follows: 

21 21tλ= +ce n s               (2) 

where λ  and t  are the normal and tangential tractions, 
and 21n  and 21s  are the normal and tangential unit 
vector fields associated with cS . 

Note that at this step all the parameters used are fields 
depending on the spatial coordinates ( )1 2 3, ,ξ ξ ξ . 

Let g  be the gap function for the contact surface pair. 
It is a scalar function defined as follows: 

Let ( )T1 1 1 1
1 2 3, ,ξ ξ ξ ξ=  be the coordinates vector of point  

1P  of 1V∂  and ( )T2 2 2 2
1 2 3, ,ξ ξ ξ ξ=  be the coordinates 

vector of point 2P  of 2V∂  such that: 

2

1 2 1

3 3
min

V∈∂
=

P
P P P P             (3) 

where 
3⋅  denotes the canonical Euclidean norm on  

3
 . Therefore, 1 2

3
P P  is the usual Euclidean distance  

from 1P  to 2V∂  and 2ξ  is a function of 1ξ . Then 
( )1g ξ  is defined as: 

( ) ( )T1 1 2 21g = −ξ ξ ξ n            (4) 

where 21n  is the unit normal outward vector to 2V∂  at 
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point 2P . 
With this definition, the normal contact conditions can 

be written: 

0; 0; 0g gλ λ≥ ≥ =              (5) 

where the last equation expresses the fact that the normal 
traction component is compressive, and exists only if the 
contact is effective i.e. if 0g = . 

The tangential contact conditions are taken into ac-
count by assuming that Coulomb’s law of friction holds 
locally on the contact surface. Let µ  be the coefficient 
of friction. Coulomb’s law of friction is usually formu-
lated as a function of the local tangential relative velocity 
at the contact interface. However, in the static case it can 
be reformulated using the relative tangential displace-
ment ( )1,v ξ e  due to a loading increment Δe  of Ve  
and Se : 

( ) ( ) ( )(
( ) ( ))

1 2 2

1 1 21

, , ,

, ,
T

v = − −

− − − 

ξ e u ξ e u ξ e e

u ξ e u ξ e e s

∆

∆
    (6) 

where 21s  is the unit tangential vector at point 2P . 
Let us also define the non-dimensional variable τ  

given by: 

; > 0tτ λ
µλ

=                (7) 

With this definition, Coulomb’s law of friction can be 
written: 

( ) ( )1 sign signvτ τ= ⇒ =          (8) 

The constraint function method proposed by Bathe [15] 
is used to impose the normal and tangential contact 
conditions. 

Let nw  be a real-valued function of g  and λ  
such that the solution of ( ), 0nw g λ =  satisfies the 
normal contact conditions, and let sw  be a real-valued 
function of v and t such that the solution of ( ), 0sw v t =  
satisfies the tangential contact conditions. 

Thus the initial problem (1) takes the form:  
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The finite element formulation of this problem is 
achieved using the standard procedures exposed in ref-
erence [16]. The displacement field u  is approximated 
using an interpolation procedure based on nodal point 
displacements, leading to the classical expression:  

( ) ( )1 2 3 1 2 3, , , ,Hξ ξ ξ ξ ξ ξ≈u U , where H  is the dis-
placement interpolation matrix and U  is the vector of 
the nodal displacements. 

Concerning the discretization of the contact conditions, 
the constraint function method proposed by Bathe [15] is 
adopted. This results in adding a nonlinear term to the 
initial problem, dependent on the unknown contact forces 
vector at the contact nodes of body 1B . 

Denoting by cf  this term, by l∈d  the global 
unknown vector gathering U  and cf , and by l∈f  
the prescribed conditions vector gathering the external 
nodal prescribed loads and the contact constraints, the 
displacement-based finite element formulation of the ini-
tial problem then takes the form: 

( ) =K d f                (10) 

where the nonlinear function K  from l
  into l

  is 
the mechanical operator, and the integer l  is the dimen-
sion of the discretized problem; that is to say, of the fi-
nite element model. 

Equation (10) is solved using an incremental proce-
dure coupled with the Newton-Raphson method. This 
leads to the calculation of the unknown vector 1n+d  at 
loading increment 1n +  from the solution nd  at in-
crement n . At each step of this procedure, the incre-
mental equation is obtained by linearizing Equation (10) 
about the last calculated state. Using the procedure de-
scribed in [16], the matrix incremental equation obtained 
at iteration step ( )i  is: 

( ) ( ) ( ) ( ) ( )( ), 1 1 1 1
i i i i i

T n n n n+ + + += −ΔK d f K d        (11) 

where ( )iΔd  is the increment of unknown d at iteration 
step ( )i , and ( )

, 1
i

T n+K  is given by: 
( )

( )
( )

1
, 1 1i

n

i i
T n nK

+
+ += ∇

d
f             (12) 

where ∇a  denotes the gradient with respect to a . The 
solution to Equation (11) gives the increment ( )i∆d  and 
therefore determines the value of the state vector 1n+d  
at iteration step ( )1i + , that is: 

( ) ( ) ( )1
1 1

i i i
n n
+
+ += + ∆d d d            (13) 

The iterations are continued until a specified conver-
gence criterion is satisfied. 

Practically, this problem is solved using the FEMAP- 
NASTRAN software package [17]. The stem and the 
bone are discretized using four-node tetrahedral elements 
leading to a model of 79067 elements and 18701 nodes 
(Figure 1). 

A contact pair between the stem and the bone is de-
fined in order to take into account the contact with fric-
tion between these two bodies. The host bone is subdi- 
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Figure 1. Mesh of the FE model used for the study of the-
femur-cementless prosthesis coupled system: DePuy Corail®. 

 
vided into two regions, corresponding respectively to the 
cortical and the cancellous zones. The femoral head and 
femoral stem are tied together. The femur is fully con-
strained at its distal part. Frictional contact at the 
bone-implant interface is taken into account, leading to 
nonlinear behaviour. 

The position of the femur reproduces the standing 
position in vivo. The applied force is vertical and is pro-
gressively increased to a maximum value corresponding 
to the maximum load during a walk cycle of a 75 kg 
person in the unilateral compression position. The nu-
merical results obtained are validated by comparison 
with in vitro test results [18]. 

2.2. Uncertain Parameters of the Model 
Until now, all the quantities appearing in Equation (10) 
(i.e. the operator K and the vectors d and f) have been 
supposed to be deterministic, that is to say not affected 
by uncertainties. 

We now assume that the known prescribed conditions 
vector f is deterministic and that two mechanical para-
meters of the operator K are uncertain: the Young’s 
modulus of the cancellous bone and the coefficient of 
friction at the interface between the cancellous bone and 
the femoral stem, respectively denoted 1y  and 2y . 

Therefore K is uncertain through these two parameters. 
Let ( )T

1 2,y y=y  be the vector of 2
  gathering them. 

By hypothesis, K depends on y . Consequently, from 
Equation (10), the unknown vector d  also depends on 
y  and is therefore uncertain. 

2.3. Control Variable and Associated Failure 
Criterion 

Formally, the solution to Equation (10) can be written: 

( )=d S f                 (14) 

where S  is a nonlinear operation from l
  into l

  
such that: 

1−=S K                 (15) 
A control variable is a real variable, for example a 

scalar displacement (or a stress, or a strain) at a particular 
point of the studied mechanical system, whose value must 
be controlled within the framework of the reliability 
analysis of the system. 

In this work, the chosen control variable is the Eucli-
dean norm of maximum relative displacement between 
the femoral stem and the cancellous bone. 

Let w  be such a variable. It depends on the unknown 
d  through a relationship of the form: 

( )w C= d                  (16) 

where C is a known function from l
  into + , called 

observation operator. Inserting Equation (14) into Equa-
tion (16) yields: 

( )( ) ( )w C D= =S f f           (17) 

where D C S=   is also a known function from l
  

into + . As a result, w  can also be viewed as a 
function of f . Note that the functions C and D are 
known, in the sense that they are described by known 
numerical models. 

As seen in Section 2.2, the mechanical operator K  
depends on the uncertain vector parameter ( )T

1 2,y y=y . 
As a result, its inverse 1−=S K  also depends on y , as 
does the function D , as can be seen from Equation (17). 
Indicating this fact by the new notation yS  and Dy  in 
the place of S  and D , Equations (14) and (17) be-
come: 

( ) ( ), w D= =y yd S f f            (18) 

and, since f  is a constant vector of l
 , can be re-

written: 

( ) ( ), w H= =d L y y              (19) 

where L  is a function from 2
  into l

  and H  is 
a function from 2

  into + , such that 2∀ ∈y : 

( ) ( ) ( ) ( ), H D= =y yL y S f y f         (20) 

Let 0w  be a given admissible value of w , called the 
failure threshold, and let u  be the real variable such 
that: 

0u w w= −                  (21) 

Such a variable is called the safety margin associated 
with the control variable w , and its sign defines two 
fundamental states for the mechanical model: the safe 
state if > 0u  and the failure state if 0u ≤ . The value 
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0u =  characterizes a limit situation called the failure 
limit state. According to Equation (19), u  can be re-
written: 

( ) ( )0u F w H= = −y y            (22) 

where F  is a function from 2
  into   called the 

limit state function of the mechanical model. This func-
tion defines three specific subsets of 2

 : 

( ){ }2  : > 0sD F= ∈y y           (23) 

( ){ }2  : 0fD F= ∈ ≤y y           (24) 

( ){ }2  : 0C F= ∈ =y y            (25) 

which verify: 
2 ,s f s fD D D D= = ∅            (26) 

and which are respectively called the safe domain, the 
failure domain and the limit state curve. 

The condition 0u ≤  defining the failure state is the 
failure criterion associated with the control variable w  
and its limit value 0w . The failure domain fD  is the 
geometric representation of this criterion. 

Let us note that, since the function F  is only known 
numerically (through the finite element model described 
in Section 2.1), the sets sD , fD  and C  can only be 
determined numerically. 

3. Probabilistic Modelling 
In the following, all the considered random variables 
(RV) are assumed to be defined on the same probability 
space ( ), ,Ω   , where Ω  is a sample space,   is a 
σ -algebra of subsets of Ω  and   is a probability on 
 . 

3.1. Stochastic Modelling of the Uncertain  
Parameters 

In order to take into account the random variability of the 
uncertain parameters 1y  (the Young’s modulus of the 
cancellous bone) and 2y  (the coefficient of friction be-
tween the cancellous bone and the femoral stem), these 
two parameters are modelled as continuous RVs, denoted 

1Y  and 2Y  respectively. 
The continuous 2

 -valued random vector  
( )T

1 2,Y Y=Y  gathering these two scalar RVs is the 
probabilistic model of the uncertain vector parameter 

( )T
1 2,y y=y . In view of the intended numerical applica-

tions, this random vector is assumed to satisfy the fol-
lowing hypotheses: 

(H1) Its components 1Y  and 2Y  are independent. 
(H2) They both follow the same type of probability 

distribution. 
(H3) Three types of probability distribution are ad-

missible for these components: uniform, truncated Gaus-
sian and truncated lognormal.  

Concerning these hypotheses, we can make the fol-
lowing remarks: 

(R1) Let 
1Yp , 

2Yp  and pY  be the probability den-
sity functions (pdf) of 1Y , 2Y  and ( )T

1 2,Y Y=Y  re-
spectively. Then, from (H1): 

1 2Y Yp p p= ⊗Y , that is, 
( )T 2

1 2,y y∀ = ∈y : 

( ) ( ) ( )
1 21 2Y Yp p y p y=Y y          (27) 

(R2) From (H2) and (H3) the densities 
1Yp  and 

2Yp  
are both uniform, or truncated Gaussian or truncated 
lognormal. 

(R3) In connection with (H3), let jY  be a scalar con-
tinuous RV with pdf 

jYp . Then jY  is said to follow: 
a) an uniform distribution with support ,j ja b   , 

< < <j ja b−∞ +∞ , if: 

( ) ( ),

1 ,
j j jY j j ja b

j j

p y y y
b a   

= ∈
−

1       (28) 

b) a truncated Gaussian distribution with mean 
jYm , 

standard deviation 
jYσ  and support ,j ja b   ,  

< <j Y jj
a m b−∞ ≤ ≤ +∞ , if: 

( ) ( ) ,
( )j j

j j

j
Y j S j j

j j j

y m

p y y y
B A

φ
σ

σ

 −
  
 = ∈

−
1     (29) 

where 
jS1  is the indicator function of jS  (i.e.  

( ) 1
jS jy =1  if j jy S∈  and ( ) 0

jS jy =1  if j jy S∉ ),  

jS  is the interval ( ),j ja b , <j ja b−∞ ≤ ≤ +∞ , and 
jm , jσ  are the solutions of the nonlinear system: 

( )

( ) ( )2 2

0

0

j

j j j

j j j
Y j

j j

j j j j j
Y j Y Y j

j j

m m
B A

b a
m m m

B A

σ β α

σ β α
σ σ

 −
 + − =

−


−
+ − + − = −

(30) 

in which: 

, ,

, .

j j j j
j j

j j

j j j j
j j

j j

a m b m
A B

a m b m

σ σ

α φ β φ
σ σ

   − −
= Φ = Φ      

   
   − −

= =      
   

 

where φ  and Φ  are respectively the one-dimensional 
standard Gaussian pdf and the one-dimensional standard 
Gaussian cumulative distribution function, such that: 

( ) ( ) ( )2 21 e , d ,
2π

ttt t z z tφ φ−

−∞
= Φ = ∈∫     (31) 
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c) a truncated lognormal distribution with mean 
jYm , 

standard deviation 
jYσ  and support ,j ja b   ,  

0 < <
jj Y ja m b≤ ≤ +∞ , if: 

( ) ( ) ( )
0 0

ln1

,
j j

j j

j j
Y j S j j

j j j

y m
y

p y y y
B A

φ
σ

σ

 −
  
 = ∈

−
1    (32) 

where jS  is the interval ( ),j ja b , 0 <j ja b≤ ≤ +∞ , 
and jm , jσ  are the solutions of the nonlinear system: 

( ) ( )

( ) ( )

2

2

2
0 0 1 1

2 3
2

1 1 2 22

e 0

1 e 0

j
j

j

j
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j
j

m

Y j j j j
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Y j j j j

Y

m B A B A

m B A B A
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σσ
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+


 − − − =
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  + − − − =  
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(33) 

in which: 

0 0

1 1

2 2

ln ln
, ,

ln ln
, ,

ln ln
2 , 2 .

j j j j
j j

j j

j j j j
j j j j

j j

j j j j
j j j j
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A B
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A B
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σ σ

σ σ
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σ σ
σ σ
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= Φ = Φ      

   
   − −

= Φ − = Φ −      
   
   − −

= Φ − = Φ −      
   

 

3.2. Safe and Failure Events 
Equations (19) and (22) show that when the uncertain 
vector parameter ( )T

1 2,y y=y  is modelled as a random 
vector ( )T

1 2,Y Y=Y , the control variable w  and the 
safety margin u , which depend on y , become scalar 
RVs. Let W  and U  be respectively these RVs. They 
are such that: 

( ) ( ),W H U F= =Y Y           (34) 

and are both defined on the probability space ( ), ,Ω   . 
Naturally, it is assumed here that the definition do-

mains of H  and F  (which are coincident according 
to Equation (22)) contain the support of the probability 
distribution of Y . 

In this random context, the safe state and the failure 
state are defined by two events, the safe event sE ∈  
and the failure event fE ∈ , such that: 

( ){ } ( )( ){ }: > 0 : > 0sE U Fω ω ω ω= ∈Ω = ∈Ω Y  (35) 

( ){ } ( )( ){ }: 0 : 0fE U Fω ω ω ω= ∈Ω ≤ = ∈Ω ≤Y  (36) 

and which verify: 
,s f s fE E E E= Ω = ∅            (37) 

Es is the event associated with the safe domain Ds and 
Ef is the event associated with the failure domain Df. 

4. Reliability Analysis 
4.1. Fundamental Objective 

The fundamental objective of reliability analysis [19] is 
to calculate the probabilities that the events sE  and fE  
will occur, that is ( )sE  and ( )fE . These probabili-
ties are given by: 

( ) ( ) ( ) ( )d , d
s f

s fD D
E p E p= =∫ ∫Y Yy y y y      (38) 

and, according to Equation (37), satisfy: 

( ) ( )1s fE E= −               (39) 

where ( )T
1 2,y y=y  and 1 2d d dy y=y . 

From Equation (39), ( )sE  is known as soon as 
( )fE  is known and vice versa. That is why in this 

work our attention is only focused on ( )fE , called the 
failure probability and denoted fP  in the following. 
This probability can be rewritten: 

( ) ( ) ( )21 d
ff f DP E p= = ∫



Yy y y     (40) 

and its calculation requires the use of a numerical proce-
dure. For the numerical applications treated in this study, 
we have chosen a Monte Carlo method ([19-21]). 

4.2. Standard Formulation 

In the classical reliability processes [19], it is customary 
to transform the initial formulation into a standard 
formulation in which the vector of random parameters 
follows a standard Gaussian distribution. This leads in 
our case to the construction of a regular transformation 
T , with inverse 1−T , such that the random vector 

( )T
1 2,Y Y=Y  can be written: 

( )=Y T X                (41) 

where ( )T
1 2,X X=X  is a 2

 -valued standard Gaus-
sian random vector defined on ( ), ,Ω   . 

Once this transformation has been constructed, the 
failure event can be expressed in terms of X  as fol-
lows: 

( )( ){ } : 0fE ω ω= ∈Ω Γ ≤X          (42) 

where Γ  is a mapping from 2
  into   such that, 

2∀ ∈x : 

( ) ( )( )FΓ =x T x             (43) 

From Equation (32), the failure probability is then 
given by: 

( ) ( ) ( )2 2 d
ff fP E φ∆= = ∫ 1



x x x       (44) 

where ( )T
1 2,x x=x , 1 2d d dx x=x , f∆  is the subset of 

2
  such that: 
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( ){ } ( )2 1 : 0f fD−∆ = ∈ Γ ≤ =x x T      (45) 

And 2φ  is the bidimensional standard Gaussian pdf, 
given by: 

( ) ( )
2 2

T 21 2
2 1 2

1 exp , ,
2π 2

x x x xφ
 +

= − = ∈ 
 

x x  (46) 

Note that Equation (44) can also be obtained by carry-
ing out the variable change ( )=y T x  in Equation (40). 

The set f∆  is the failure domain in the standardized 
x -space, that is in the space (identified with 2

 ) of the 
X  random vector’s realizations. Its complementary in 

2
 , that is the subset  

( ){ } ( )2 1: > 0s sD−∆ = ∈ Γ =x x T , and the common  

boundary between f∆  and s∆ , that is the curve  
( ){ } ( )2 1: 0 C−Σ = ∈ Γ = =x x T , are respectively the  

safe domain and the limit state curve in this standardized 
space (Figure 2). 

Equation (44) represents the standard formulation of 
the reliability problem. To estimate this integral, three 
Monte Carlo methods were used: the crude direct method 
and two more refined methods, based respectively on the 
importance sampling technique and the directional simu-
lation technique ([19-21]). 

Such a formulation is completely defined as soon as 
transformation T  is known, and the latter only depends 
on the probability distribution of the random vector 

( )T
1 2,Y Y=Y . As the components 1Y  and 2Y  of Y  

are assumed independent, this transformation is of the 
form: 

( ) ( ) ( )
( ) ( )

1 1 1 1

2 2 2 2

Y T t X
Y T t X
 = == ⇔  = =

X
Y T X

X
      (47) 

where jT , { }1,2j∈ , is the j -th coordinate of T and  
 

 
Figure 2. Geometric representation of the HLβ -point *M , 
of the failure domains , ,Δ Δ ΔSORM FORM

f f f , and of the limit 

state curves , ,Σ Σ ΣSORM FORM  in the standardized x-space. 

jt , { }1,2j∈ , is a mapping from   into jS ⊆  ,  
where jS  is the definition domain of the pdf 

jYp  of 
jY . 
We give below the expression of transformation 

( )j j jY t X=  for each of the three distributions consi-
dered for jY  (see Section 3.1, bearing in mind that 1Y  
and 2Y  are both assumed to follow the same type of 
probability distribution): 

a) ( )j j jY t X= , { }1,2j∈ , follows a uniform distri- 

bution with support ,j ja b   , < < <j ja b−∞ +∞ : 

( ) ( ) ( )j j j j j j jY t X a b a X= = + − Φ      (48) 

b) ( )j j jY t X= , { }1,2j∈ , follows a truncated Gaus- 
sian distribution with mean 

jYm , standard deviation 
jYσ  and support ,j ja b   , < < < <

jj Y ja m b−∞ +∞ : 

( ) ( ) ( )( )1
j j j j j j j j jY t X m A B A Xσ −= = + Φ + − Φ  (49) 

where ( ),j jm σ  is the solution of the system (30). 

c) ( )j j jY t X= , { }1,2j∈ , follows a truncated 
lognormal distribution with mean 

jYm , standard devia-
tion 

jYσ  and support ,j ja b   ,  
0 < < < <j Y jj

a m b +∞ : 

( )
( ) ( )( )( )1

0 0 0exp

j j j

j j j j j j

Y t X

m A B A Yσ −

=

= + Φ + − Φ
(50) 

where ( ),j jm σ  is the solution of the system (33). 
Note that the fact that 1Y  and 2Y  are both assumed 

to follow the same type of probability distribution is not 
a loss of generality. It is a simple working hypothesis, 
which could be changed without any incidence on the 
proposed methodology. 

4.3. Hasofer-Lind Index 

The Hasofer-Lind index HLβ  ([19,22]) is a reliability 
indicator whose calculation is easier than that of failure 
probability fP . It is defined in the standardized x
-space as follows: 

( ),HL fOβ δ= ∆              (51) 

where ( ), fOδ ∆  denotes the usual Euclidean distance 
between the origin point O  and the failure domain f∆ . 
Such an index is thus given by: 

2min
f

HL M
β

∈∆
= OM            (52) 

where 2⋅  denotes the canonical Euclidean norm on 
2

 . 
The Rackwitz-Fiessler algorithm ([23,24]) is well suited 

to solving the constrained nonlinear optimization prob-
lem (52) and it was chosen to treat the numerical applica- 
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tions presented in Section 5. Note that for these applica-
tions the problem (52) has a unique solution. The solu-
tion point: 

*
2Arg min

fM
M

∈∆

 =  
 

OM           (53) 

such that 
2HLβ = *OM , is called the design point, or  

HLβ -point, and is located on the boundary Σ  of f∆   

(Figure 2). If ( )T* * *
1 2,x x=x  denotes the vector of 2

   

whose components *
1x  and *

2x  are the coordinates of 
*M  ( * *=x OM  is the position vector of *M ), then 

HLβ  is given by: 

( )
( )

* *

2
*

2

,
HLβ

∇Γ
= −

∇Γ

x x

x
         (54) 

where Γ  is the limit state function defined by Equation 
(43), ∇Γ  is its gradient (assumed to exist at point 

*M ), and 2,⋅ ⋅  is the canonical Euclidean inner 
product on 2

 . 

4.4. FORM Approximation [19,22,23] 
This approximation (FORM means First-Order Reliabil-
ity Method) consists of replacing the failure domain f∆  
by the half-space: 

( ){ }2  : 0FORM FOTA
f∆ = ∈ Γ ≤x x       (55) 

where FOTAΓ  is the First-Order Taylor Approximation 
of Γ  at point *M , such that: 

( ) ( )* * 2

2
 , ,FOTAΓ = ∇Γ − ∈x x x x x     (56) 

whose graph FORMΣ  is a straight line tangent to Σ  at 
*M  (Figure 2). 
The failure probability (44) is then approximated by: 

( ) ( )2 21 dFORM
f

FORM
fP φ

∆
= ∫



x x x        (57) 

and a simple calculation gives: 

( )FORM
f HLP β= Φ −            (58) 

where HLβ  is given by Equation (54). 

4.5. SORM Approximation [19,24] 
This approximation is a refinement of the previous me- 
thod (SORM means Second-Order Reliability Method), 
which is based is based on the replacement of the failure 
domain f∆  by the set: 

( ){ }2  : 0SORM SOTA
f∆ = ∈ Γ ≤x x       (59) 

where SOTAΓ  is the Second-Order Taylor Approxima-
tion of Γ  at point *M , that is the quadratic function 

given by: 

( )

( ) ( )( )* 2 * * * 2

2

1 , ,
2

SOTAΓ

= ∇Γ + ∇ Γ − − ∈

x

x x x x x x x
 (60) 

whose graph SORMΣ  is a second-order curve tangent to 
Σ  at *M  (Figure 2). In Equation (60), 2∇ Γ  is the 
Hessian operator associated with Γ  and is assumed to 
exist at point *M . 

Using this substitution, the failure probability (44) is 
then approximated by: 

( ) ( )2 2 dSORM
f

SORM
fP φ

∆
= ∫ 1



x x x       (61) 

and this integral can be evaluated by using approximate 
formulas, such as the Breitung asymptotic formula [25]: 

( )
( )

( )1 2 ,
1

HLSORM
f HL

HL

P
β

β
χβ

Φ −
≈ → +∞

−
    (62) 

or the Hohenbichler asymptotic formula [26]: 

( )
( )
( )

( )1 2 ,

1

HLSORM
f HL

HL

HL

P
β

β
φ β

χ
β

Φ −
≈ → +∞
 
−  Φ − 

   (63) 

is an improvement of the previous one. In these formulas, 
χ  is the curvature of the limit state curve Σ  at *M , 
φ  and Φ  are the functions given by Equations (31), 
and the following conditions are assumed to be verified: 

< 1HLχβ , ( ) ( ) < 1HL HLχφ β βΦ − . 

5. Numerical Experiments 
The numerical applications presented in this section 
concern the model of cementless hip prosthesis described 
in Section 2.1 and aim at estimating its reliability in 
various situations, either through the Hasofer-Lind index 

HLβ  (calculated from the Rackwitz-Fiessler algorithm) 
or by means of the failure probability fP  (estimated 
from Monte Carlo simulations or by using the FORM 
and SORM approximations). All these methods have been 
implemented by the authors. We recall that the bone- 
prosthesis system is considered as reliable if the Eucli-
dean norm of the maximum relative displacement be-
tween the femoral stem and the cancellous bone do not 
exceed a given admissible value 0w  (the failure thre-
shold). 

5.1. Influence of Probability Distributions and 
Scatterings 

The purpose of this application is to highlight the influ-
ence of distributions and scatterings of random parame-
ters on bone-prosthesis system reliability, expressed in 
terms of the Hasofer-Lind index HLβ . 
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For this, 1Y  and 2Y  are assumed to be independent 
with fixed means ( )1 2

,Y Ym m  and variable coefficients of  
variation ( )1 2

,Y Ycv cv , and the three following cases are  

considered: 
(C1) 1Y  and 2Y  are uniformly distributed on the in-

tervals [ ]1 1,a b  and [ ]2 2,a b  respectively, 
(C2) 1Y  and 2Y  are truncated Gaussian with sup-

ports [ ]1 1,a b  and [ ]2 2,a b  respectively, 
(C3) 1Y  and 2Y  are truncated lognormal with sup-

ports [ ]1 1,a b  and [ ]2 2,a b  respectively, 
where in each case, for 1, 2j = : 

( ) ( )1 3 , 1 3
j j j jj Y Y j Y Ya m cv b m cv= − = +    (64) 

The chosen values for 
1Ym , 

2Ym  and the failure thre-
shold 0w  are:  

1 2 01000 MPa, 0.3, 280 μmY Ym m w= = =      (65) 

For the coefficients of variation 
1Ycv  and 

2Ycv , which 
quantify the scattering of 1Y  and 2Y  respectively, three 
values are considered in each jC  case according to the 
following strategy: 

1) 
1Ycv  is fixed to its reference value 0.10  and 

2Ycv  successively takes the values 0.03 , 0.10 , 0.30 ; 
2) 

2Ycv  is fixed to its reference value 0.10  and 
1Ycv  successively takes the values 0.03 , 0.10 , 0.30 . 

The results obtained are summarized in Table 1. In 
each case, we can see the significant effect of the coeffi-
cients of variation on the index HLβ . We can also ob-
serve that the effect of 

2Ycv  (coefficient of variation of 
the coefficient of friction) is greater than that of 

1Ycv  
(coefficient of variation of the Young’s modulus of the 
cancellous bone). Finally, we can point out that the proba-
bility distributions of 1Y  and 2Y  have a minor influ-
ence on HLβ . 

5.2. Influence of Truncation Lengths 
In this application, the random parameters 1Y  and 2Y  
are assumed to be independent and distributed according 
to truncated distributions with variable supports and  

constant first two moments. Under this assumption, the 
objective is to evaluate the effect of the support length of 
each distribution (so-called truncation length) on the 
reliability of the hip prosthesis expressed in terms of the 
Hasofer-Lind index HLβ . 

The supports [ ]1 1,a b  and [ ]2 2,a b  of the distribution 
of 1Y  and 2Y  are chosen of the form: 

, , 1, 2
j j j jj Y j Y j Y j Ya m b m jα σ α σ= − = + =    (66) 

where 1α  and 2α  are strictly positive non-dimensional 
coefficients controlling the length of the supports. To 
highlight their influence on HLβ , four situations are 
considered: 

(TG1) 1Y  and 2Y  are truncated Gaussian, 1 2.5α =  
and α2 successively takes the values 2 , 2.5  and 3 , 

(TG2) 1Y  and 2Y  are truncated Gaussian, 1 2.5α =  
and 1α  successively takes the values 2 , 2.5  and 3 , 

(TLN1) 1Y  and 2Y  are truncated lognormal, α2 = 2.5 
and 2α  successively takes the values 2 , 2.5  and 3 , 

(TLN2) 1Y  and 2Y  are truncated lognormal, α1 = 2.5  
and 1α  successively takes the values 2 , 2.5  and 3 . 

The chosen values for the statistics ( ),
j jY Ym σ , j = 1,2,  

and the failure threshold 0w  are the following: 

1 1

2 2

0

1000 MPa, 100 MPa

0.3, 0.03

280 μm

Y Y

Y Y

m

m

w

σ

σ

= =
 = =


=

    (67) 

The results obtained are listed in Table 2. First we can 
see that the behaviour of HLβ  with respect to the trun-
cation lengths depends on the nature of the considered 
probability distributions. Indeed, in the truncated Gaus-
sian case this behaviour is non-monotonous ( HLβ  de-
creases then increases) in each considered situation (TG1 
and TG2), while in the truncated lognormal case, it is 
either increasing monotonous (situation TLN1) or de-
creasing monotonous (situation TLN2). In each case, 
however, the influence of the truncation lengths on HLβ  
is not very significant. 

 
Table 1. Influence of the probability distribution and of the coefficients of variation of 1Y  and 2Y  on the Hasofer-Lind 
index HLβ . 

 Uniform distribution Truncated Gaussian distribution Truncated lognormal distribution 

1
0.10Ycv =  

2
0.03Ycv =  3.96  3.54  4.56  

2
0.10Ycv =  1.44  1.37  1.45  

2
0.30Ycv =  0.51  0.51  0.49  

2
0.10Ycv =  

1
0.03Ycv =  1.97  2.51  2.34  

1
0.10Ycv =  1.44  1.37  1.45  

1
0.30Ycv =  0.57  0.52  0.55  
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Table 2. Influence of truncation lengths on HLβ  in the truncated Gaussian case (i.e. 1Y  and 2Y  truncated Gaussian) and 
in the truncated lognormal case (i.e. 1Y  and 2Y  truncated lognormal). 

Truncated Gaussian case 

Situation (TG1) 
1 2.5α =  1 2.5α =  1 2.5α =  

2 2α =  2 2.5α =  2 3α =  

HLβ  1.73  1.46  1.59  

Situation (TG2) 
2 2.5α =  2 2.5α =  2 2.5α =  

1 2α =  1 2.5α =  1 3α =  

HLβ  1.51  1.46  1.57  

Truncated lognormal case 

Situation (TLN1) 
1 2.5α =  1 2.5α =  1 2.5α =  

2 2α =  2 2.5α =  2 3α =  

HLβ  1.48  1.59  1.62  

Situation (TLN2) 
2 2.5α =  2 2.5α =  2 2.5α =  

1 2α =  1 2.5α =  1 3α =  

HLβ  1.62  1.59  1.56  

 
5.3. Influence of the Failure Threshold 
In this section, we study the influence of the failure 
threshold 0w  on the reliability of the prosthesis, again 
using the Hasofer-Lind index HLβ  as a reliability indi-
cator. 

To this end, the random parameters 1Y  and 2Y  are 
assumed to be independent and uniformly distributed 
with means and standard deviations given by Equation 
(67); five values are successively considered for the 
failure threshold 0w  (in mµ ): 270, 275, 28 0, 285, 290. 

The obtained values of HLβ  are given in Table 3 
which also contains, for information, the corresponding 
values for the FORM approximation FORM

fP  of failure 
probability, given by Equation (58). 

We can first observe that the values of HLβ  are quite 
low for all the considered values of 0w , which are 
nevertheless common values for this threshold. This 
comes quite obviously from the chosen values for the 
coefficients of variation of 1Y  and 2Y , which are rela-
tively high ( )1 2

0.10Y Ycv cv= = . We can also underline 
that these results are logical in the sense that HLβ  
increases as 0w  increases. It is interesting, moreover, to 
note that this increase is quasi-linear over the range of 
the considered 0w  values. 

5.4. Comparison of Various Approximations of 
Pf 

In this application we consider the same example as in 
the previous application (see Section 5.3), and for each 
value of the failure threshold 0w  we compare the FORM 
and SORM approximations FORM

fP  and SORM
fP  of fP  

(given by Equations (58) and (63) respectively) with the 
target value of this probability, obtained by using the 
crude Monte Carlo method taken as the reference me-

thod. 
Estimating fP  from the latter requires here the simu-

lation of 410  realizations  
( ) 4, , 1 10j

j jw w j= ∈Ω ≤ ≤x X , of the standard Gaus-
sian vector X , then, for each simulated realization jx , 
the calculation of the corresponding value ( )jΓ x  of 
the limit state function Γ . Such an estimation requires 
thus 410  finite element calculations. This is why two 
other less expensive Monte Carlo methods were used: 
one based on the importance sampling (IS) technique, the 
other on the directional simulation (DS) technique ([19- 
21]). 

The values of fP  given by these two improved 
Monte Carlo methods and by the crude Monte Carlo me- 
thod are respectively denoted IS

fP , DS
fP  and C

fP . The  
comparison of FORM

fP  and SORM
fP  with C

fP  is shown 
in Table 4. Table 5 gives, for 0 280 μmw = , the 
number of finite element calculations required by the 
Monte Carlo methods based on the IS and DS techniques 
to provide the same value for fP  as that given by the  
crude Monte Carlo method (i.e. IS DS C

f f fP P P= = ). 
The results obtained show first that FORM

fP  and 
SORM
fP  are poor approximations of C

fP . They also show 
that SORM

fP  is not a significant improvement on FORM
fP . 

This can be explained by the fact that the local approxi-
mations FORMΣ  and SORMΣ  of the limit state curve Σ  
(Figure 2) are not accurate enough to adequately represent 
Σ  in a sufficiently large neighbourhood of the design 
point *M . The results in Table 5 confirm that the Monte 
Carlo methods based on the IS and DS techniques are 
more efficient than the crude Monte Carlo method. We 
can also observe that the method based on the DS tech-
nique is less time-consuming, and therefore more effi-
cient, than the one based on the IS technique. 
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Table 3. Influence of the failure threshold on the Hasofer- 
Lind index HLβ  and on the associated FORM approxima-
tion FORM

fP  of fP . 

( )0 μmw  270  275  280  285  290  

HLβ  1.10  1.25  1.44  1.61  1.75  
210FORM

fP ×  13.47  10.61  7.53  5.33  3.97  

 
Table 4. Values of FORM

fP , SORM
fP  and C

fP  for each 

failure threshold value 0w . 

( )0 μmw  270  275  280  285  290  
210FORM

fP ×  13.47  10.61  7.53  5.33  3.97  
210SORM

fP ×  13.44  10.46  7.48  5.02  3.72  
210C

fP ×  10.27  7.59  5.52  3.93  2.69  

 
Table 5. Number of finite element (FE) calculations re-
quired by the Monte Carlo methods based on the IS and DS 
techniques to provide the same value for fP  as that given 
by the crude method. 

Monte Carlo method Number of FE calculations 

Crude method 10000  

Method based on the IS technique 10000  

Method based on the DS technique 297  

6. Conclusions 
The aim of this paper was to present a methodology to 
enable the prediction in a probabilistic context of the 
primary stability of cementless hip prostheses in the 
presence of uncertainties. Based on a reliability approach, 
this methodology supposes the numerical model describ-
ing the mechanical behaviour of the prosthesis-cancell- 
ous bone couple, the probabilistic models of uncertain 
parameters and the failure criterion expressing the loss of 
stability of the prosthesis to be known. The underlying 
mechanical problem is a classical problem of contact 
with friction between two three-dimensional deformable 
bodies: a Depuy Corail® prosthesis is implanted without 
cement in a femur. This problem is solved using a finite 
element model based on Bathe’s formulation. Due to 
their variability in the literature, we chose to consider the 
Young’s modulus of the cancellous bone and the coeffi-
cient of friction between the cancellous bone and the 
femoral stem as uncertain parameters. They were mod-
elled as random variables, assumed successively to be 
uniform, truncated Gaussian and truncated lognormal. 
Finally, failure was defined as the exceeding of a given 
limit value by the maximum relative displacement be-
tween the femoral stem and the cancellous bone. The 
reliability of the coupled system was estimated using two 
indicators: the Hasofer-Lind index and the failure proba-

bility. The first was calculated using the Rackwitz- 
Fiessler optimization algorithm. The second was esti-
mated first by using approximate formulas derived from 
FORM and SORM approaches, then by means of three 
Monte Carlo methods: the crude Monte Carlo method, 
the method based on the importance sampling technique 
and that based on the directional simulation technique. 

The presented numerical applications have shown the 
relevance of the proposed methodology and given an 
indication of its great potential in the field of prosthesis 
reliability. A different failure criterion could be envi-
saged, such as the acceptable maximum stress or the op-
timization of the contact area, for instance. 

This methodology has been presented in the case where 
only two parameters are uncertain. It is clear, however, 
that its validity and its operational capacity would not be 
compromised by an increase in the number of uncertain 
parameters. This personal probabilistic model enables cli-
nicians to compare the primary stability of cementless 
prostheses, and to choose the optimal implant design while 
taking into account uncertainties in the model input data. 
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