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ABSTRACT 
In this paper, we modify the general-purpose heuristic method called extremal optimization. We compare our 
results with the results of Boettcher and Percus [1]. Then, some multiobjective optimization problems are solved 
by using methods motivated by the immune system. 
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1. Introduction 
Multiobjective optimization problems (MOPs) [2] are existing in many situations in nature. Most realistic opti- 
mization problems require the simultaneous optimization of more than one objective function. In this case, it is 
unlikely that the different objectives would be optimized by the same alternative parameter choices. Hence, 
some trade-off between the criteria is needed to ensure a satisfactory problem. Multiobjective (Multicriteria) op- 
timization has its roots in late 19th century welfare economics, in the works of Edge worth and Pareto. A mathe- 
matical description is as follows: finding the vector ( )1 2, , , nx x x∗ ∗ ∗ ∗=x   which satisfies the m  inequality con- 
straints ( ) 0, 1,2, ,ig i m∗ ≥ =x  , the p equality constraints ( ) 0, 1, 2, ,jh j p∗ = =x  , and minimizing the vec- 
tor function ( ) ( ) ( ) ( )( )1 2, , , kF f f f=x x x x , where ( )1 2, , , Ωnx x x= ∈x  , is the vector of decision vari- 
ables, each decision variable 𝑥𝑥𝑖𝑖  is bounded by lower and upper limits , 1, 2, ,i i il x u i n≤ ≤ =  . The space in 
which the objective vector belongs is called the objective space and the image of the feasible set under F is 
called the attained set. 

The scalar concept of optimality does not apply directly in the multiobjective setting. A useful replacement is 
the notion of Pareto optimality. So, we have the following definitions related to this notation [3]: 

Definition 1 (Pareto dominance) A vector ( )1 2, , , ku u u=u   is said to be dominated by another vector 
( )( )1 2, , , kv v v=v u v   iff { } { }( )1,2, , : 1, 2, , :i i j ji k u v j k u v∀ ∈ ≤ ∧ ∃ ∈ <  . 

Definition 2 (Pareto optimality) A solution Ω∈x  is said to be Pareto optimal with respect to Ω iff; there is 
no Ω∈y  for which ( ) ( ) ( ) ( )( )1 2, , , kF f f f= =v y y y y  dominate ( ) ( ) ( ) ( )( )1 2, , , kF f f f= =u x x x x . 

Pareto optimal points are also known as efficient solutions, non-dominated, or non-inferior points. 
Definition 3 (Pareto optimal set) The Pareto optimal set SP  is the set of Pareto optimal solutions, i.e. 

( ) ( ){ }Ω Ω :SP F F= ∈ ¬∃ ∈x y y x . 
Definition 4 (Pareto optimal front) The Pareto optimal front FP  is the set of objective functions values cor-

responding to the solutions in SP , i.e. ( ) ( ) ( ) ( )( ){ }1 2, , ,F k SP F f f f P= = ∈x x x x x . 
The multiobjective problem is almost always solved by combining the multiple objectives into one scalar ob- 
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jective whose solution is a Pareto optimal point for the original MOP. Most algorithms have been developed in 
the linear framework (i.e. linear objectives and linear constraints), but the techniques described below are also 
applicable to nonlinear problems. Several methods have been proposed to solve continuous multiobjective opti- 
mization problems. In the next section, some multiobjective methods are discussed. In the third section, extre- 
mal optimization is introduced and two immune motivated optimization algorithms are proposed. In Section 4, 
we generalize extremal optimization to multiobjective optimization. 

2. Some Multiobjective Optimization Methods 
Almost every real life problem is multiobjective problem [2,4]. Methods for solving multiobjective optimization 
problems are mostly intuitive. Here, we list and discuss some of them. 

The first method is the Minimizing Weighted Sums of Functions. A standard technique for MOP is to mi-
nimize a positively weighted convex sum of the objectives ( )if x , that is, ( )1min n

i ii w f x
=∑  where 0iw ≥  

and 1 1n
ii w

=
=∑ . 

It is known that the minimizer of this combined function is Pareto optimal. It is up to the user to choose ap-
propriate weights. Until recently, considerations of computational expense forced users to restrict themselves 
toper forming only one such minimization. Newer, more ambitious approaches aim to minimize convex sums of 
the objectives for various settings of the convex weights, therefore generating various points in the Pareto set. 
Though computationally more expensive, this approach gives an idea of the shape of the Pareto surface and pro-
vides the user with more information about the trade-off among the various objectives. However, this method 
suffers from two drawbacks. First, the relationship between the vector of weights and the Pareto curve is such 
that a uniform spread of weight parameters rarely produces a uniform spread of points on the Pareto set. Often, 
all the points found are clustered in certain parts of the Pareto set with no point in the interesting/middle part" of 
the set, thereby providing little insight into the shape of the trade-off curve. The second drawback is that 
non-convex parts of the Pareto set cannot be obtained by minimizing convex combinations of the objectives 
(note though that non-convex Pareto sets are seldom found in actual applications). 

Here another problem is considered. Assume that the set { }1 2, , , nD d d d=   of decisions weights 1 2, , , nw w w  
reflecting decision-makers’ preferences. A matrix ( ) , , 1, 2, ,ijA a i j n= =   is obtained after asking the decision 
maker to quantify the ratio of his/her preferences of one decision over another. In other words, for every pair of  

decisions ,i jd d , the term 0ija >  is requested satisfying i
ij

j

w
a

w
≈ , i.e. instead of giving the weights iw  di-

rectly, he/she has a matrix A. This matrix must be a positive reciprocal matrix, i.e. 1 0ij
ji

a
a

= > . For a given  

positive reciprocal matrix A, different procedures can be followed in order to obtain weights 1 2, , , nw w w . By 
Perron-Frobenius theorem [5], the matrix A has a unique positive dominant eigenvalue. But due to the above 
properties of ija  one can derive the following: 

Proposition 1 If 1, , , 1, 2, ,ij jk kia a a i j k n⋅ ⋅ = =  , then the eigenvalues of A in the case of n objectives are n; 
0 where the zero is repeated 1n −  times. 

Proof: It is direct to see that the characteristic polynomial of the positive reciprocal matrix A satisfies the re-
currence relation; 

( ) ( ) ( ) ( ) ( )1 2
11 1 1 , 2,n n

n nP P n nλ λ λ λ− −
−= − + − − ≥                          (1) 

And ( ) ( ) ( )2 12 , 1P Pλ λ λ λ λ= − − = − . 
Using mathematical induction the proposition is proved. 
Now, there are two simple methods to determine the weights 1 2, , , nw w w  given the matrix A [6]. The first 

method is that the required weights are proportional to the eigenvector corresponding the unique eigenvalue n by 
solving Aw nw= , where w  is the weight vector. The second method is that it is proportional to the row  

geometric mean of ija  i.e. they are given by; 
( )
( )

1

1

1

1 1

n n
ijj

i
n n n

iji j

a
w

a

=

= =

=
∏

∑ ∏
. 

It has been argued that the method of weighted sums of objectives is one of the best methods in multiobjective 
combinatorial optimization (MOCO) [7]. The reason is that Pareto set for discrete variables is a set of points. 
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Such set can be obtained via a convex combination of the objectives e.g. the weights method. 
The second method is the Homotopy Techniques. Homotopy techniques aim to trace the complete Pareto 

curve in the bi-objective case (n = 2). By tracing the full curve, they overcome the sampling deficiencies of the 
weighted sum approach [8,9]. The main drawback is that this approach does not generalize to the case of more 
than two objectives. 

The third method is the Goal Programming. In the goal programming approach, we minimize one objective 
while constraining the remaining objectives to be less than given target values e.g. minimize ( )1f x  subject to

( ) , 2,3, ,i if x a i n≤ =  , where ia  are parameters to be gradually decreased till no solution is found. This me-
thod is especially useful if the user can afford to solve just one optimization problem. However, it is not always 
easy to choose appropriate goals for the constraints ia . Goal programming cannot be used to generate the Pare-
to set effectively, particularly if the number of objectives is greater than two. 

The fourth method is Multilevel Programming. Multilevel programming is a one-shot optimization technique 
and is intended to find just one optimal point as opposed to the entire Pareto surface. The first step in multilevel 
programming involves ordering the objectives in terms of importance. Next, we find the set of points x C∈  for 
which the minimum value of the first objective function ( )1f x  is attained. We then find the points in this set 
that minimize the second most important objective ( )2f x . The method proceeds recursively until all objectives 
have been optimized on successively smaller sets. Multilevel programming is a useful approach if the hierar-
chical order among the objectives is of prime importance and the user is not interested in the continuous 
trade-off among the functions. However, problems lower down in the hierarchy become very tightly constrained 
and often become numerically infeasible, so that the less important objectives have no influence on the final re-
sult. Hence, multilevel programming should surely be avoided by users who desire a sensible compromise solu-
tion among the various objectives. Also, this method is called lexicographic method. 

A famous application is in university admittance where students with highest grades are allowed in any col-
lege they choose. The second best group is allowed only the remaining places and so on. The drawback of this 
method is that two distinct lexicographic optimization with distinct sequences of the same objective functions 
does not produce the same solution. Also, this method is useful but in some cases it is not applicable. 

A fifth method using fuzzy logic is to study each objective individually and find its maximum and minimum  

say ( )maxf x , ( )minf x  respectively. Then determine a membership 
( ) ( )
( ) ( )

max

max min

i i
i

i i

f x f x
m

f x f x
−

=
−

. Thus 0 1m≤ ≤ .  

Then apply ( )max min , 1,2, ,im i n=  . Again this method is guaranteed to give a Pareto optimal solution. This 
method is a bit difficult to apply for large number of objectives. 

A sixth method is the Keeney-Raiffa method which uses the product of objective functions to build an equiv-
alent single objective one called Keeney-Raiffa utility function. 

The seventh method is Normal-Boundary Intersection [10,11]. The normal-boundary intersection method 
(NBI) uses a geometrically intuitive parameterization to produce an even spread of points on the Pareto surface, 
giving an accurate picture of the whole surface. Even for poorly scaled problems (for which the relative scaling 
on the objectives are vastly different), the spread of Pareto points remains uniform. Given any point generated 
by NBI, it is usually possible to find a set of weights such that this point minimizes a weighted sum of objectives, 
as described above. Similarly, it is usually possible to define a goal programming problem for which the NBI 
point is a solution. NBI can also handle problems where the Pareto surface is discontinuous or non-smooth, un-
like homotopy techniques. Unfortunately, a point generated by NBI may not be a Pareto point if the boundary of 
the attained set in the objective space containing the Pareto points is non-convex or “folded” (which happens 
rarely in problems arising from actual applications). NBI requires the individual minimizers of the individual 
functions at the outset, which can also be viewed as a drawback. 

3. Extremal Optimization and the Immune System 
In this section, we concentrate more on extremal optimization then relate it to the immune system and generalize 
it to multiobjective cases. 

Extremal Optimization (EO) is an optimization heuristic inspired by the Bak-Sneppen model of self-organized 
criticality from the field of statistical physics [1,12]. This heuristic was designed initially to address combina-
torial optimization problems such as the travelling salesman problem and spin glasses, although the technique has 
been demonstrated to function in optimization domains. EO was designed as a local search algorithm for com- 
binatorial optimization problems. Unlike genetic algorithms, which work with a population of candidate solu- 
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tions, EO evolves a single solution and makes local modifications to the worst components. This requires that a 
suitable representation be selected which permits individual solution components to be assigned a quality meas-
ure (“fitness”). This differs from holistic approaches such as ant colony optimization and evolutionary computa-
tion that assign equal-fitness to all components of a solution based upon their collective evaluation against an 
objective function. The algorithm is initialized with an initial solution, which can be constructed randomly, or 
derived from another search process. 

In the Bak-Sneppen model, species are located on the sites of a lattice, and have an associated fitness value 
between 0 and 1. At each time step, the one species with the smallest value (poorest degree of adaptation) is se-
lected for a random update, having its fitness replaced by a new value drawn randomly from a flat distribution 
on the interval [0; 1]. But the change in fitness of one species impacts the fitness of interrelated species. There-
fore, all of the species at neighboring lattice sites have their fitness replaced with new random numbers as well. 
After a sufficient number of steps, the system reaches a highly correlated state known as self-organized critical-
ity [13]. 

Extremal optimization is quite similar to the way the immune system (IS) renews its cells [14]. Almost every- 
day new immune cells are replaced in the blood stream. If within few weeks they were able to recognize anti-
gens (viruses or bacteria) then they are preserved for longer period. Otherwise they are replaced randomly. This 
dynamics is called extremal dynamics (EO) [15]. It can explain the long range memory of the immune system 
even without the persistence of antigens. The reason is that if a system evolves according to such dynamics then 
the annihilation probability for a clone (a type of cells) that has already survived for time t is inversely propor-
tional to t c+ , where c is a constant. Boettcher and Percus [1] have used extremal optimization to solve some 
single objective combinatorial optimization problems. Their algorithm have been modified by [12,16] and used 
to solve 3-dimensional spin glass and graph coloring problems. 

Definition 5 Extremally driven systems are the systems that updated by identifying an active region of the 
system and renewing this region whilst leaving the remainder unchanged. The active subsystem is chosen ac-
cording to some kind of extremal criterion; often it is centered on the location of the minimum of some spatially 
varying scalar variable. 

Consider a system of n elements, each element assigned a single scalar variable , 1, 2, ,ix i n=   drawn from 
the fixed probability distribution function ( )p x . For every time step, the element with the smallest value in the 
system is selected and renewed by assigning a new value which is drawn from ( )p x . It is assumed that no two 

ix  can take the same value. 
Definition 6 For the above system the typical values of ix  increase monotonically in time. This means that 

any renewed element is likely to have a smaller ix  than the bulk, and hence a shorter than average lifespan un-
til it is again renewed. Corresponding, elements that have not been renewed for sometime will have a longer 
than average life expectancy. This separation between the shortest and the longest lived elements will become 
more pronounced as the system evolves and the average ix  in the bulk increases. This phenomenon is called 
long-time memory. 

Proposition 2 Extremally driven systems can generally be expected to exhibit long-term memory [15]. 
Proof Let ( )tP S  be the probability to find the system in a state S after t updates, where { }1 2, , , NS x x x=  . 

At the next step 1t +  only one of the values will change that may be any one of the N  elements. Let 
{ }1 1 1, , , , , ,i

i i i NS x x x x− += 
   be the state that ix  is the smallest value. Then ( )1tP S+  can be given by, 

( ) ( ) ( )1 1 dimN i
t i iiP S p x P S x+ = −∞

= ∑ ∫  ,                            (2) 

where the function 1: N
im R R−  is defined by; 

{ }1 1 1min , , , , ,i i i Nm x x x x− +=   .                            (3) 

Using the substitution ( )d ,0 1ix
i iu p z z u

−∞
= ≤ ≤∫ , Equation (2) can be rewritten as; 

( ) ( )1 1 0
dimN i

t t iiQ S Q ùS+ =
= ∑ ∫ ,                              (4) 

where ( )( ) ( )( )1 1
d dN N

t i i t i ii i
Q S u u P S x x

= =
=∏ ∏ , { } { }1 2 1 1 1, , , , , , , , , ,i

N i i i NS u u u S u u ù u u− += =    and  

{ }1 1 1min , , , , ,i i i Nm u u u u− +=   . 
Identity 1 Since { }1 1 1min , , , , ,i i i Nm u u u u− +=    and iu  are independent, then; 
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1

1
0

,
d

,
1

i

t
i

m t t
j i i

m i j
m u m

i j
t

+

+

 =
= 

≠
+

∫ .                                 (5) 

Identity 2 

( ) ( )
( )

( ) ( )
( )

1 ! 1 !
,

1 !
d

1 ! !
,

1 !

i

t
jD

N t
i j

N
m V

N t
i j

N

− +
= += 

− ≠ +

∫ ,                              (6) 

Where iD  is the domain of space in which iu  is the smallest, and 1 2 1
d d d d dN

N kk
V u u u u

=
= =∏ . 

Now, let us return to Equation (4), using identity (1) and 0 1Q = , we can get; 

( ) ( )1 0
1 1 10 0

d d
i im mN N N

i
i i

i i i
Q S Q S miù ù

= = =

= = =∑ ∑ ∑∫ ∫  

( ) ( ) ( )2 1 1 2
1 1 1 10 0 0

d d d
i i im m mN N N N

i
i i i N i

i i i i
Q S Q S m m m mù ù ù

= = = =

+= = = + +∑ ∑ ∑ ∑∫ ∫ ∫   

( ) ( ) ( )
1

2 1 2 1 1 2
1 10 0

d d
Nmm N N

N N N
i i

Q S m m m m mù ùm
= =

= + + + + + + + +∑ ∑∫ ∫    

( ) 2
2 1

1 1
2

N
ii

NQ S m
=

− = + 
 

∑ . 

Then; 

( ) ( )
( ) ( ) 1

1 !
.

! !
N t

t ii

N t
Q S m

N t =

+ −
= ∑                                 (7) 

Since tQ  is symmetric in im  and therefore in iu , the probability that any particular element in the system,  

say ku , is the smallest at a given time wt  is 1
N

. Let ( ),w w

k
t t tQ S+  is the probability to find the system in a state  

Sat a time wt t+  given that ku  was not the minimum at any of the times , 1, , 1w w wt t t t+ + − , then; 

( ),

11 , 1
11

w
w w

Nw t tk
t t t ii k

N t t
Q S m t

NN
+

+ ≠

+ + − 
= ≥ −−  

∑ .                        (8) 

The corresponding probability that ku  is the smallest, denoted by ,w w

k
t t tq +  can be calculated by integrated 

Equation (8) over kD  using Equation (6); 

,
1

w w

k
t t t

w

q
N t t+ =
+ +

,                                    (9) 

which independent of k  also ( ),w w

k
t t tQ S+ . Then the probability of an element being renewed decreases with 

the time since it was last renewed according to 1
, ~

w w

k
t t tq t−+ , also 1

, ~
w w

k
t t t wq t −
+ . 

( )R t  is defined as the probability that a randomly chosen element i  has the same value of ix  at time t   

that it had at 0t = , then ( )0 1R =  and ( )1
1

NR
N

=
−

. For 2t ≥  observe that ( )R t  only decrease when an  

element is renewed for the first time, so ( ) ( ) ( ),01 1 k
tR t q R t+ = −  hence from Equation (9); 

( ) ( ) ( )1
,01

1 1t k
ss

R t R q−

=
= −∏ .                                (10) 

Since ,0
1k

sq
N s

=
+

, ( ),0
11 k

s
N sq

N s
+ −

− =
+

, then 

( ) ( ) ( )1
,01

11 1
1

t k
ss

NR t R q
N t

−

=

−
= − =

+ −∏ .                         (11) 
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The slow decay of ( )R t  shows that a significant proportion of the system will remain in its initial state until 
arbitrarily late times, already suggesting some form of long-term memory. 

The existence of aging can be most clearly expressed in terms of the two-time correlation function 
( ),w wC t t t+  between the state of the system at times wt  and wt t+ . The probability that a randomly chosen 

element has the same value of ix  at times wt  and wt t+  is ( ),w wC t t t+ . Note that ( ), 1w wC t t = ,  

( ) 1,w w
NC t t t

N
−

+ =  where ( ) ( ),0C t R t= , 

( ) ( ) ( )
1

,
1

, 1, 1
w

w
w

t t
k

w w w w s t
s t

C t t t C t t q
+ −

= +

+ = + −∏  

( ) 1, , 1
1

w
w w

w

N tNC t t t t
N N t t

 +−
+ = ≥ + + − 

. 

After a short transient this scales as ( ) 1, 1 , 1w
w w

w

tN tC t t t
N t N

 −
+ ≈ + 

 
 . 

That t and wt  only appear in the ratio 
w

t
t

 is what we mean by aging. Aging indicates the existence of some  

form of long-term memory. Finally, as N tends to infinity we get ( ) ( ) 11R τ τ −= +  and  

( ) 1
,

1
w

w w
w

C
τ

τ τ τ
τ τ

+
+ =

+ +
 where 1

N
τ ≡ . This can explain the long term memory of the immune system in the  

absence of antigens. 
Nature has been created in a fascinating way. As we learn more, we found that it is more efficient to imitate it. 

Recently, this approach has been applied to optimization [1]. The author’s considered the spin glass problem. 
They assign a spin variable { }1,1ix ∈ −  for each site { }, 1, 2, ,i i n∈  . Each site is connected to each nearest 
neighbors j  via a bond variable { }1,1ijJ ∈ − , assigned at random. The goal is to find the configuration 

{ }1 2, , , nS x x x=  , to approximately minimize the cost function or Hamiltonian; 

( ) ( ) ,

1
2 ij i ji jC S H x J x x= = − ∑∑ .                         (12) 

Also, they assigned a fitness if  to each spin variable 𝑥𝑥𝑖𝑖  by the relation 1
2i i ij jjf x J x =  

 
∑ . Then the one  

with the lowest fitness is removed and replaced with another one at random. It has been applied to the both, spin 
glass and graph coloring problems. The extremal optimization algorithm is as follows: 

Choose { }, 1, 2, ,ix i n=   randomly to form an initial configuration S , set bestS S= . Repeat the following 
steps as desired, 

1) Find the fitness if  of the variable ix  for all 1, 2, ,i n=  . 
2) Find the site i∗  with the lowest fitness (i.e. ii

f f∗ ≤ ) and choose another configuration S ′  randomly 
such that 

i
x ∗  is replaced by another state. 

3) If ( ) ( )H S H S′ <  then bestS S ′= , else bestS S= . 
The weakness of this approach is that focusing only on the worst fitness can lead to narrow deterministic 

process. To overcome this weakness, the authors replaced step (2) of the above algorithm by ranking the sites in 
an ascending order according to their fitness. Then the replaced site is chosen randomly according to the proba-
bility distribution kp k τ−∝ . 

We proposed two modifications. The first immune motivated optimization IMOP1 replaces the second step (2) 
by the following, 

1) Find the fitness if  of the variable ix  for all 1, 2, ,i n=  . 
2) Replace randomly the sites with lowest 5% fitness (not just the one with the lowest fitness). 
3) If ( ) ( )H S H S′ <  then bestS S ′= , else bestS S= . 
This gives a significantly higher fitness than the previous deterministic one (at the same time) but still it has 

the previous drawback of falling in local minima. The second immune motivated optimization algorithm IMOP2 
which preserves the advantage of the above modification is to define iα  by; 
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max

max min

i
i

f f
f f

τ

α
 −

=  − 
,                                  (13) 

Where ( )max minf f  is the maximum (minimum) possible fitness and 0τ > . The second step in the above 
algorithm IMOP1 is now replaced by the following, 

1) Find the fitness if  of the variable ix  for all 1, 2, ,i n=  . 
2) For all 1, 2, ,i n=  , if iRND α<  then replace ix . 
3) If ( ) ( )H S H S′ <  then bestS S ′= , else bestS S= . 

where RND is a uniformly distributed random number. This algorithm has the following advantages, 
1) It has a better chance of avoiding getting stuck in local minima. 
2) It does not require the ranking of all fitness at each time step as the modification of Boettcher and Percus 

requires. This saves significant time especially for large number of sites. 
We reconsidered the spin glass problem (that Boettcher studied in his paper [1]) and apply our immune moti-

vated optimization algorithm IMOP2. We graphed the average energies obtained by Boettcher and that obtained 
by our algorithm for the ±J spin glass in 3d =  as a function of τ. For each ( )216,3434,512,729dn L = , where 
L is the length of the cube, 10 instances were chosen. For each instance 10 runs were performed stating from 
different initial conditions at each τ . The results were averaged over the number of runs and over the number 
of instances. We can see from the figures (from Figures 1(a) to (d) for 216n = , 343n = , 512n =  and 

729)n = and from the results of Boettcher that we get better minimum values than them in all case. Also, we 
can see from Figures 2 and 3, that we reach to better minimum values in the same time that Boettcher’s takes. 
This means that our approach is faster than the ordinary EO. 

In Table 1, we compare the modified EO approximations to the average ground-state energy per spin ( )3e n  
of the ±J spin glass in 3d =  with EO results using Extremal optimization. For each size dn L=  we have stu-
died a large number I  of instances. Also shown is the average time t  (in seconds) needed for EO to find the 
presumed ground state. We note that the new results are better and faster than the other three results. 

4. Extremal Optimization as a Multiobjective Metaheuristic 
Generalizing extremal optimization to multiobjective optimization is done by defining the weighted fitness at  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1. (a-d) Plot of the average energies obtained by EO (red) and modified EO forthe ±J spin glass in d = 3 as a 
function of τ for size n =216, 343, 512, 729. 

OPEN ACCESS                                                                                          AM 



M. F. ELETTREBY  ET  AL. 325 

 
Figure 2. This figure shows the time needed to reach the minimal average energy for each L. The red line is our results 
using modified EO algorithm and the blue one is the results using. 

 

 
Figure 3. This figure shows the minimal average energy for each L. The red line is our results using modified EO algo-
rithm and the blue one is the results using. 

 
Table 1. Shows a comparison between the modified EO results, EO results. 

L e3(n) T EO t 
3 −0.373353 0.05 −0.161658 0.03 
4 −0.526250 0.02 −0.227500 0.05 
5 −0.861333 0.17 −0.325571 0.049 
6 −0.881816 2.35 −0.518475 2.71 
7 −1.086920 2.37 −0.563167 8.47 
8 −1.474320 1.49 −0.516188 3.3 
9 −1.797780 5.11 −0.700000 10.94 
10 −2.171540 64.23 −0.867413 24.57 
11 −2.319440 20.97 −0.792750 23.31 
12 −2.511710 182.22 −1.210750 214.72 
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each site by, 

11
Q

i l ilwf w f
=

= ∑ , where 0 1lw≤ ≤ , 1 1Q
ll w

=
=∑ .                    (14) 

Then we apply the extremal optimization algorithm. 
Now, we comment on extremal optimization as a metaheuristic optimization procedure. 
Definition 7. A metaheuristic [17] is an iterative process which guides a heuristic by learning strategies to 

find a near optimal solution. 
Metaheuristics are characterized by: 
1) They give approximate solutions. 
2) They include mechanisms to avoid being trapped into locally optimal solutions. 
3) They are not a specific problem. 
4) They include diversified and intensified mechanisms for an efficient search of solutions. 
Extremal optimization has all these properties. The intensification and diversification mechanisms are inclu- 

ded in the random number in the algorithm IMOP2. If the random number is large, a large number of sites are 
going to change their state hence diversification occurs. If the random number is small, only a small number of 
sites will change their state hence intensification occurs. 
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