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ABSTRACT 
The present paper is devoted to a novel smoothing function method for convex quadratic programming problem 
with mixed constrains, which has important application in mechanics and engineering science. The problem is 
reformulated as a system of non-smooth equations, and then a smoothing function for the system of non-smooth 
equations is proposed. The condition of convergences of this iteration algorithm is given. Theory analysis and 
primary numerical results illustrate that this method is feasible and effective. 
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1. Introduction 
Consider the following convex quadratic programming problem 
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 are vectors in mR  and nR , respectively. And ijQ ,  

( ), 1, 2ijA i j =  are the partitioned matrix of Q  and A  respectively. 
As is well known, this problem models a large spectrum of applications in computer science. Operation re-

search and engineering as the nonlinear programming is solved eventually based on the convex quadratic pro- 
gramming problem. Therefore, the study on its effective solvers becomes a prolonged research subject. 

Common effective algorithm is proposed related to certain schemes of convex quadratic programming prob-
lem, see [1-5]. Moreover, these methods are not polynomial algorithm in [6]. And the theory and algorithm of 
quadratic programming are presented completely. According to the optimization condition (KKT) and the dual-
ity theory of quadratic programming, the fixed-point iteration method is obtained for equality constrained (see 
[7]) and inequality constrained (see [8]) convex quadratic programming problem respectively. In fact, equality 
and inequality can be converted with inputting artificial variables and slack variables. The main default is to in- 
crease the scale and numerical difficulty while introduces these variables. Motivated by smoothing methods of  
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[9-11] and fixed-point method of [7,8], the paper mainly concerns about the mixed constraint quadratic pro-
gramming and the fixed-point iteration method is given. And also the rank of the coefficient matrix is not full. 
The method considering is fulfilled efficiently. Thus the proposing question in [8] is solved. 

2. Scheme of Algorithm 
According to the dual theory, the dual problem of primal problem (1) is 
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, an n n×  symmetrical positive semi-definite partitioned matrix, and ( )* *,x y  is the  

optimal solution of (2). 
Let us define the following notation  

( ){ }, , , 0n m
I I II II IF u x y x y R u+= = ∈ ≥  

( ) ( ){* * * * * * * *, , , ,I I II II I IIF u x y x y x x= =  is the optimal solution of (1) and ( )* * * *, , ,I I II IIx y x y  is the optimal solution 
of (2) }. 

It is easy to verify that F  is a close set. 
Suppose that the feasible region *F  is not empty. A necessary and sufficient condition for a optimal solution 

is that: 
1) Primal feasibility 
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3) Complementary condition 
T T T
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The scheme are rewritten below 

( ) ( )T0, 0, 0I I Iu Mu q u Mu q≥ + ≥ + = ( ) 0IIMu q+ =                     (3) 
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More formally, the following link fixed-point iteration problem is performed 

( )( )max 0,u u r Mu q= − +                                (4) 

The component form is 

( )( )max 0,j j j ju u r M u q= − +                               (5) 

Where 0r > . 
The question (5) is non-smooth optimization problem, and the Newton-type methods cannot be applied di-

rectly. In the paper, we converted the problem into a smooth optimization. 
At the beginning, we introduce a function mapping R  into R+ , and have the following properties. 
Property 1 Let : R Rθ +→  be a real function, and such that: 
1) ( )tθ  is strictly convex and differentiable; 

2) 
0

d 0
d tt
θ

=

> ; 
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t
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We assumed that ( )tθ  is a convex and differentiable function, which indicate one can apply the classical 
Newton-type algorithm directly. And the assumption ( )0 0θ ′ >  means that 0 is not a sub-gradient of θ  at 0. 
The hypothesis (3) and (4) indicate the approximate function ( )tθ  has the same numerical properties as the 
max-function. 

We consider the following function, and ( )tθ  describe as above 
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                                   (6) 

For any ( ]0,1p∈ , ( )p tθ  satisfies the following properties: 
Theorem 1 Let be a function given as (6), then for any arbitrary ( ]0,1p∈ , ( )p tθ  is strictly convex and  
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Proof According to property 1 and (6), the convexity and differentiability are straightforward.  
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Theorem 2 Let ( ) :p t R Rθ +→  be a function given as (6), then ( ) { }
0
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tion ( )p tθ  uniformly converges to the max-function, when the adjustable parameter p  approaches 0 . 
Proof For t  fixed, we can compute 
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Hence, ( ) { }
0

lim max 0,pp
t tθ

→+
=  for all t . 

From the discussion above, we introduce the following function in the paper 
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It is easily known that satisfies the properties (1) to (4), together with theorem 1 and 2. Thus, the max-func-  

tion in (3) replaced by ( ) ln 1 e
t
p

p t pθ
 

= +  
 

, and the fixed-point iteration which basing on smoothing function  

is obtained. 
Algorithm 
Step 1 Set a initial point 0 m nu R +∈ , choose 0ε > , 00 1p< ≤ , ( )0,1l∈ , let 0k = ; 
Step 2 Apply fixed-point algorithms to solve  

( )( )1
,

k k k
j i p j k j j ju u r M u qθ+ = − +  

1, 2, ,j n m= +                                     (7) 

Step 3 Terminal condition: ( ) ( )Tk k
ju M u q ε+ < , stop; otherwise, go to Step 4; 

Step 4 Let 1k kp lp+ = , 1k k= + , go to step 2. 
The Jacobian matrix in (7) is shown 
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3. Convergence Analyses 
Now we discuss the convergence of the algorithm. To begin with, two simple lemmas are introduced that is the 
basis of our theoretical analysis. Since their proof can be found in reference [12], we here omit the proof due to 
space. 

Lemma 1 [12] A necessary and sufficient condition for the fixed-point iteration method to be convergent is 
that the spectral radius of Jacobian matrix B satisfies ( ) 1Bρ < , where the spectral radius ( )Bρ  be defined as  
( ) Tmax

B B
Bρ λ= , and denotes the eigenvalue of matrix TB B . 

Lemma 2 [12] Suppose M  is a matrix, whose eigenvalues can be ordered from the smallest to largest, i.e. 
1 2 n mλ λ λ +≤ ≤ ≤ , and V is diagonal matrix with nonnegative diagonal elements, then the maximum norm  

of the matrix VM ’s eigenvalue such that { }max j jj
vλ λ≤ . 

Theorem 3 suppose 1 2, , , n mλ λ λ +  be the eigenvalues of the Jacobian matrix M , if one of the following 
conditions is true, then we can select the proper parameter kr  makes the algorithm convergent: 

(1) The real part of jλ  is positive, that is Re 0jλ >  ( )1, 2, ,j n m= + ; 
(2) All of the eigenvalues ( )1,2, ,j j n mλ = +  of matrix M  are real. 
Proof Suppose ( )1,2, ,j j n mµ = +  are eigenvalues of the Jacobian matrix in (8), and matrix 'M s  ei-

genvalues denote as ( )1,2, ,j j n mλ = + . 
Let ix yλ = +  (where i 1= − ). 
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Note that 
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{ }
2
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r
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have 1 1jrλ− ≤  ( )1,2, ,j n m= + . 
For all discussed above, associate with Lemma 1, we know that the matrix M  has the eigenvalues of 
( )1,2, ,j j n mµ = + , such that  

{ } { }max 1 max 1j j j jj j
v r vµ λ≤ − ≤ <  

According to the theorem above, the algorithm is always convergent if the parameter r  is chosen properly. 
Thus the recent relevant results in reference [8] are extended. 

4. Numerical Experiment and Conclusion 
In this section, we implement algorithm for solving system of inequalities in MATLAB7.0 in order to demon-
strate the behavior of the algorithm. Due to page limit, we omit to test the effectiveness of our method in gene-
rating highly quadratic programming problems. 
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2 2 2
1 2 3 1 2 3min 2 2z x x x x x x= + + − +  

1 2 3

1 2 3

1 2 3

1 2 3

4
2 2

s.t.  
2 4

, , 0

x x x
x x x

x x x
x x x

+ + =
 − + =
 − − ≤
 ≥

 

The exact optimal solution is 
T

* 21 43 3, ,
11 22 22

x  =  
 

, and the optimal value of objective function is * 175
44

z = . 

Example 2 Consider 
2 2 2
1 2 3max z x x x= + +  

1 2 3

1 2 3

1 2 3

3 2 6
s.t. 2 4 8

, , 0

x x x
x x x

x x x

+ + =
 − + ≤ −
 ≥  

The exact optimal solution is 
T

* 1 9, ,0
2 4
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, and the optimal value of objective function is * 55
4

z = . 

The results are shown in Table 1. 
From the table, we can see that the algorithm is very simple and only applies the traditional fixed-point me-

thod. The implementation of this algorithm is rather easy. 
Example 3 Consider 

T T1min
2

x Qx c x+
 

OPEN ACCESS                                                                                          AM 



R. P. WANG  ET  AL. 261 

Table 1. Experiments and calculated data. 

Example Optimal Solution Objective Value 

1 
1.909091
1.954546
0.136364

 
 
 
 
 

 3.977273  

2 
0.500000
2.250000
0.000000

 
 
 
 
 

 13.750000  

 
Table 2. Experiments and calculated data. 

Iterations Time Objective Value 
10 5.2s 0.00000 

 
Ax b≥  

And 

100.0429 0.9681 1.0672 1.4239 0.2477 0.7917
0.9681 100.0988 1.1956 0.7964 0.3543 0.8045
1.0672 1.1956 100.0919 0.7258 0.3490 1.2315
1.4239 0.7964 0.7258 101.7046 1.1653 0.8368
0.2477 0.3543 0.3490 1.1653 101.3110 1.1122
0.7917 0.

Q =

8045 1.2315 0.8368 1.1122 100.3080

 
 
 
 
 
 
 
  
   

6.3842 6.3349 9.7925 0.8606 6.8983 4.7373
5.1643 2.8327 0.6622 0.5958 1.4803 2.5038
1.1316 3.9409 7.2566 7.8306 1.1021 1.6560
9.2422 9.8371 7.7039 7.6555 6.6527 4.9634

A

 
 
 =
 
 
 

 

( )T4.5647 0.1850 8.2141 4.4470 6.1543 7.9194c =  

( )T4.6091 3.6910 0.8813 2.0285b = − − − −  

The exact optimal solution is 

( )T* 0 0 0 0 0 0x = , 

and the optimal value of objective function is * 0z = . 
Appling the method proposed, the iterations consuming time are shown in Table 2. 
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