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ABSTRACT 
We analyze an infinite horizon discrete time inventory model with deterministic but non-stationary demand for a 
single product at a single stage. There is a finite cycle of vectors of characteristics of the environment (demand, 
fixed ordering cost, variable procurement cost, holding cost) which is repeated after a finite number of periods. 
Future cost is discounted. In general, minimization of the sum of discounted total cost over the cycle does not 
give the minimum of the sum of discounted total cost over the infinite horizon. We construct an algorithm for 
computing of an optimal strategy over the infinite horizon. It is based on a forward in time dynamic program-
ming recursion. 
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1. Introduction 
Standard finite horizon inventory models with deterministic but non-stationary demand (see, for example, [1]). 
Chapter 4, for their description) equate the planning horizon with the life cycle of the purchased product. Thus, 
for any optimal procurement strategy, inventories at the end of the last period are zero. Nevertheless, a pur- 
chasing firm usually continues its operations after the end of the planning horizon of the model. Therefore, the 
procurement decision in each period should be optimal with respect to demands in the following periods. Hence, 
the optimal procurement strategy should result from an infinite horizon model with discounting of cost in future 
periods. The discount factor can be arbitrarily close to but lower than one. From the point of view of business 
practice, discounting of future cost is a more natural approach than limit of means evaluation relation or over- 
taking evaluation relation (see, for example, [2], pp. 137-139 for the characterization of the latter two criteria). 

If demands and other characteristics of the environment that differ between periods exhibit some finite cycle, 
we can obtain a numeric solution of an infinite horizon inventory model. In this case, after a finite number of 
periods, the same finite cycle of characteristics of the environment is repeated (Stationary characteristics of the 
environment are a special case of this, with cycle length equal to one). In the present paper, we deal with such a 
case. We allow fixed ordering cost, variable procurement cost, and holding cost that differ between periods. We 
develop an algorithm for computing of an optimal procurement strategy in this model that minimizes the sum of 
discounted total costs over the infinite horizon of the model. The optimal procurement strategy determines the 
optimal procurement cycle, at the end of which the inventory is zero. That is, except for a finite number of pe- 
riods at the beginning of the model, the optimal procurement strategy is an infinite repetition of the procurement 
strategy over the optimal procurement cycle. 

Throughout the paper,   denotes the set of positive integers and   denotes the set of real numbers. We 
endow each finite dimensional space with the Euclidean topology and ∞

  with the product topology (i.e., the 
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topology of point-wise convergence). 

2. Results and Discussion 
2.1. Motivating Example 

Consider the inventory system with the length of the planning horizon equal to five periods used in [1], pp. 92- 
94. The fixed ordering cost is $100K =  and holding cost is $1h =  (Variable procurement cost is not spe- 
cified. It is assumed to be the same in each period. Therefore, the cumulative purchasing cost over the planning 
horizon is independent of the decision variables and it can be excluded from the objective function). Denoting 
the projected demand in period { }1,2,3,4,5i∈  by id , we have 1 10d = , 2 60d = , 3 15d = , 4 150d = , and 

5 110d = . 
Without discounting of future cost, the unique optimal procurement strategy is ( )85,0,0,150,110 . Since it is 

unique, it remains the unique optimal procurement strategy also for discount factors less than but close to one. 
Now suppose that, since period six, the demand cycle ( )10,60,15,150,110  is repeated for ever. That is, for 
each { }1,2,3,4,5j∈  and each n∈ , 5j n jd d+ = . Then, for discount factor close enough to one, it is optimal 
to purchase 120 units in period 5 and in each period 5 5nt +  (because holding cost of 10 units for one period is 
lower than K  but holding cost of 60 units for two periods exceeds K ), 75 units in each period 2 5nt +  
(because holding cost of 15 units for one period is lower than K  but holding cost of 150 units for two periods 
exceeds K ; shifting order from period 1 5nt +  to period 2 5nt +  decreases the sum of incurred discounted fixed 
ordering cost and, for discount factor close to one, decreases the sum of discounted holding cost), and 150 units 
in each period 4 5nt +  (because holding cost of 110 units for one period exceeds K ). Thus, the optimal 
procurement strategy prescribes purchasing 85 units in the first period, nothing in periods 2 and 3, and, since 
period 4, it is the infinite repetition of procurement cycle ( )150,120,0,75,0 . That is, the optimal procurement 
cycle consists of five periods and its first occurrence starts in period 4 (In order to save space, we do not give the 
computation of the optimal strategy for this problem as an example of the application of the algorithm described 
in Section 4). Clearly, (for discount factor close enough to one) the sum of discounted total cost cannot be 
minimized by the infinite repetition of the optimal procurement strategy from the finite horizon model. 

2.2. Model 
We consider an infinite horizon discrete time inventory model. Periods are numbered by positive integers. Each 
period t∈  is characterized by quadruple 

( ) [ ) ( )3, , , 0, 0, ,t t t t td K C hω = ∈ ∞ × ∞                       (1) 

where td  is the deterministic demand, tK  is the fixed ordering cost, tC  is the variable procurement cost, and 
th  is the holding cost in period t . We call this quadruple “environmental vector” (a shortening of the term 

“vector of characteristics of the environment”). We assume that there exist { }0κ ∈   and { }1φ ∈   such 
that 

{ }, 1, , , .j n j j nκ φ κω ω φ+ + += ∀ ∈ ∀ ∈ 
                     (2) 

That is, the environmental vectors exhibit the finite cycle of length φ  that is repeated since period 1κ + . 
We assume that this is the shortest cycle of environmental vectors, durability of the purchased good is no lower 
than φ  periods and warehouse capacity does not prevent the firm from storing it for at least φ  periods. Of 
course, we assume that there exists { }1, ,j φ∈   such that 0jdκ + > . 

We assume that  

{ }1, 1, ,t t tC h C t κ φ++ ≥ ∀ ∈ +                            (3) 

and 

( ) ( )
{ } { }

1 ,

1, , , 0 such that 0.

t j i t j
t i t j t j t j t ji t

t j

C h d K C d

t j d

φ φ
φ φ φ φ

φ

δ δ

κ φ

+ + − − +
+ + + + + + + +=

+ +

+ > +

∀ ∈ + ∀ ∈ >

∑
 

               (4) 

It follows from (2) and (3) that the sum of procurement and holding cost in each period is not lower than 
procurement cost in the immediately following period. Inequality (4) implies that there does not exist a period t  
such that it is optimal to satisfy strictly positive demand in t φ+  by an order placed in t . If (4) does not hold, 
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there exists finite η φ>  such that  

( ) ( )
{ } { }

1 ,

1, , , 0 such that 0.

t j i t j
t i t j t j t j t ji t

t j

C h d K C d

t j d

η η
η η η η

η

δ δ

κ φ

+ + − − +
+ + + + + + + +=

+ +

+ > +

∀ ∈ + ∀ ∈ >

∑
 

 

This follows from the fact that tC  and tK  are bounded from above over all periods and ( )0,1δ ∈ . Then all 
arguments used in the present paper that rely on (4) continue to hold with φ  replaced by η . 

All arguments used in this paper remain valid and the algorithm described in Section 4 can be used when (4) 
does not hold but Conditions 1 and 2 given below the definition of T+  following (13) are satisfied. 

We denote by tz  the quantity ordered in period t∈  and by tx  the inventory at the beginning of period 
t∈ . Then the inventory at the end of period t∈  (for which the firm has to pay holding cost) is 

1t t t tx z d x ++ − = . In accordance with lot sizing models in the literature, we assume that lead time is zero (i.e., 
the ordered quantity is delivered without delay) and 1 0x = . If the latter assumption is not satisfied, we can 
modify demands in a finite number of periods at the beginning of the time horizon of the model in such a way 
that the inventory at the beginning of the first period with a positive demand in the modified model equals zero 
(see, for example, [1], p. 89, for details). We also assume, without loss of generality, that 1 0d > . If this as- 
sumption is not satisfied, we omit each period j∈  such that 0id =  for each { }1, ,i j∈   from the model 
and identify period { }min 0ij i d= ∈ >  with period 1. 

The purchasing firm discounts future cost by discount factor ( )0,1δ ∈ , without discounting the cost in the 
current period. It wants to minimize the sum of discounted total cost over the infinite horizon of the model 
subject to satisfying demand in each period. Thus, it solves the following mathematical programming problem: 

( ) ( ) ( )1min sgnt
t t t t t t t t

t
z K z C z h x z dπ δ −

∈

 = + + + − ∑


                    (5) 

subject to 
0, ,tz t≥ ∀ ∈                                      (6) 

, ,t t tx z d t+ ≥ ∀ ∈                                    (7) 

1 , .t t t tx x z d t+ = + − ∀ ∈                                  (8) 

We will use the term “optimal procurement strategy” for an optimal solution to the problem (5)-(8) and the 
term “feasible procurement strategy” for a procurement strategy that satisfies constraints (6)-(8). In the con- 
struction of the algorithm in the next section, we will use the following lemma. It is an analogue of a well known 
result from the analysis of finite horizon lot sizing models without discounting of future cost that was used in 
[3]. 

Lemma 1 Let { }t t
z

∈  be an optimal procurement strategy. Then 0t tx z =  for each t∈ . 
Proof. Suppose that the claim of the lemma does not hold for some optimal procurement strategy { }t t

z
∈ . 

Let t  be the first period in which 0tz >  and 0tx > . Since 1 0x = , 1t > . Let tτ <  be the last period be- 
fore period t  in which an order was placed (Since 1t >  and 1 0x =  implies 1 0z > , such τ  exists).  
Thus, 1t

j tjz d xτ τ
−

=
= +∑ . We can decrease, without violation of any constraint, the value of objective function (5)  

by reducing zτ  by tx  and increasing tz  by tx . This allows satisfaction of demands in periods 1, , 1t − , 
leaves the quantity of good available in period t  (after receiving the quantity ordered in period t ) unchanged, 
and leaves the fixed ordering costs in each period unchanged. Using (2) and (3), 

1
1 1 2 2 1 .t

t t t t t t jjC C h C h h C hτ τ
−

− − − − − =
≤ + ≤ + + ≤ ≤ +∑  

Thus, ( )1t
t t j tjC x C h xτ τ

−

=
≤ +∑ . This implies that 

( ) ( )1 11 1 .t tt t t j
t t t t j t j tj jC x C x C h x C h xτ τ τ τ

τ ττ τδ δ δ δ− −− − − − − −
= =

< ≤ + ≤ +∑ ∑  

Therefore, the sum of discounted procurement and holding cost is decreased. 
Lemma 1 has an obvious corollary. 
Corollary 1 Let { }t t

z
∈  be an optimal procurement strategy. If demand in period { }1,2t∈   is satisfied 

from the order placed in period 2j t≤ − , then the latter order satisfies demand in each period , 1, ,j j t+  ;  
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i.e., .t
j ii jz d

=
≥ ∑  

2.3. Algorithm 
We begin this section with formulation of criteria that we will use in the description of the algorithm for solving 
the problem (5)-(8). 

The sufficient condition for not placing an order in period { }1t∈  , irrespective of whether an order was 
placed in period 1−t , has the form  

( ) { }{ }1 1 1 , , , 1 .i
t t t t t jj tK h C d K C d d d i t tδ δ φ− − − =
+ + < + ∀ ∈ ∈ + −∑ 

           (9) 

If (9) holds then it is cheaper to satisfy demand in period t  or the sum of demands in period t  and 
{ }1, , 1j φ∈ −  following periods by an order placed in period 1t −  than by an order placed in period t  

(With respect to (4), we need not consider more than 1φ −  periods following period t ). Thus, in an optimal 
procurement strategy an order will not be placed in period t . The inequality (9) is equivalent to 

( ) { }{ }1 1 1, , , , 1 .i
t t t t t jj th C C d K K d d i t tδ δ φ− − − =
+ − < − ∀ ∈ ∈ + −∑ 

           (10) 

Taking into account (3) and the fact that 0tC >  and ( )0,1δ ∈ , 1 1 0t t th C Cδ− −+ − > . Thus, (10) is equi- 
valent to 

( ) 1
1 1 1.

t
t t t j t tj th C C d K Kφδ δ+ −
− − −=
+ − < −∑                       (11) 

If an order was placed in period 1t − , conditions (11) reduces to 

( ) 1
1 1 .t

t t t j tj th C C d Kφδ δ+ −
− − =
+ − <∑                        (12) 

Let T−  be the set of periods in which (according to the knowledge that we have before solving the problem 
(5)-(8)) an order will not be placed. That is, { }1,2t∈   belongs to T−  if and only if it satisfies (11) and 
2 T−∈  if and only if it satisfies (12). For t T−∈  , let tT −  be the set of periods that follow period t  and 
belong to T−  without interruption (i.e., if tj T −∈  and 2 tj T −+ ∈ , then 1 tj T −+ ∈ .) Note that, with respect to 
(4), ( )# 1tT φ− ≤ − . For { }( )1t T−∈  , let 

{ }max , .i i t i Tτ −= ∈ < ∉  

Throughout the paper, we assume that, whenever the firm is indifferent between placing an order in two 
periods, it places it in the later one. Then the sufficient condition for placing an order in period t  has the form  

( )( ) ( )( )( )1 #1 sgn .
t

t Tj t t
j t t j t jj j T jC h C d d K K dτττ τ τ

τ ττ τδ δ δ −

−

− +− − −
= ∈ =

+ − + ≥ − −∑ ∑ ∑           (13) 

Denote by T+  the set of periods in which an order should be placed (according to the knowledge that we 
have before solving the problem (5)-(8)). That is, 1 T+∈  (because 1 0x =  and 1 0d > ) and { }1t∈   be- 
longs to T+  if and only if it satisfies (13). 

All arguments used in this paper remain valid and the algorithm described in Section 4 can be used when (4) 
does not hold but the following conditions are satisfied. We illustrate their use in the example at the end of this 
section. 

Condition 1 There exists t T∗
+∈  such that { }1, ,tτ φ κ κ φ∗ ∗= − ∈ + +  and Tτ ∗

+∈ . 
Condition 2 For each { }1, , 1i τ φ∗∈ − − , there exists { }1, ,j φ∈   such that i j T++ ∈ . 
We let  

( ){ }# 0 .ii T
jj iT i T d−+

∗ − =
= ∈ >∑  

It follows from the assumption that there exists { }1, ,j φ∈   such that 0jdκ + >  and (4) that T−  and 
T∗  are infinite sets. We define function { }: 0ρ →   by 

( ) ( ) { }1 0, max , if 1.t i T i t tρ ρ ∗= = ∈ < >  

For each t T∗∈ , we denote by tψ  the optimally determined period in which the order covering the demands 
in periods ( ), , # tt t T −+  is placed (i.e., the latest period in { }1, ,t , in which an order is placed) when we 
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consider only the first ( )# tt T −+  periods and require that ( )# 1 0
tt Tx
−+ + = . tΨ  denotes the set of periods from 

which we can choose ( )tψ . ,t iE  denotes the sum of discounted total cost of satisfying demands in the first 
( )# tt T −+  periods when the order satisfying demands in periods ( ), , # tt t T −+  is placed in period i . tF  is 

the minimized sum of discounted total cost in the problem with the first ( )# tt T −+  periods and constraint 
( )# 1 0

tt Tx
−+ + = . The following lemma reveals restrictions on the choice of tψ  that a succession of optimal 

procurement strategies for problems with a finite number of periods should satisfy. Analogous intermediate 
result was used in the derivation of Wagner—whitin algorithm [4]. Nevertheless, since we work with dis- 
counting of future costs, Lemma 2 is not a consequence of their intermediate result. Moreover, Lemma 2 is 
stronger than their intermediate result. It says that each optimal procurement strategy for the first ( )# mm T −+  
periods has the described property, not only that there exists an optimal procurement strategy for the first 

( )# mm T −+  periods that has the described property (Compare also Lemma 2 and Theorem 4.2 in [1], p. 96). 

Lemma 2 Let t T∗∈  and ( ){ } ( )#

1

tt Tt
j j

z
−+

=
 be an optimal procurement strategy for the first ( )# tt T −+  periods  

under which the demands in periods ( ), , # tt t T −+  are satisfied from the order placed in period tψ . Set  

( ){ }min # .tm i T i t T∗ −= ∈ > +  

Then, for each optimal procurement strategy for the first ( )# mm T −+  periods, ( ){ } ( )#

1

mm Tm
j j

z
−+

=
, the demands in  

periods ( ), , # mm m T −+  are satisfied from the order placed in period m tψ ψ≥ .  

Proof. Take (arbitrary) ( ){ } ( )#

1

mm Tm
j j

z
−+

=
. Suppose that m tψ ψ< . Then, using Lemma 1 and Corollary 1 to it, 

( ) 0
m

mxψ =  and ( ) ( )# m

m m

m Tm
jjz dψ ψ

−+

=
= ∑ , where ( )

m

mxψ  is the inventory at the beginning of period mψ  generated by 

( ){ } ( )#

1

mm Tm
j j

z
−+

=
 (Lemma 1 is formulated for an optimal strategy in the infinite horizon model. Nevertheless, the  

argument in its proof concerns only changes in orders in the first t  periods, subject to the constraint that the 
quantity of the good available in period t , t tx z+ , remains unchanged. The same argument applies to changes 
in orders in the first mψ  periods, subject to the constraint that the quantity of the good available in period mψ  
remains unchanged. Thus, Lemma 1 and Corollary 1 to it are valid also for the case considered here). Clearly,  

(since ( ) 0
t

txψ = ) ( ){ } ( )#

1

mm Tm
j j

z
−+

=
 cannot decrease the sum of discounted total cost of satisfying demands in the 

first 1tψ −  periods in comparison with ( ){ } ( )#

1

tt Tt
j j

z
−+

=
. The difference in the sum of total cost discounted to the  

end of period mψ  between satisfying demands in periods ( ), , #t mm Tψ −+  from the order placed in period 
mψ  and satisfying them from the order placed in period tψ  is 

( ) ( ) ( )( )( )1 # 1 sgn .t mm t m t m
m t m tmm t

m T tj
j jj jC h C d K z Kψ ψ ψ ψ ψ ψ

ψ ψ ψ ψψψ ψδ δ δ−− +− − −
= =

+ − + − −∑ ∑        (14) 

The optimality of ( ){ } ( )#

1

tt Tt
j j

z
−+

=
 implies that satisfying the demands in periods ( ), , # tt t T −+  from the order  

placed in period tψ  leads to lower or the same sum of discounted total cost than satisfying them from the order 
placed in period mψ  (keeping the way of satisfying demands in periods 1, , 1t − , unchanged) i.e. 

( ) ( ) ( )( )( )1 # 1 sgn 0t tm t m t m
m t m tmm t

t T tj
j jj jC h C d K z Kψ ψ ψ ψ ψ ψ

ψ ψ ψ ψψψ ψδ δ δ−− +− − −
= =

+ − + − − ≥∑ ∑        (15) 

Since (using (3)) 
1 0t m t m

m tm

j
jjC h Cψ ψ ψ ψ

ψ ψψ δ δ− − −
=

+ − >∑  

and ( )# 0,mm T
jj m d−+

=
>∑  (15) implies that the expression (14) is strictly positive. Therefore, the assumption that  

m tψ ψ<  is false. 
Of course, 1 1ψ = , { }1 1Ψ = , and ( ) ( )11 #1

1 1
T

jjz d−+

=
= ∑ , 1 1 1 1F K C d= +  if 1T − = ∅  and 
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( ) ( )( )( )1 1 11 # # 1 #1
1 1 1 1 1 1

T T Tj
j jj j jF K C d h dττδ− − −+ +−

= = = +
= + +∑ ∑ ∑  if 1T − ≠ ∅ . We formally set 0 0F = . 

Consider period t T∗∈ . Suppose that we have already solved the problem for the first ( )# ii T −+  periods for 
each i T∗∈  such that i t< . The choice of tψ  in the algorithm is based on comparing the sum of discounted 
total cost only for adjacent elements of tΨ  or of a set ,t nΨ  obtained from tΨ  by elimination of elements in 
which it is not optimal to place an order. Consider { }ti t∈Ψ   and { }min tm j j i= ∈Ψ > . Let iD′  be the 
sum of demands in period ( ), , # tm t T −+  that can be satisfied from an order placed either in period i  or in 
period m . We have , ,t i t mE E≥  if and only if  

( ) ( ) ( )
( ) ( )

1 1 2 11 1 1
1

1 , if 2,

m m m mi j i i j
i i i j i i j ji j i j i j i j

m
m m im

F K C D h D C d h d

F K C D m i

τρ τ

ρ

δ δ δ δ

δ

− − − −− − − −
= = = = +

−

′ ′+ + + + +

′≥ + + ≥ +

∑ ∑ ∑ ∑
            (16) 

( ) ( ) ( ) ( )1 1 1 , if 1.i i m
i i i i i i i m m ii mF K C D h D C d F K C D m iρ ρδ δ δ− − −′ ′ ′+ + + + ≥ + + = +             (17) 

Inequality (16) is equivalent to 

( ) ( ) ( )

( )

1 11 1 1 1

2 11
1 , if 2,

m mi j i m i m i i
i j m i m i i jm ij i j i

m mj
jj i j

C h C D F F K K C d

h d m i

ρ ρ

ττ

δ δ δ δ δ δ

δ

− −− − − − − −
= =

− −−
= = +

′+ − ≥ − + − −

− ≥ +

∑ ∑

∑ ∑
           (18) 

and (17) is equivalent to 

( ) ( ) ( )
1 1 1 1 , if 1.i m i m i i

i i m i m i i im iC h C D F F K K C d m iρ ρδ δ δ δ δ− − − − −′+ − ≥ − + − − = +             (19) 

From inequalities (18) and (19) we can compute the critical value of iD  of iD′  for which , ,t i t mE E= . This  
critical value plays an important role in the algorithm. If ( )# it T

j ij m d D−+

=
≥∑ , then , ,t i t mE E≥  and we can  

eliminate period i  from consideration for determination of tψ . Right hand sides of (18) and (19) are  
independent of iD′ . It follows from (3) that ( )# 0ii T j i m i

i j mj iC h Cδ δ−+ − −
=

+ − >∑ . Therefore, if (18) or (19) holds 

for iD′ , then it holds as a strict inequality for any i iD D′′ ′> . Thus, if ( )# it T
j ij m d D−+

=
≥∑ , then ( )# T

j ij m d Dττ −+

=
>∑   

for each Tτ −∈   with tτ > . Hence, if we eliminate period i  from consideration for determination of tψ , 
we should eliminate it also from consideration for determination of τψ . This reduces the number of periods that 
we have to consider in the following iterations of the algorithm. 

Suppose that set ,t nΨ  resulted from iterative elimination of elements, which need not be considered for 
determination of tψ , from tΨ , and we cannot eliminate any element from ,t nΨ . Then , ,t i t jE E<  for each 

{ }, ,maxt n t ni∈Ψ Ψ  and ,t nj∈Ψ  with j i> . Therefore, ,min .t t nψ = Ψ  In the following iteration, in which 
we want to determine τψ  for tτ > , we need to consider only periods in 

( ){ } { }#
, ,max , 0 .ii T

t n t n jj ii T i dτ τ−+
− =

Ψ ∈ Ψ < < =∑   

For each t T∗∈ , let ( ){ } ( )#

1

it Tt
j j

z
−+

=
 be the optimal procurement strategy for the first ( )# tt T −+  periods. We  

will use the following proposition in the construction of the algorithm. 
Proposition 1 Assume that there exist r T∗∈  and n∈  such that 

( ){ }max , 0r
r ji j j zψ= ∈ < >  

satisfies 1i nτ φ κ= − ≥ +  and ( ) 0.rzτ >  Then { } ,j j
z

∈
 defined by ( )r

j jz z=  for each { }1, , 1j i∈ −  and  
( )r

j mn jz zτ φ τ+ + +=  for each { }0, , 1j nφ∈ −  and each m∈ , is an optimal procurement strategy.  
Proof. Using Lemma 1, the optimal procurement strategy for the first ( )# rr T −+  periods generates ( ) 0rxτ = . 

Consider { }minq j T j r∗= ∈ > . By Lemma 2, q rψ ψ≥ . Therefore, ( ){ } ( ){ }1 1

1 1

i iq r
j jj j

z z
− −

= =
=  and ( ) 0q

iz > . (If the  

choice of qψ  does not cancel the placement of order in period r , then ( ) ( )q r
i iz z= . Otherwise, ( ) ( )q r

i iz z≥ ). Let 
r nφ= + . Since 1r κ> +  and φ  is the length of the cycle of environmental vectors, T∗∈ . Using Lemma 2,  
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qψ ψ≥


. Therefore, ( ){ } ( ){ }1 1

1 1

i ir
j jj j

z z
− −

= =
= . and ( ) 0iz > . Using Lemma 1, the optimal procurement strategy for  

the first ( )# T −+


  periods generates ( ) 0ix = . In order to solve the problem with the first ( )# rT −+  periods, 
it is enough to compute optimal orders in periods ( ), , # ri T −+  . Since ( ) ( ) 0r

ix xτ= =  and i j jτω ω+ +=  for 
each { }0, ,j n r iφ∈ + − , we have ( ) ( )r

i j jz zτ+ +=  for each { }0, ,j n r iφ∈ + −  and, if rT − ≠ ∅ , 0jz + =


 for 
each ( ){ }1, ,# rj T −∈   (If the problem with the first ( )# T −+



  periods has more than one optimal solution, 
we choose the one specified in the preceding sentence). Repeating this argument for period r mnφ+  
(computing optimal orders in periods ( ), , # ri r mn Tφ −+ + ) for each { }1m∈  , we obtain the strategy  
{ }j j

z
∈

 described in Proposition 1. Note that, for each m∈ , ( ) 0r mn
i mnx φ

ψ
+

+ =  and, hence,  

( ){ } { }1 1

11

i mn i mnr mn
j j jj

z z
φ φφ + − + −+

==
=  is the optimal procurement strategy for the first 1i mnφ+ −  periods. 

Suppose that there exists feasible procurement strategy ( )i i
z

∈
′

  such that ( )( ) ( )( )π π 0i ii i
z z

∈ ∈
′− = >

 

 .  
Taking into account (4), we can assume without loss of generality that 1i

i jj iz dφ+ −

=
′ ≤ ∑  for each i∈  (If this  

condition is not satisfied, we can replace ( )i i
z

∈
′

  by another feasible procurement strategy that satisfies it and 
gives lower value of objective function π ). Thus, taking into account (2), there exists m∈  such that for 

i mnφ= +  we have 

( ) ( ) ( ) ( )1 1sgn sgn 0.5K z C z h x z d K z C z h x z dτ τ
τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ ττ τδ δ∞ ∞− −

= =
′ ′ ′ ′   + + + − − + + + − <   ∑ ∑

 

  

(where { }ix
∈

 is the sequence of inventories at the beginning of periods generated by ( )i i
z

∈
 and { }i i

x
∈

′


 is 
the sequence of inventories at the beginning of periods generated by ( )i i

z
∈

′


). Therefore, 

( ) ( ) ( ) ( )1 11 1
1 1sgn sgn 0.5 .K z C z h x z d K z C z h x z dτ τ

τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ ττ τδ δ− −− −
= =

′ ′ ′ ′   + + + − − + + + − >   ∑ ∑    

This contradicts the fact that { } 1

1j j
z

−

=



 is the optimal procurement strategy for the first 1−  periods. 

The algorithm is based on solving a succession of problems with a finite number of periods. Proposition 1 
implies that we can stop when we find r T∗∈  for which 

( )
( )such that 1& 0

r

rn n zτρ ψτ ψ φ κ∃ ∈ = − ≥ + >                     (20) 

exists. The following lemma shows that such r  exists. 
Lemma 3 There is r T∗∈  for which n  defined by (20) exists.  
Proof. For each t T∗∈ , define ( )tz + ∞∈  by ( ) ( )t t

j jz z+ =  for each ( ){ }1, , # tj t T −∈ +  and ( ) 0t
jz + =  for 

each ( )# tj t T −> + . For each t T∗∈ , if there are { }1, , 1i t∈ −  and { }1, ,j i t∈ +   such that ( ) 0t
iz >  and  

( ) 0t
jz > , then ( ) ( )t

m mz z=  for each { }1, , 1m i∈ −  and each T∗∈  with t> . Using (4) and the assumption  
that there exists { }1, ,j φ∈   such that 0jdκ + > , for each t T∗∈  there exists T∗∈  such that t>  and 

( ) 0iz >  and ( ) 0jz >  for some { }1, , 1i t∈ + −   and some { }1, ,j i∈ +   . Therefore,  

{ } ( ){ }lim t
j j t T

z z
∗

+

∈ ∈
=



 exists. Let { }{ }1, , 0jM j T zκ∗= ∈ > . Using (4) and the assumption that there 

exists { }1, ,j φ∈   such that 0jdκ + > , M  is an infinite set. Consider sequence { } ( ){ },j j jj M j M
Y y zω

∈ ∈
= = .  

Taking into account (4), (2), Lemma 1, and Corollary 1, there is a finite set to which element of Y  belongs. 
Therefore, there exist i M∈  and Mτ ∈  with iτ <  such that iy yτ= . Using (2), there is n∈  such that 
i nτ φ= + . Then, using (4) and the fact that 0iz > , there exists r T∗∈  such that ( )r

iρ ψψ = . (This implies that 
( ) 0rzτ > ). We have either { }min jr j T iψ∗= = ∈ >  or { }min .jr j T ψ∗= ∈ >   
The stopping rule in the algorithm can be simplified if there exists i T+∈  such that 1iτ φ κ= − ≥ +  and 

Tτ +∈ . Then ( ) 0tzτ >  and ( ) 0t
iz >  for each t T∗∈  with t i≥ . Clearly, there exists 1r i≥ +  such that r T∗∈  

and r iψ > . 
In the algorithm, we use the equality sign for the assignment of a new value to the variable whenever such 

expression is correct from the mathematical point of view. Otherwise, we use the symbol ← . 
Algorithm 1 Step 1: Set 1t = , 1 1ψ = , { }1+Ψ = , ( )11 #

1 1
T

jjz d−+

=
= ∑ , 0 0F = , 0 0ψ = , and  

( ) ( )( )( )1 1 11 # 1 # 1 1 #1
1 1 1 11 1 1 , if ,T T Tj

j jj j jF K C d h d Tττδ− − −+ + − +−
−= = = +

= + + ≠ ∅∑ ∑ ∑  
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1 1 1 1 1, if .F K C d T −= + =∅  

Step 2: Set ( ){ }1min #t i T i t T∗ −← ∈ > + . If ,t T+∈  1tτ φ κ= − ≥ + , and Tτ +∈ , set 1n = , set 0jz =  for 

each { }1, , 1j t∈ + −   if ( ) 1t tρψ= < − , and go to step 9. Otherwise, go to step 3. 

Step 3: If t T+∈ , set t tψ = , { }t+Ψ = , and go to step 7. Otherwise, set  
( ){ } { }#max , 0 ,ii T

t jj ii T i t d t−+
+ − + =

Ψ = Ψ ∈ Ψ < < =∑   

( )# tt T
t jj tB d−+

=
= ∑ , and go to step 4. 

Step 4: For each ti = Ψ  satisfying ( )t i tρ ≤ <  let i tA B= , ( ) { }min tq i j j i= ∈Ψ > , compute 

( )( ) ( )
( )

( )
( ) ( )

( )( )
( ) ( )( )( )( )

( ) ( )
( )( ) ( )

1

11

1 2 11
1

11
, if 2,

q i
i q iq i

i q i q i ii j i
i j q ij i

q i q i q ii j i
i i j jj i j i j

q i q i ii j i
i j q ij i

F F K
D

C h C

K C d h d
q i i

C h C

ρρ

ττ

δ

δ δ δ

δ δ

δ δ δ

−

− −− −
=

− − −− −
= = = +

− −− −
=

− +
=

+ −

+ +
− ≥ +

+ −

∑

∑ ∑ ∑

∑

 

( )( ) ( )
( )

( ) ( )
( )

( )( ) ( )
1 1

1
, if 1,

q i i
i i ii q iq i

i q i ii
i i q i

F F K K C d
D q i i

C h C

ρρ δ δ

δ δ

− −

−−

− + − +
= = +

+ −
 

and let j j tA A B← +  for each tj∈Ψ  with ( )j tρ< . Set ,0t tΨ = Ψ  and 1n = . 
Step 5: Let 

{ }{ }, , 1 .t n t n t i ij t A D−Ψ = Ψ ∈Ψ ≥   

If ( ),# 1t nΨ =  or , , 1t n t n−Ψ = Ψ , set ,mint t nψ = Ψ , ,t n+Ψ = Ψ , and go to step 7. Otherwise, let  

{ } ( ) { } { }{ }, , , , 1max min min .t n t n t n t nI m q m i i m i i m−= ∈Ψ Ψ = ∈Ψ > ≠ ∈Ψ >  

If I =∅ , set ,mint t nψ = Ψ , ,t n+Ψ = Ψ , and go to step 7. Otherwise, go to step 6. 
Step 6: Let minm I= , compute 

( )( ) ( )
( )

( )
( ) ( )

( )( )
( )( )

( ) ( )
( )( )

( )( )( )

( ) ( )
( )( )

111

1 11 1

2 11
1

11
,

q mmq m
m m jm q m j mq m

m q m q mq m m q m mm j m m j m
m j m jq m q mj m j m

q m q mj
jj m j

q m q m mm j m
m j q mj m

K C dF F K
D

C h C C h C

h d

C h C

ρρ

ττ

δδ

δ δ δ δ δ δ

δ

δ δ δ

−−−
=

− −− −− − − −
= =

− −−
= = +

− −− −
=

+− +
= −

+ − + −

−
+ −

∑
∑ ∑

∑ ∑
∑

 

set ( ) 1m q mA A −=  and { }I I m←  . If I =∅ , set 1n n← +  and go to step 5. Otherwise, return to step 6. 
Step 7: Let tw ψ= , ( )v wρ= , ( )tρψ= , 0jz =  for each ( ),j w∈   . If w =  , set 

( )# tt T
w w jj tz z d−+

=
← +∑ . Otherwise, set ( )# tt T

w jj wz d−+

=
= ∑ . Let  

( )( )( )( )# 1 #1
1 , if or & ,tt T t Tw j w t

t v w w w j tj w jF F K C z h d t w t w Tττδ δ−+ − +− − −
−= = +

= + + + > = ≠ ∅∑ ∑  

( )1 , if & .w
t v w w w tF F K C z t w Tδ −

−= + + = =∅  

If w =   or w t= , go to step 8. If ( ),w t∈   and vψ =  , set 1t
jj wz z d−

=
← −∑

 

, and go to step 8. If 

( ),w t∈   and vψ <  , set 0z =


, 1

v v

w
jjz dψ ψ

−

=
= ∑ , and go to step 8. 

Step 8: If there exists n∈  such that  
1& 0,v n zττ ψ φ κ= − ≥ + >  
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go to step 9. Otherwise, go to step 2. 
Step 9: Set j mn jz zτ φ τ+ + +=  for each { }0,1, , 1j nφ∈ −  and each m∈ . Stop. 
The algorithm does not give the optimal value of the objective function (5). Using values computed by the 

algorithm and setting i t=  if t T+∈  and vi ψ=  if t T+∉ , the optimal value of the objective function (5) 
equals 

( ) ( ) ( )( )1 .
1 inF F Fρ τ ρ ρ τφδ

+ −
−

 

We could use the stopping rule specified in the algorithm and solve finite horizon problems by the Wagner- 
Whitin algorithm, modified for the case of discounting of future cost. Nevertheless, our algorithm has several 
advantages in comparison with their algorithm. Firstly, it saves calculations by identifying periods in which an 
order should be placed. Secondly, it saves calculations by identifying periods in which an order will not be 
placed. Thirdly, when a period is removed from the set of candidates for placing an order in some iteration, it is 
no longer considered in the following iterations. Moreover, it is enough to compare only successive elements of 
the set of candidate periods. From the point of view of elimination of candidate periods, our algorithm is similar 
to Wagner-Whitin algorithm [4]. Fourthly, comparison of successive elements of the set of candidate periods is 
based on the critical sum of demands in the relevant following periods. Unless some period is eliminated from 
the set of candidate periods and at least one of its predecessors is kept, these critical sums of demands can be 
easily updated in the future iterations. Even when some period is eliminated from the set of candidate periods 
and at least one of its predecessors is kept, calculation of new critical sums of demands requires only calcula-
tions used in the recursive relations in Wagner-Whitin algorithm. 

3. Conclusion 
We have constructed an algorithm for computing an optimal procurement strategy in an infinite horizon inven-
tory model with non-stationary deterministic demand, a finite cycle of environmental vectors, and discounting of 
future cost. It is based on solving a succession of finite horizon inventory optimization problems. The formula- 
tion of the stopping rule is made possible by the fact that the cycle of environmental vectors is finite. 

It is worth noting that our algorithm can also be used to solve a finite horizon problem. This also holds when 
future cost is not discounted (i.e., 1)δ =  provided that inequality (3) is strict. 
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