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ABSTRACT 

This paper presents a dynamic image approach to 
characterize the growth of brain cancer invasion of 
tumor gliomas cells using singular value decomposi-
tion (SVD) technique. Such a dynamic image is iden-
tified by the white and grey matter displayed by mag-
netic resonance (MR) images of the patient brain 
taken at different times. SVD components and prop-
erties have been analyzed for different brain images. 
It is figured out that the growth of tumor cells is 
quantized by the SVD eigenvalues. Since SVD geo-
metrically interprets an ellipsoid transformation, 
then the higher the eigenvalues, the more of tumor 
growth is. In vivo SVD dynamic imaging offers a 
more predictive model to assess the tumor therapy 
than conventional technologies. Furthermore, an ef-
ficient dynamic white-black indicator of the tumor 
growth rate is constructed based on the change in the 
diagonal eigenvalues matrices of two MR images 
taken at different times. Finally, SVD image process-
ing results are demonstrated to verify the effective-
ness of the applied approach that can be imple-
mented for each individual patient. 

Keywords: Brain Cancer; Tumor Image Identification; 
Singular Value Decomposition 

1. INTRODUCTION 

A brain tumor is defined as an intracranial solid neo-
plasm within the brain or the central spinal canal. It is 
created by an abnormal and uncontrolled cell division, 
normally either in the brain itself or in the cranial nerves. 
Any brain tumor is inherently serious and life-threaten- 
ing because of its invasive and infiltrative character in 
the limited space of the intracranial cavity. For this rea-
son, brain tumor has received a great attention. A novel 
method for quantifying the speed of invasion of gliomas 
in white and grey matter from time series of magnetic 
resonance (MR) images was presented in [1]. The pro-

posed approach was based on mathematical tumor growth 
models using the reactiondiffusion formalism. The quan-
tification process was formulated by an inverse problem 
and solved using anisotropic fast marching method 
yielding an efficient algorithm. It was tested on a few im-
ages to get a first proof of concept with promising results. 

In CT images, tumors located in a liver are generally 
identified by intensity difference between tumor and 
liver. The intensity of the tumor can be lower and or 
higher than that of the liver. However, the main problem 
of liver tumor detection from CT images is related to 
low contrast between tumor and liver intensities. Tumor 
sometimes presents in a very small dimension and makes 
the detection even more difficult. Work [2] focused on 
contrast enhancement of CT images containing liver and 
tumor based on the histogram processing as a necessary 
preprocessing for liver tumor identification. Results 
showed that using this proposed method, the contrast of 
the CT images can be enhanced and results in relatively 
accurate identification of tumors in the liver. 

Difficulties are encountered in identifying small liver 
cancers during surgery. Fluorescent imaging using indo-
cyanine green (ICG) has the potential to detect liver can-
cers through the visualization of the disordered biliary 
excretion of ICG in cancer tissues and noncancerous 
liver tissues compressed by the tumor. In cancer research 
work [3], ICG had been intravenously injected for a rou-
tine liver function test in 37 patients with hepatocellular 
carcinoma (HCC) and 12 patients with metastasis of 
colorectal carcinoma (CRC) before liver resection. Sur-
gical specimens were investigated using a near-infrared 
light camera system. 

The aim of report [4] scan was to identify the different 
genomic tests that are being promoted for clinical use in 
cancer prevention, diagnosis, and management. As out-
lined in the detailed work plan, the project was organ-
ized into two distinct parts with separate aims and 
methodologies. The goal of Part I was to answer the key 
question: What genetic tests are currently available for 
cancer prevention, diagnosis and treatment? The goal of 
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Part II of this project was to answer the key question: 
What genetic tests are in development for cancer? 

To assess the value of pelvic-phased array (PPA) dy-
namic contrast-enhanced magnetic resonance imaging 
(DCE-MRI) in predicting intraprostatic tumour location 
and volume for clinically localized prostate cancers in 
[5]. Suspicious areas on prospective prebiopsy MRI 
were located with respect to anatomic features, gland 
side, and transition zone (TZ) and peripheral zone (PZ) 
boundaries. These MRI findings were compared with 
histopathology findings for the radical prostatectomy 
specimens. Literature review of original studies corre-
lating MRI and histologic results was performed. 
DCE-MRI with a PPA is superior to T2-weighted se-
quences for the detection and depiction of intraprostatic 
prostate cancer. 

Singular Value decomposition (SVD) was presented in 
[6] along with some related comments on numerical de-
termination of rank. A variety of applications of SVD in 
linear algebra and linear systems is then outlined [7]. 
Some details of implementation of the SVD on a digital 
computer are discussed. Five combinations of im-
age-processing algorithms were applied to dynamic in-
frared (IR) images of six breast cancer patients preop-
eratively to establish optimal enhancement of cancer 
tissue before frequency analysis [8]. Mid-wave photo-
voltaic (PV) IR cameras with 320 × 254 and 640 × 512 
pixels were used. The signal-to-noise ratio and the 
specificity for breast cancer were evaluated with the im-
age-processing combinations from the image series of 
each patient. Before image processing and frequency 
analysis the effect of patient movement was minimized 
with a stabilization program developed and tested in the 
study by stabilizing image slices using surface markers 
set as measurement points on the skin of the imaged 
breast. A mathematical equation for superiority value 
was developed for comparison of the key ratios of the 
image-processing combinations. 

In this proposed paper SVD components and proper-
ties have been analyzed for different brain images. It is 
figured out that the growth of tumor cells is quantized by 
the SVD eigenvalues. Since SVD geometrically inter-
prets an ellipsoid transformation, then the higher the 
eigenvalues, the more of tumor growth is. Furthermore, 
an efficient dynamic white-black indicator of the tumor 
growth rate is constructed based on the change in the 
diagonal eigenvalue matrices of two MR images taken at 
different times. This paper is organized as follows. Sec-
tion 2 summarizes modeling of tumor modeling. SVD of 
tumor images is introduced in section 3. Dynamic image 
modeling and results of white-gray matter are presented 
in section 4. Mouse Tumor Model is introduced in sec-
tion 5. Section 6 discusses the advantages, disadvantages 

and a comparison of the methodology with other ap-
proaches. Finally, conclusions are demonstrated. 

2. TUMOR GROWTH MODELING 

In cancer treatment, understanding the aggressiveness of 
the tumor is essential in therapy planning and patient 
follow-up. A method for quantifying the progression of 
the critical target volume (CTV) of glial-based tumors, 
on the basis of their growth dynamics was proposed in 
[1,9]. The formulation is based on the tumor growth 
model proposed which uses reaction-diffusion formalism: 

   2u
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where  u t  can be seen as the normalized tumor cell 
density of a tumor at a given point,  C x  is the diffu-
sion tensor explaining the invasion of tumor cells, and 
  is the proliferation rate. The matrix  C x defines 
anisotropic diffusion on the white matter following the 
main fiber directions and isotropic diffusion on the grey 
matter, where  wC x  is the water diffusion tensor ob-
tained from MR diffusion tensor imaging. The speed of 
invasion is determined by the diffusion coefficients gd  
and wd  in grey and white matter respectively. These 
parameters for each patient can be identified using im-
ages taken at two different times. One crucial observa-
tion is that explicit derivatives of C with respect to the 
variables are not available. 

With the proposed method, quantitative estimates 
were obtained for the speed of invasion in white and 
grey matter by solving the patient specific parameter 
identification problem for this growth model using MR 
images taken at two different time instances, t1 and t2, 
from the same patient. The parameter identification 
problem was formulated using the front approximation 
of reaction-diffusion equations, which resulted in ani-
sotropic Eikonal equations. The anisotropic fast march-
ing method proposed in [1,10] is used for numerical so-
lutions yielding an efficient algorithm. 

The model given above requires tumor cell density 
 u t  to be known at every point as an initial condition. 

However, this is not the case for medical images where 
only contours around gross tumor volume (GTV) and 
CTV are available. The front motion approximation of 
reaction-diffusion equations offers a solution for this 
discrepancy between information needed and observa-
tions available [1,9]. 

3. SINGULAR VALUE DECOMPOSITION 

Let A  be a m n  real matrix; m and n may be any 
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positive integers. The SVD of A  is the factorization 
T

m n m n n n n n   A U S V              (3) 

where  1diag , , ns s S . 
The is ’s are called the singular values of A . By 

convention, they are ordered so that 1 2 0ns s s    . 
The singular values of A  are the square roots of the 
nonzero eigenvalues of TA A  or TAA . 

• The vectors  1, , nu u   are called the left singular 
vectors of A . Left singular vectors ui are the ei-
genvectors of TAA . These are unit vectors along 
the principal semi-axes of AS . 

• The vectors  1, , nv v   are called the right singu-
lar vectors of A . Right singular vectors vi are the 
eigenvectors of TA A .  These are the preimages of 
the principal semi-axes, defined so that 

, 1,2, ,i i iv s u i n  A              (4) 

T , 1, 2, ,i i iu s v i n  A               (5) 

• U  is a m n  orthogonal matrix: T
mIUU . 

• V  is a n n  orthogonal matrix: T
nIVV . 

The columns of U  and V  may be chosen so that they 
form an orthonormal basis of the column space and row 
space, respectively of A . If A  has full rank, then its 
singular values are all positive, and when they are or-
dered as indicated, then the SVD is unique up to the 
signs of the columns of U  and V . All of these can be 
extended to a general m n  complex matrix A . The 
decomposition in Eq. (1) implies that 

   TT T T T 2 TE  A A USV USV VSU USV VS V   (6) 

since U  is orthonormal and S  is diagonal. 
Also because T 1V V , we have  T 2A A V VS  
which shows that the columns of V  are eigenvectors of 

TA A . The singular values of A  are the square roots of 
the corresponding eigenvalues. The SVD is motivated by 
the following geometric fact: The image of a unit sphere 
under the matrix m nA  is a hyper-ellipse as shown in 
Figures 1 and 2. Considering each column of V  sepa-
rately, the latter is the same as 

, 1, 2, ,i i iv s u i n  A             (7) 

Thus, the unit vectors of an orthogonal coordinate sys-
tem  1, , nv v are mapped under A  onto a new 
“scaled” orthogonal coordinate system  1 1, , n ns u s u . 
In other words, the unit sphere with respect to the matrix 
2-norm (which is a perfectly round sphere in the v-sys- 
tem) is transformed to an ellipsoid with semi-axes is . 
 

x Vx 
V Σ U ΣVx UΣVx

 
Figure 1. SVD transformation diagram. 

 

Figure 2. Geometrical interpretation of SVD transformation. 
 

Interpretation of full SVD of TA USV  given 
y x A  is as follows, 

1) Rotate by TV  
2) Scale along axes by is   
3) Zero-pad (if m n ) or truncate (if m n ) to get 

m-vector 
4) Rotate (by U ) 
5)  1x x A  is ellipsoid with principal axes i is u  
SVD of matrix m nA

 
with rank Rank (A) = r is: 
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A convenient starting point in the synthesis of SVD is 
the construction of its components to validate their 
properties. For the sake of presentation let us examine an 
image of a tumor brain cancer shown in Figure 3. SVD 
of image 3 is analyzed and displayed in Figure 5. It is 
worth to mention that the black color is coded as zero, 
meanwhile non-black color would appear as gray or 
white color. Digitization of a selected position marked 
by the curser in the tumor image is shown in Figure 4. It 
is worthy to mention that the diagonal egienvalues are 
represented in Figure 5 as a white diagonal line with 
some zero values in black. Since SVD geometrically 
interprets an ellipsoid transformation, then the higher the 
eigenvalues, the more of tumor growth is. 

4. DYNAMIC TUMOR IDENTIFICATION 

In this section consider the following dynamic time- 
varying linear system that describes the change in the 
invasion of gliomas in white-gray matter as follows, 

     t t tx A x               (8) 

where  tx  is the n-dimensional state vector and  A t  
is a non-singular time-varying matrix of m n  dimension. 
Practically the matrix  tA  represents the observed 
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Figure 3. Brain tumor cells image. 
 

 

Figure 4. Selected position of the SVD of image of Figure 3. 

 

Figure 5. SVD and its components of tumor image in Figure 3. 
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image matrix of the tumor status taken at time t . 

In order to formulate the problem, we assume that 
there are two observed images have been recorded at 
time 1t  and 2t , respectively. In the present problem the 
objective is to identify the white and gray matter growth 
by using the singular value decomposition. By the virtue 
of the former dynamics equation, the change in the tu-
mor status can be formulated as: 

            2 1 2 1 2 1t t t t t t         x x x A A x x  (9) 

which can be simplified to 

     t t t   x A x            (10) 

The last Eq. (10) represents the dynamic image of the 
tumor growth. Benefiting from the properties of SVD 
yields  

       T
2 2 2 2t t t tA U S V           (11) 

       T
1 1 11
t t t tA U S V            (12) 

To serve solving the current objective using dynamic 
Eq. (10) and by utilizing Eqs. (11) and (12), then the 
tumor invasion growth matrix  tA  is proportional to 
the change in the diagonal matrix change  tS . Which 
means that any growth in the white-grey matter image 
can be identified by a non-zero diagonal matrix  tS . 

Now for the sake of investigating the growth of the 
tumor cells by identifying the white-gray matter, two 
pairs of images have been examined using SVD tech-
nique. Each pair represents the same patient but with 
different times recording as shown in Figures 7-10. The 
SVD of each image has been performed. Components of 
the image matrix decomposition are displayed in each 
figure. Figures 7 and 8 are taken for the same patient but 
at different times. Images show a change in the white- 
gray matter which indicate there is a tumor cancer 
growth growing. This can be validated by checking the 
diagonal matrix. It can be seen that each image has its 
own unique diagonal eigenvalues. The net change in the 
diagonal eigenvalues matrix  tS  is computed and 
demonstrated in Figure 6. This vertical indicator repre-
sents how high the tumor growth is. Black regions indi-
cate that there is no growth in the tumor cells. Mean-
while, the white region on the vertical indicator implies a 
cancer cell growth. This tool is very efficient to track 
and identify the region of tumor growth of the white- 
gray matter to follow-up the patient status. 

5. INVESTIGATING MOUSE MODEL 

Animal models of cancer, particularly mouse models of 
cancer, are commonly used to study tumor biology and 
develop new approaches to conquering human cancer. 
Priori research in modeling cancer on laboratory animals, 

 

Figure 6. Tumor growth indicator of the change of the diago-
nal eigenvalue matrix  tS  of images in Figure 7-10. 
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Figure 7. Tumor patient 1 image at time 1t . 
 

 

Figure 8. Tumor patient 1 image at time 2t . 
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Figure 9. Tumor patient 2 image at time 1t . 
 

 

Figure 10. Tumor patient 2 image at time 2t . 
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especially experimental mice, has advanced tremendously 
our insights into the biology of cancer. As the most 
commonly used systems in cancer drug development, 
mouse cancer models have helped us circumvent lots of 
ethical and economical problems for human cancer ex-
periments. 

In order to assess brain tumor progression, MR scan-
ning has to be repeated over time, as frequently as twice 
weekly and up to 7 months. Serial MR images at two 
different levels of the forebrain, obtained repeatedly over 
26 weeks, reveal progression of tumor cells as shown in 
Figure 11. As for the selected portions of the mouse 
brain, the dynamic SVD eigenvalues shows that there is 
a rapid dominant growth of brain tumor after 26 weeks 
as shown by the white color of the dynamic indicator 
with a rate of growth of 100%. Such a methodology 
shows its success to evaluate the cancer/drug development 
using the mouse/rat model. 

6. ADVANTAGES AND DISADVANTAGES 
OF THE PROPOSED METHODOLOGY 

There has been a large amount of mathematical models 
proposed to describe the growth dynamics of glial tu-
mors. PDE Modeling of tumor growth dynamics in lit-
erature gives us an insight on the physiology of the proc-
ess by linking different parameters. Identification of these 
models parameters for each patient must be investigated 
using images taken at two different times corresponds to 
the identification process. [11-13] Clinical values of the 
estimated diffusion coefficients should be assessed using 
a huge database in order to accurately and identify the 
dynamic parameters.  

Experimental and analytical results for a time series of 
MR images to picture the 3D invasion of GBM in the 
brain using PDE presented in [1,9]. Since tumors can 
exhibit different rates of growth, it is then possible to 
find the best model parameters that best match the pre-
dicted with the observed invasion to characterize the 
local or global tumor aggressiveness. Aggressiveness 
can be considered as one of the hidden parameters of the 
model and could be estimated by solving the inverse 
problem: given a time series of images, the hidden pa-
rameters can be estimated with respect to the patient 
data. 

Although medical imaging is not the sole source of 
information used for this, it plays an important role in 
understanding the pattern and speed of invasion of 
healthy tissue by cancerous cells. In vivo SVD dynamic 
imaging offers increased throughput, allowing in vivo 
testing on a larger number of drugs than with conven-
tional technologies. Moreover, real-time in vivo imaging 
offers a more predictive model, since more and higher 
quality data can be collected earlier in the development 

 

Figure 11. Mouse tumor brain model. 
 
process for those drug candidates that are evaluated in 
vivo. This real-time in vivo imaging utilizes the white- 
grey matter expressed in a living organism, and then 
analyzes the image eigenvalues non-invasively. By meas-
uring and analyzing the eigenvalues variability, re-
searchers can monitor cellular growth and use the results 
to track the spread of disease, or the effects of a new 
drug candidate in vivo. 

The drawback is that diffusion images are not avail-
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able for every patient and existence of the tumor and the 
low quality of patient images make it hard to obtain an 
accurate white matter segmentation. Additionally, high 
resolution MR equipments are required.  

7. CONCLUSIONS 

This paper presents a novel method to quantify the 
growth of tumor invasion in white and grey matter for 
gliomas of MR images using SVD. This methodology is 
found to be fruitful to detect tumor cancer and follow-up 
patient and gives quantitative values about its growth. 
Quantification process is formulated based on the image 
SVD eigenvalues. Since SVD is interpreted by en ellip-
soid, then the higher the eigenvalues the more of tumor 
growth would be. Two pairs of brain images of two pa-
tients have been examined. The brain of each patient has 
been imaged twice at different times. By then, SVD of 
each image has been processed. 

It is found that each image is characterized by unique 
diagonal egienvalues matrix. The tumor cancer growth is 
identified by these egienvalues. Considering the differ-
ence of the two corresponding matrices egienvalues will 
identify the growth rate. Based on this analysis an effi-
cient white-black indicator is constructed. Black indica-
tor means that there is no cancer growth. On the contrary, 
white indicator shows a growth in the tumor abnormal 
cells. Simulation results verify the SVD image process-
ing approach. The advantage of such an approach is that 
for each patient, a dynamic indicator can constructed to 
evaluate his tumor growth at any time compared to a 
former one and follow-up his/her treatment. 

This approach is advantageous compared to PDE 
models, since clinical values of the estimated diffusion 
coefficients should be assessed using a large database in 
order to accurately and identify the dynamics parameters. 
On the contrast, real-time SVD in vivo imaging offers a 
more predictive model, since more and higher quality 
data can be collected earlier in the development process 
for those drug candidates that are evaluated in vivo. By 
measuring and analyzing the eigenvalues variability, 
researchers can monitor cellular growth and use the re-
sults to track the spread of disease, or the effects of a 
new drug candidate non-invasively. 
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