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ABSTRACT 
In this paper, we consider the problem for determining an unknown source in the heat equation. The Tikhonov 
regularization method in Hilbert scales is presented to deal with ill-posedness of the problem and error estimates 
are obtained with a posteriori choice rule to find the regularization parameter. The smoothness parameter and 
the a priori bound of exact solution are not needed for the choice rule. Numerical tests show that the proposed 
method is effective and stable. 
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1. Introduction 
In this paper, we consider the following problem for determining the unknown source in the heat equation [1]:  
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where ( ) ( )2,u t L⋅ ∈   represents state variable. Our purpose is to identify the source term ( )f x  from the 
data ( ) ( ),1u x g x= . This problem is called the inverse source problem. In practice, the data at ( )g x  are often 
obtained on the basis of reading of physical instrument. So only the perturbed data ( )g xδ  can be obtained. We 
assume that the exact and measured data satisfy  

,g gδ δ− ≤                                       (1.2) 

where > 0δ  denotes the noisy level, ⋅  denotes the 2L -norm. 
A variety of important problems in science and engineering involve the inverse source problems, e.g. heat 

conduction, crack identification electromagnetic theory, geophysical prospecting and pollutant detection. These 
problems are well known to be ill posed (the solution, if it exists, does not depend continuously on the data). 
Thus, the numerical simulation is very difficult and some special regularization is required. A few papers have 
presented the mathematical analysis and effective algorithms of these problems. The uniqueness and conditional 
stability results for these problems can be found in [2-7]. Some numerical reconstruction schemes can be found 
in [1,8-17]. 
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In [1], the optimal error bound of the problem (1.1) has been obtained and a Fourier regularization method 
with an a prior parameter choice rule has been presented. It is well known that the ill posed problem is usually 
sensitive to the regularization parameter and the a priori bound is difficult to be obtained precisely in practice. In 
[18], we have used a modified Tikhonov regularization method with an a posteriori choice to solve the problem. 
But the smoothness parameter (which is usually unknown) is needed for that method. In this paper, we will use 
the method of Tikhonov regularization in Hilbert scales to solve the problem. We will show that the regu- 
larization parameter can be chosen by a discrepancy principle in Hilbert scales which is proposed by Neubauer 
[19]. The smoothness parameter and the a priori bound of exact solution are not needed for the new method. 

This paper is organized as follows. In Section 2, we will give the method of Tikhonov regularization in 
Hilbert scales for the problem (1.1). The choice of regularization parameter and corresponding convergence 
results will be found in Section 3. Some numerical results are given in Section 4 to show the effectiveness of the 
new method. 

2. The Method of Tikhonov Regularization in Hilbert Scales for the Problem (1.1) 
Let ĥ  denote the Fourier transform of ( )2h L∈   defined by  

( ) ( ) ( ) i1ˆ e d ,
2π

xh h x h x xξξ
+∞ −

−∞
= =   ∫F                         (1.3) 

and p⋅  denotes the norm in Sobolev space ( )pH   defined by  

( ) ( )
1 222 ˆ: 1 d .
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 ∫                           (1.4) 

When 0p = , 0 :⋅ = ⋅  denotes the ( )2L   norm. 
Application of the Fourier transform technique to problem (1.1) with respect to the variable x  yields the 

following problem in the frequency space:  
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It is easy to see that the solution of problem (1.5) is  

( ) ( ) ( )ˆ ˆ ,f gξ λ ξ ξ=                                    (1.6) 

where  
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                                     (1.7) 

or equivalently, the solution of problem (1.1) is given by  
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It is apparent that the exact data ĝ  must decay faster than the rate 2ξ − . However, in general, the measured 
data gδ  does not possess such a decay property. In the following, we apply the Tikhonov regularization 
method to reconstruct a new function δϕ  from the perturbed data gδ . T δϕ  will give a reliable approxi- 
mation of f . Before doing that, we impose an a priori bound on the unknown source  

, 0.pf E p≤ ≥                                        (1.9) 

In this case, we let ,δ α δϕ ϕ=  be the minimizer of the Tikhonov functional  

( )
2 2 ,qg Tδϕ ϕ α ϕΦ = − +                               (1.10) 

where > 0α  is a regularization parameter and q  is a positive real number. It can be verified that ,α δϕ  is the 
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solution of the following equation [20]  

( ) ( )21 21 .
q
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So we can get  

( ) ( )
,

22

1ˆ ˆ .
1 1

q gα δ δϕ
α ξ λ ξ

=
+ +

                           (1.12) 

That is to say  
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By ,α δϕ , we can give an approximation of f  as follows: 
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Lemma 1 For any ξ ∈ , we have  

( ) ( )20 < 1 2 , .λ ξ ξ λ ξ ξ≤ + ≤ ∈                            (1.15) 

Lemma 2 [21] For 0 1b≤ ≤ , we have 
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Lemma 3  
( )( )1 2, qf T Oα δ αϕ δ α − +− = ⋅                             (1.17) 

where αϕ  is the unique minimizer of (1.10) with g  instead of gδ . 
Proof 1 Due to Parseval formula and Lemma 1 
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The proposition follows by applying (1.16) with b  replaced by 1
2

q
q
+
+

. 

Lemma 4  
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αϕ α +− ≤ ⋅                                 (1.19) 

where cα  is defined by  
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Proof 2 With the representation 
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OPEN ACCESS                                                                                       JAMP 



Z. Y. ZHAO  ET  AL. 13 

and Lemma 1, we have  
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3. The Choice of Regularization Parameter α and Convergence Results 
For any ( )2w L∈  , we define  
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It is apparent that the function ( ),d wα α→  is continuous and strictly increasing on ( )0,∞  and  

( ) ( ) 2

0
, 0,   ,lim limd w d w w

α α
α α
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= =                         (1.24) 

So we can get the following lemma.  
Lemma 5 Let g , gδ  and > 0δ  satisfy (1.2) and  

g Cδ δ≥                                     (1.25) 

for some > 1C . Then there is a unique > 0α  such that  

( ) 2, .d g Cδα δ= ⋅                                  (1.26) 

In the following, we denote the unique α  determined in (1.26) by α . In the next lemma we consider the 
behavior of α . 

Lemma 6 Let g , gδ  and > 0δ  satisfy (1.2) and (1.25) for a > 1C , then  
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Proof 1) Let  
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F                              (1.30) 
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then  
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The rest follows from 1). 
Now we can prove the main result of this paper. 
Theorem 1 Let g , gδ  and > 0δ  satisfy (1.2) and (1.25) for a > 1C , s∈ . ,f α δ  is defined by (1.14) 

with the regularization parameter α  chosen in (1.26), then  
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Proof 4 With Lemma 3, Lemma 4, Lemma 6, we obtain 
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Using the Hölder inequality, (1.20) and (1.29) we get   
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Combining (1.34) and (1.35), we obtain  
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2 2
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where eα  is defined by  
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Since 0α →  for 0δ →  and  
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The theorem is proved.  

4. Numerical Examples 
The proposed method can be easily implemented numerically by the fast Fourier transform. We consider the 
following example. 

Example[1] It is easy to verify that the pair of functions 

( )
( ) ( )

2 2

3
2

, exp exp ,
4 1 41

x x xu x t x
tt

   
= − − −    +   +
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3 23 exp

4 2 4
x x xf x

   
= − −   
   

                                 (1.40) 

is the exact solution of problem (1.1) with data  

( )
2 2

3
2

exp exp .
8 4

2

x x xg x x
   

= − − −   
   

                              (1.41) 

Since ( )f x  approaches zero as > 6x , we always fix the interval 10 10x− ≤ ≤  in the numerical experi- 
ment. Let 10 , 0,1, , 1, 256jx jh j N N= − + = − = . The perturbed data are given by  

( ) ( ) ,j j jg x g xδ ε= +                                  (1.42) 

where { } 0

N
j j

ε
=

 are generated by Function ( ) 1rand ,1n N δ×  in Matlab. 
In the following, we present numerical results to check the efficiency of the method. In the following, we 

present numerical results of some examples to check the efficiency of the method and we will also compare the 
method (M1) with the method in [18] (M2, notate the approximate function as ,f α δ ). 

It is obvious that the condition (1.9) holds for any p +∈ . So we have 
1

, 2 , 0
q
qf f O qα δ δ
+
+

 
− = ∀ >  

 
 for  

M1 and , 2
q

qf f Oα δ δ +
 

− =   
 

 for M2. The relative error has been displayed in Table 1, we can see that when  

1δ  decreases from 0.1 to 0.0001, the errors ,f fα δ −  become smaller and the results of M1 are better than 
M2. 

5. Conclusion 
In this paper, we present a modified Tikhonov regularization method for identifying an unknown source in the 
heat equation and the theoretical results show that the method is Order optimal. The numerical example also 
verified the efficiency and accuracy of the method. 
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Table 1. Numerical results with a posteriori parameter. 

δ1 
q = 0 q = 2 q = 4 q = 8 

M1 M2 M1 M2 M1 M2 M1 M2 
1e−1 1.73e−1 2.33e−1 9.18e−2 1.91e−1 8.68e−2 1.89e−1 8.90e−2 1.85e−1 
1e−2 6.61e−2 6.73e−2 1.81e−2 2.60e−2 1.54e−2 2.34e−2 1.47e−2 2.55e−2 
1e−3 1.98e−2 2.35e−2 2.91e−3 4.85e−3 2.24e−3 3.48e−3 1.98e−3 3.54e−3 
1e−4 7.8029e−3 8.79e−3 5.99e−4 8.57e−4 2.81e−4 5.78e−4 2.25e−4 5.53e−4 
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