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ABSTRACT 
The problem of a micropolar fluid about an accelerated disk rotating with angular velocity Ω proportional to 
time has been studied. By means of the usual similarity transformations, the governing equations are reduced to 
ordinary non-linear differential equations and then solved numerically, using SOR method and Simpson’s (1/3) 
rule for s ≥ 0, where s is non-dimensional parameter which measures unsteadiness. The calculations have been 
carried out using three different grid sizes to check the accuracy of the results. The results have been improved 
by using Richardson’s extrapolation. 
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1. Introduction 
Eringen [1,2] introduced and formulated the theory of micropolar fluids. These fluids exhibit certain microscop- 
ic effects due to the local structure and micro motion of the fluid elements. Unsteady flows of micropolar fluid 
have been considered by a number of authors. Chawla [3] considered the micropolar fluid flow in the neighbor- 
hood of a flat plate started impulsively and found the dominant characteristics of two modes of wave propaga- 
tion during the initial and final stages of growth. Takhar et al. [4] studied the flow of a micropolar fluid past a 
decelerating porous rotating disk. Lok et al. [5] investigated the boundary layer flow of a micropolar fluid start- 
ing impulsively from rest near the forward stagnation point of a plane surface. Guram and Anwar [6] considered 
the steady, laminar and incompressible flow of a micropolar fluid due to a rotating disk with suction and injection. 

The flow of an incompressible viscous fluid past an infinitely rotating disk was first studied by Von Karman 
[7] who reduced the necessary Navier-Stokes Equations to self-similar form by means of some transformations, 
and derived approximate solutions. Cochran [8] at a later stage presented accurate numerical solutions to these 
equations. Another physical solution of importance in this paper is to study the transient state of flow when the 
disk starts rotating or comes to a halt. Different physical situations were studied in this area by Dolidge [9], 
Sparrow & Gregg [10] and Benton [11]. Pop [12] investigated the problem of unsteady flow past a wall which 
starts impulsively to stretch from rest. Sajjad et al. [13] obtained numerical solution for accelerated rotating disk 
in a viscous fluid. Watson and Wang [14] studied deceleration of a rotating disk in a viscous fluid and found so- 
lution of the problem by using fourth order Runge-Kutta algorithm for range 20 0s− ≤ ≤ . They remarked that 
similarity solutions do not exist for positive s. 

In this paper, we examined the problem of Watson and Wang [14] for micropolar fluids and obtained numer- 
ical results for range 0 3s≤ ≤ . The proposed numerical scheme is straight forward, easy to program and very 
efficient. 
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2. Mathematical Analysis 
The fluid flow is non-steady, laminar and incompressible. The cylindrical coordinates (r, θ, z) are used, r being 
the radial distance from the axis, θ the polar angle and z the normal distance from the disk. We assume that there 
is no body force and body couple. With these assumptions the governing equations of motion for micropolar 
fluids become: 

0∇⋅ =V ,                                                            (1) 

( ) ( ) ( ) ( )pµ κ κ υ ρ− + ∇× ∇× + ∇× −∇ = ⋅∇V V V                            (2) 

( ) ( ) ( ) ( ) ( )2 jα β γ υ γ υ κ κυ ρ υ+ + ∇ ∇⋅ − ∇×∇× + ∇× − + = ⋅∇V V .             (3) 

By using the following similarity transformations: 
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is the dimensionless variable, ν being kinematics viscosity, α  is constant and  

0Ω  is a positive constant, the velocity is ( ), ,u v wV  and micro rotation is ( )1 2 3, ,υ υ υ υ . When 0α = , the 
problem reduces to the case of the steady rotation of a disk in a fluid. We shall study the case when 0α ≥ . The 
equation of continuity (1) is identically satisfied and Equations (2) to (3) yield: 

( ) 2
1 1

11 2
2

C f f f g f f C M s f fη ′′′ ′′ ′ ′ ′ ′′ ′+ + + − − = + 
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,                         (5) 
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( )2 4P f ff s f fη′ ′′ ′ ′= + − + ,                                            (7) 
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where primes denote differentiation with respect to η  and 
0

s α
=
Ω

. The material constants 1C , 2C , 3C  and  

4C  all are non-dimensional and are given by 
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The boundary conditions are: 

00 : 0, 0, 1, , 0, 0, 1,
: 0, 0, 0, 0, 0.
f f g P P L M N

f g L M N
η
η

′= = = = = = = =
′→ ∞ = = = = =                        (11) 

The governing third order ordinary differential equations are reduced to second order ODE’s. 

let f q′ =                                          (12) 

Then, Equations (5)-(9) become 
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The boundary conditions (11) become 

0 : 0, 0, 1, 0, 0, 1,
: 0, 0, 0, 0, 0.
f q g L M N
q g L M N

η
η
= = = = = = =
→∞ = = = = =

                              (18) 

In order to obtain the numerical solution of nonlinear ordinary differential Equations (13) to (17), these equa- 
tions are approximated by central difference approximation at a typical point nη η=  of the interval [0,∞) and 
then solved by using SOR method. The first order ordinary differential equation (12) is solved by Simpson’s 
(1/3) rule with the formula given in Milne [15]. Higher order accuracy O(h6) is achieved, on the basis of above 
solutions by using Richardson’s extrapolation. 

3. Numerical Results and Discussion 
The numerical results have been computed for three different grid sizes namely h = 0.5, 0.025, 0.0125 for the 
comparison purpose. The results are obtained for several values of the parameter s in the range 0 3s≤ ≤  and 
for three different sets of the material constants 1 2 3, ,C C C  and 4C  given below: 
 

Cases 1C  2C  3C  4C  

I 0.2 2.0 0.5 5.0 

II 1.0 1.5 0.2 4.0 

III 0.1 1.0 1.5 3.0 

 
The numerical results of the velocity components namely f the axial component, g the circumferential com- 

ponent and f ′  the radial component along with the microrotation components L, M, N are given in Tables 1 to 
3 in the case-I. The results for f are computed by Simpson’s (1/3) rule and the results for f, f ′ , g, L, M and N 
have been computed by SOR method and presented in these tables on finer grid size. The results of velocity 
components, using Richardson extrapolation are given in the Tables 4 to 5 for some representative values of s. 

Graphically, the results have also been demonstrated. Figure 1 represents the behavior of f. It is observed that 
( )f η  decreases for increasing the magnitude of s. Figure 2 depicts ( )g η . Figure 3 exhibits ( )f η′  which 

also decreases in magnitude with increase in magnitude of s. Figures 4 and 5 show the microrotation compo- 
nents L and M. 
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Table 1. s = 0.2. 

h η  f f ′  g  N L M 

 
0.0125 

0.000 0.000000 1.000000 0.000000 0.000000 0.000000 1.000000 

1.000 0.113933 0.496729 0.159057 0.027191 0.003156 0.686857 

2.000 0.257161 0.235486 0.118547 0.024683 −0.001459 0.432744 

3.000 0.349024 0.112211 0.067674 0.016857 −0.003379 0.255580 

4.000 0.398495 0.052361 0.034031 0.010271 −0.003175 0.138221 

5.000 0.421470 0.020311 0.013541 0.005206 −0.002019 0.058694 

6.000 0.427867 0.000000 0.000000 0.000000 0.000000 0.000000 

 
Table 2. s = 1.0. 

h η  f f ′  g  L M N 

 
0.0125 

0.000 0.000000 1.000000 0.000000 0.000000 0.000000 1.000000 

1.000 0.071243 0.429706 0.092697 0.019489 0.001895 0.623469 

2.000 0.152413 0.208032 0.067085 0.016340 0.000209 0.383702 

3.000 0.206671 0.113358 0.043063 0.011579 −0.000545 0.236862 

4.000 0.241554 0.067729 0.027906 0.008101 −0.000745 0.143086 

5.000 0.264095 0.040770 0.017479 0.005749 −0.000781 0.072963 

6.000 0.274685 0.000000 0.000000 0.000000 0.000000 0.000000 

 
Table 3. s = 2.0. 

h η  f f ′  g  L M N 

 
0.0125 

0.000 0.000000 1.000000 0.000000 0.000000 0.000000 1.000000 

1.000 0.044599 0.355138 0.052261 0.015135 0.000824 0.555994 

2.000 0.087087 0.160566 0.032935 0.011425 0.000073 0.321351 

3.000 0.112986 0.086545 0.020134 0.007809 −0.000166 0.194950 

4.000 0.129211 0.052651 0.013002 0.005452 −0.000217 0.121774 

5.000 0.139973 0.034640 0.008823 0.003997 −0.000216 0.069664 

6.000 0.146201 0.000000 0.000000 0.000000 0.000000 0.000000 

 
Table 4. s = 2.0. 

Numerical Results Using Richardson Extrapolation Method 

 h = 0.05 h = 0.025 h = 0.012 Extrapolated  h = 0.05 h = 0.025 h = 0.012 Extrapolated 

η  f ′  f ′  f ′  f ′  η  g g g g 

0.000 0.000000 0.000000 0.000000 0.000000 0.000 1.000000 1.000000 1.000000 1.000000 

1.000 0.053055 0.052543 0.052261 0.052153 1.000 0.359244 0.356565 0.355138 0.354595 

2.000 0.033842 0.033305 0.032935 0.032790 2.000 0.163614 0.161603 0.160566 0.160173 

3.000 0.020745 0.020334 0.020134 0.020058 3.000 0.088521 0.087153 0.086545 0.086319 

4.000 0.013434 0.013133 0.013002 0.012953 4.000 0.054026 0.053075 0.052651 0.052494 

5.000 0.009157 0.008934 0.008823 0.008781 5.000 0.035674 0.034986 0.034640 0.034509 

6.000 0.000000 0.000000 0.000000 0.000000 6.000 0.000000 0.000000 0.000000 0.000000 
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Table 5. s = 3.0. 

Numerical Results Using Richardson Extrapolation Method 

 h = 0.05 h = 0.025 h = 0.012 Extrapolated  h = 0.05 h = 0.025 h = 0.012 Extrapolated 

η  f ′  f ′  f ′  f ′  η  g g g g 

0.000 0.000000 0.000000 0.000000 0.000000 0.000 1.000000 1.000000 1.000000 1.000000 

1.000 0.034700 0.034225 0.034028 0.033956 1.000 0.307403 0.304082 0.302588 0.302031 

2.000 0.019890 0.019455 0.019289 0.019229 2.000 0.131391 0.129122 0.127965 0.127527 

3.000 0.011618 0.011307 0.011157 0.011101 3.000 0.069336 0.067864 0.066999 0.066667 

4.000 0.007359 0.007140 0.007020 0.006974 4.000 0.041941 0.040943 0.040395 0.040186 

5.000 0.005000 0.004840 0.004829 0.004827 5.000 0.027807 0.027096 0.026762 0.026638 

6.000 0.000000 0.000000 0.000000 0.000000 6.000 0.000000 0.000000 0.000000 0.000000 

 

 
Figure 1. Graph of f for different values of s. 

 

 
Figure 2. Graph of g for different values of s. 
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Figure 3. Graph of ′f  for different values of s. 

 

 
Figure 4. Graph of L for different values of s. 

 

 
Figure 5. Graph of M for different values of s. 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 1 2 3 4 5 6

f'

η

s=0.0, 0.2, 0.5, 1.5, 2.0 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 1 2 3 4 5 6 7

L

h

s=0.0, 0.2, 0.5, 1.0, 2.0

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0 1 2 3 4 5 6 7

M
η

s=0.0, 0.2, 0.5, 1.0, 2.0

OPEN ACCESS                                                                                          AM 



S. HUSSAIN  ET  AL. 202 

4. Conclusion 
The unsteady flow of micropolar fluids about an accelerated rotating disk is discussed in detail. The set of diffi-
cult non-linear ODE’s is solved by using a very easy and efficient numerical scheme. The accuracy of the results 
is checked by comparing the results for three different grid sizes. The constants “C’s” affect the micro rotation 
of micropolar fluids flow. If one of these constants 1C  is close to zero the micropolar fluid flow resembles the 
Newtonian fluid flow. It is noted that velocity and microrotation components decrease in magnitude as the pa-
rameter s increases in value. 
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