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ABSTRACT 
Restrictions of classical mechanics which take place because of holonomic constraints hypothesis used for ob-
taining canonical Lagrange equation are analyzed. As it was shown that this hypothesis excludes non-linear terms 
in the expression for forces which are responsible for energy exchange between different degrees of freedom of a 
many-body system. An oscillator passing a potential barrier is considered as an example which demonstrated 
this fact. It was found that the oscillator can pass the barrier even if kinetic energy of its mass center is below the 
potential barrier’s height due to non-linear terms. This effect is lost because of holonomic constraints hypothesis. 
We also explained how one can derive a system’s motion equation without the use of holonomic constraints hypo-
thesis. This equation can be used to describe non-linear irreversible processes within the frames of Newton’s laws. 
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1. Introduction 
Mechanics study how real bodies change their position 
by time. The world and evolution are described by space 
and time. Classical mechanics cannot describe evolution 
in nature. All processes in nature are irreversible—sys- 
tems born, developed and died. Classical mechanics de-
scribe reversible processes only. 

Boltzmann was the first to study this contradiction [1]. 
He proves that processes in non-equilibrium gas are irre-
versible, but the proof was denied by Poincare theorem 
of Hamilton systems comeback [1,2]. The theorem follows 
from the law of conservation of phase volume which in 
turn follows from Lagrange and Hamilton equations. 
Today’s explanation of irreversible dynamics is an eclec-
tic one. It is based on laws of classical mechanics and a 
suggestion of very small fluctuations. This suggestion 
cannot be relevant to determinism of classical mechanics. 

Recently we offered a mechanism of irreversibility 
which follows from the laws of classical mechanics only 
[3-6]. We call this mechanism a determined one. It is 
based on non-linear transformation of kinetic energy of a 

system into its internal energy. 
What we see is a contradiction. The system’s motion is 

reversible due to formal descriptions of classical me-
chanics and at the same time it is irreversible due to the 
determined mechanism described above. It is obvious 
that we cannot consider the explanation of irreversibility 
as a complete one until we resolve this contradiction. We 
can resolve the contradiction only if irreversibility had 
been excluded by the simplifications used when obtain-
ing Lagrange equation for systems. 

At least two main simplifications are used when ob-
taining the equation of a system’s motion on the basis of 
Newton equation for motion of a material point. The first 
simplification is due to the fact that we use simple mod-
els where a real body consists of several material points 
which have no internal structure. The second simplifica-
tion follows from the fact that we use hypothesis of ho-
lonomic constraints when we obtain Lagrange equation 
for a system from Newton equation for a material point. 
Let’s consider these two simplifications. 

Classical mechanics is based on Newton’s laws. The 
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Newton’s laws are derived by using structureless material 
point as a model. But what we see in real life are systems, 
not the material points. The world has hierarchic nature. 
Top step is the Universe. It consists of galaxies which in 
turn consist of other elements. Molecules and atoms are 
somewhere downstairs. They are systems as well and 
consist of smaller elements. We don’t know how long 
this hierarchy is. 

We can represent any real body by a system of poten-
tially interacting material points. So the laws of motion 
of any system should follow from the laws of motion of 
material points. It is true for both reversible formal de-
scriptions of classical mechanics and irreversible equa-
tion of an equilibrium system moving in a nonhomoge-
neous external field [4]. So we do not exclude irreversi-
bility only because we represent a real body by a set of 
material points. The only conclusion we can make is that 
the contradictions are due to some hypotheses which 
were used while creating formal descriptions of mechan-
ics. We can eliminate the contradictions if we are able to 
show that these hypotheses resulted in the fact that clas-
sical mechanics cannot explain irreversible processes. 
Holonomic constraints and potential-field forces are used 
when obtaining the Lagrange and Hamilton equations 
from d’Alembert equation for a system of the material 
points [7,8]. 

Below we explain why irreversible dynamics cannot 
be described because of holonomic constrains hypothesis. 
We also consider the difference between mechanics of 
structured particles and classical mechanics based on the 
formalisms of Lagrange and Hamilton. After that we 
consider an example of an oscillator passing a potential 
barrier. We also show that holonomic constrains hypo-
thesis excludes mutual transformation between the ener-
gy of motion of the system and its internal energy. We 
explain how one can obtain the equation of motion of a 
system without use of the hypothesis of holonomic con-
straints. We also explain why the motion equation for 
real bodies is irreversible in general. 

The Classical Way of Deriving a System’s  
Motion Equation from the Motion Equations 
of Material Points. 
We can derive a system’s motion equation using La-
grange equation and knowledge of dynamics of each ma- 
terial point. Lagrange equation is derived using d’Alem- 
bert principle. The d’Alembert principle is given by [8]: 

( )
1

0
R

i i i
i

F p rδ
=

− =∑           (1) 

Here iF  is an active force affecting i—material point; 
ip  is i-th material point’s inertial force; irδ  is virtual 

shift. 
We should use independent generalized variables in 

order to integrate (1). After we do the transformation 
needed we obtain the following [8]: 

1
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       (2) 

Here t  is time; T  is a kinetic energy for all MP; iq  
are the general independents variables; iqδ  are the vir-
tual transitions; Q  are the external forces.  

Holonomic constraints hypothesis is used in order to 
derive canonical Lagrange equation from (2). This hypo-
thesis implies that each term in (2) is independent. This 
fact in turn implies that lq  coordinates are independent, 
i.e. a variation of lqδ  doesn’t depend on variation of 

kqδ . Therefore, the sum (2) of equals zero when each 
term of the sum equals zero. If there are external forces, 
then the abovementioned condition is valid only if exter-
nal forces do not have non-linear terms depending on 
several variables. That is, external forces should comply 
with the following conditions [8]: 

i
i i

i i

r
Q V

q
∂

= − ∇
∂∑              (3) 

Thereby if we use holonomic constraints, then we ob-
tain Lagrange equation where iQ  depends on i-coordi- 
nates only: 

d
d l

l l

T T Q
t q q

  ∂ ∂
− =  ∂ ∂   

          (4) 

That is, holonomic constraints hypothesis excludes in-
terrelations between terms in Equation (2), i.e. each term 
in (2) is independent. The terms in (2) can be dependent 
only if there is some non-linearity of the external forces. 
In such case at least two terms in (2) are not equal to zero 
while the whole sum equals zero. That means the con-
straints are not holonomic and condition (3) is not rele-
vant. 

If condition (3) takes place, then Equation (4) could be 
written as follows [8]: 

d 0
d l l

L L
t q q

  ∂ ∂
− =  ∂ ∂   

          (5) 

where L T V= −  is so-called Lagrange function. 
Formula (5) is Lagrange equation. It allows describing 

a system’s dynamics by studying dynamics of each ma-
terial point. 

From (2) follows that holonomic constraints condition 
is equivalent to condition of potential external forces. 
This equivalence also follows from the fact that one and 
the same Lagrange Equation (11) can be obtained also by 
integrating the d’Alembert equation on time provided the 
potentiality of external forces. Indeed by integrating 
d’Alembert equation with respect to time given external 
forces is potential. If we fix initial and final positions of a 
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system, we obtain [7]: 
2 2

1 1

d d
t t

t t

w t L t Aδ δ δ= =∫ ∫          (6). 

If 
2

1

d
t

t

L t A=∫  then we have: 

0Aδ =                  (7) 
Formula (7) is Hamilton principle. The principle says 

that the system’s path is such that value of definite 
integral A is stationary whenever the fluctuation of the 
system’s position is, provided the initial and end posi-
tions are fixed [7]. 

According to expression (3), if we apply holonomic 
constraints condition, then integration of equations of the 
motion of the whole system of material points is reduced 
to integration of independent equations of motion of each 
material point. That is, reversibility follows from holo-
nomic constraints. Therefore, Lagrange and Hamilton 
equations are reversible as well as Newton’s motion equ-
ation. 

Thus, Lagrange equation follows from the principle of 
d’Alembert as a result of the transition to the generalized 
independent variables. The corresponding equations for 
the material points are independent due to hypothesis of 
holonomic constraints [7,8]. Hence we arrive to the ca-
nonical Lagrange equations and to the principle of least 
action. Consequently, the scope of the canonical La-
grange equations and the principle of least action are 
determined by the generality of hypothesis of holonomic 
constraints. 

Below we consider an oscillator passing a potential 
barrier as an example. We show that if a system passes 
through a non-homogeneous filed then we observe com-
pletely new effects due to mutual transformation of the 
energy of motion of a system into its internal energy. We 
lose these effects if we use holonomic constraints hypo-
thesis. That is why we used energy expressions in order 
to derive the system’s motion equation. By doing so, we 
do not have to use holonomic constraints hypothesis. We 
also do not lose non-linear terms which are responsible 
for mutual energy transformation between degrees of 
freedom of the system. 

2. Non-Holonomic Constraints for an  
Oscillator 

Consider an oscillator consisting of two material points. 
Let the first point’s mass be equal to mass of the second 
one. We can write the oscillator’s total energy as follows: 

( )
( ) ( ) ( )

2 2
1 2

12 1 2 const
2

env env
m v v

E U r U r U r
+

= + + + = (8) 

where ( )12U r  is potential energy of interaction between 

the material points; ( )1
envU r , ( )2

envU r  are potential 
energies of the 1st and 2nd material points in the field of 
external forces; 1r , 2r  are coordinates of the material 
points; ( )12 1 2r r r= − ; 1v , 2v  are velocities of the ma-
terial points. 

Now let’s use coordinates of the system’s mass center. 
Therefore we substitute the variables as follows:  

1 2
2 2

r rR +
= , 1 2

2 2
v vV +

=  (coordinate and velocity of the  

mass center). Let’s name these variables as macrova-
riables. At the same time let’s name by microvariables 
relative coordinate and velocity of the material points:  

12 12v r=  , 1 2
12 2

r rr −
= , where i iv r=  . These new sets of  

variables are independent. The system’s total energy now 
can be written as: 

( ) ( )
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Here 2M m= ; 
2

2

2
MV  is the system’s mass center kine-  

tic energy, ( )
2
12

124
mv U r+  is the oscillator’s internal  

energy. In turn, ( )2 12,envU R r  is the system’s potential 
energy. 

Now we see that total energy is the sum of the sys-
tem’s kinetic and internal energies. By differentiating (9) 
with respect to time, we obtain: 
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in general. 
If there is no external field, then the variables in Equa-

tion (10) are separated and we can integrate (10). 
Let the external field be homogeneous on the system’s 

typical scale. In that case we obtain two equations from 
(10): 

22 2 2
env

RMV V F V D+ =            (11) 

12 12
12 122

mv v F v D+ = −


          (12) 

Here D  is a separation constant. It is obvious that it 
should be equal to zero. 

Equation (11) describes the motion of the system’s 
mass center. Equation (12) describes the relative motion 
of the material points, which is not affected by external 
forces. This means that internal energy is constant in case 

OPEN ACCESS                                                                                         JMP 



V. M. SOMSIKOV, A. I. MOKHNATKIN 20 

of homogeneous external field.  
Thus, we can separate the variables and integrate the 

system if we can represent the external field by sum of 
two terms, one depending on macrovariables, and anoth-
er—on microvariables only. The abovementioned is es-
sentially the same as holonomic constraint and obtaining 
Equation (4) for an oscillator. 

The external field’s energy will in general change both 
the systems kinetic and internal energies [9]. This is the 
case when the external field has non-linear terms de-
pending on both micro- and macrovariables. Mutual 
non-linear transformation between the system’s kinetic 
and internal energies occurs. That means one cannot sep-
arate the variables and integrate the system. Virtually, 
this is a violation of holonomic constraints. 

Numerical calculations were done in order to study 
non-linear transformation of an oscillator’s kinetic ener-
gy into its internal energy. The potential barrier was giv- 

en by ( )
( )2

2e
bx R

a
bU x U

−
−

=  [9]. Here bU  is the barrier’s  
height; bR  is the coordinate of the barrier’s extreme 
point; is a barrier’s half-width, x is the axis along which 
the oscillator is moving. 

The numerical calculations showed that given the bar-
rier’s half-width is comparable to the oscillator’s length, 
the oscillator can pass the barrier even when its kinetic 
energy is below the barrier’s height (see Figure 1). This 
resulted from transformation of the oscillator’s internal 
energy into its kinetic energy due to a gradient of exter-
nal force (see Figure 2). Opposite cases were registered 
as well (see Figure 3). The oscillator didn’t pass the bar-
rier although its kinetic energy was above the barrier’s 
height. The reason for this was the transformation of the 
oscillator’s kinetic energy into its internal energy such 
that the kinetic energy after transformation was not 
enough to pass the barrier. That is, whether the oscillator 
passes the barrier or not, depends on the ratio between 
initial distance to the barrier and the barrier’s half-width. 
Let us lay emphasis on the fact that these cases cannot be 
described by canonical Lagrange and Hamilton equations 
because of non-holonomic constraints. 

It was shown [4,5] that in general we can split phase 
space into two orthogonal subspaces of independent va-
riables for a system of N material points (N  1) pro-
vided that we use micro- and macrovariables. Microva-
riables describe motion of the material points, while ma-
crovariables describe motion of the system’s mass center 
in the external field. This orthogonality resulted from qua-
dric form of energy. In terms of physics, the orthogonal-
ity results from the fact that the material points interac-
tion forces do not dependent on external forces. So the 
system’s energy is split into two independent types, ki-
netic energy of material points moving relative the mass 
center, and the mass center’s kinetic energy depending  

 
Figure 1. Oscillator passes the potential barrier even if its 
initial kinetic energy is below the barrier’s height given the 
oscillator’s length is comparable to the barrier’s half-width 
(blue points show the cases when the oscillator passed the 
barrier, while white points show the cases of reflection). 
 

 
Figure 2. Transformation of oscillator’s kinetic energy as a 
function of oscillator’s length. 
 

 
Figure 3. Change of oscillator’s kinetic energy as a result of 
transformation into internal energy as a function of initial 
position of the mass center. 
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on the mass center coordinate and velocity. This is cor-
rect for all bodies which can be represented by a number 
of material points. If external field is not homogeneous 
on the system’s typical scale, then non-linear terms ap-
pear in the system’s motion equation [4]. These non- 
linear terms depend on micro- and macrovariables. In 
this situation energy of the external field changes both 
kinetic and internal energies of the system. 

There is another way to explain the necessity of split-
ting variables into micro- and macrovariables. If we use 
lab system of coordinates and sum dynamic variables for 
material points, then we exclude internal forces. The only 
force left is external force which determines the motion 
of the system’s mass center. As a result we derive the 
equation of motion of the system’s mass center. The eq-
uation corresponds to macrodescription of the system. 

Just the other way around, if we deduct the abovemen-
tioned variables, then we exclude external forces and 
derive the equations which describe relative motion of 
material points. The equations correspond to microde-
scription of the system. 

Let us explain how an oscillator can pass through po-
tential barrier. Consider the oscillator’s motion Equation 
(10). It is obvious that 

2

env
RF  and 

12

env
rF  are not equal to 

zero in case of non-homogeneous external field. These 
terms depend on both micro- and macroparameters, i.e. 
micro and macroparameters are inter-dependant. That is 
why mutual transformation between the oscillator’s ki-
netic and internal energy is possible. These terms either 
increase or decrease the oscillator’s kinetic energy subject 
to the oscillator’s current position. If the contribution of 
these non-linear terms is high enough, then the oscillator 
can pass the barrier even when its kinetic energy is below 
the barrier’s height. It was already shown that these 
non-linear terms are inversely related to typical scale of a 
nonhomogeneous external field [10]. 

Thus, we should use independent micro- and macrova-
riables in order to describe the motion of a real body. 
These variables correspond to two independent subspac-
es. So, micro- and macrovariables split generalized coor-
dinates and velocities space into two independent sub-
spaces. Thus, symmetries of two types determine a sys-
tem’s motion: material point space distribution symmetry 
(and material point interaction) and space symmetry it-
self. Noether theorem says that the system’s motion is 
determined by the mass center energy and energy of rela-
tive motion of material points. 

Article [11] considers a system of many material 
points, such that the system is equilibrium from the point 
of view of thermodynamics. The motion equation of the 
system is obtained directly from the energy equation. 
Total energy is given by the sum of kinetic energy of the 
system’s mass center and its internal energy. This ap-
proach avoids usage of both holonomic constraints hy-

pothesis and hypothesis of potential forces unlike the 
ways Lagrange equation was obtained [7,8]. It was 
shown that if the rate of change of external forces is not 
too high (if it is too high, then the system is not in equili-
brium any more), then the internal energy of the system 
can go up only. The reason is that internal forces cannot 
change the system’s kinetic moment and thus the sys-
tem’s internal energy cannot be transformed into kinetic 
one. That is why the system’s motion is irreversible, i.e. 
dissipative. 

If a system consisting of N  1 material points is in 
equilibrium, then its state is determined by internal 
energy [4,6]. So we can describe motion of equilibrium 
systems using macrovariables and internal energy. In 
general, if an equilibrium system is moving in a field of 
external forces, then there is a non-linear transformation 
of its kinetic energy into internal one. This transforma-
tion takes place according to non-holonomic constraints. 

We can derive generalized Lagrange and Hamilton 
equations in the same way as we did for canonical equa-
tions, but using equations of systems motion and without 
use of holonomic constraints [4,5]. 

3. Conclusions 
The Lagrange equation is used in order to describe mo-
tion of a system of material points. This equation follows 
from a single material point motion equation by using the 
hypothesis of holonomic constraints. But because of this 
hypothesis, the non-linear terms which are responsible for 
mutual energy transformation between degrees of free-
dom of the system (between internal energy and motion 
energy of the system) have been lost. These non-linear 
terms appear due to gradients of external forces. Numer-
ical calculations showed that due to these non-linear 
terms, an oscillator can pass the potential barrier even 
when its kinetic energy is below the barrier’s height, and 
vice versa, the oscillator can be reflected even if its ki-
netic energy is above the barrier’s height. Thus, if we use 
holonomic constraints hypothesis, then we lose these 
non-linear terms. That is why we cannot use canonical 
Lagrange and Hamilton equations in order to describe a 
system in a nonhomogeneous external field. We also 
cannot use these equations in order to describe the evolu-
tion of the non-equilibrium systems to the equilibrium 
state. 

In order to build a formal description that is applicable 
for describing evolution of the non-equilibrium systems, 
we should not use holonomic constraints hypothesis 
when deriving motion equations for a system of material 
points. Papers [3-6] offer the way to build such formal 
description. The main idea is to derive a system’s motion 
equation based on the Newton’s laws and energy formula 
in which the system’s total energy equals its kinetic 
energy plus internal energy. The independent macro- and 
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micro-variables, which describe a system’s mass center 
motion and the motion of each material point correspon-
dingly, have been used. Due to such energy split, we are 
able to take into account non-linear terms which are re-
sponsible for mutual energy transformation between sys-
tem’s motion energy and its internal energy. 

The external field should be nonhomogeneous on the 
system’s typical scale in order for non-linear terms to be 
essential. For nonequilibrium system, consisting from 
many equilibrium subsystems, the non-linear transforma-
tion of kinetic energy into internal one is equivalent to 
dissipation, and the forces causing the transformation are 
actually friction forces. Unlike canonical Lagrange, 
Hamilton and Liouville equations, their generalized pro-
totypes are able to describe dissipative processes. The 
generalized Lagrange, Hamilton and Liouville equations 
are derived from d’Alembert principle by usage of a sys-
tem’s motion equation rather than motion equations of 
material points and without use of holonomic constraint 
hypothesis [5]. As a result these equations contain the 
terms which are responsible for dissipative processes. 

Thus, classical mechanics neglects dissipative pro- 
cesses because of holonomic constraint hypothesis which 
is used while obtaining the canonical Lagrange equation. 
This is crucial since almost all fields of physics are based 
on Lagrange and Hamilton formal descriptions. This is 
also important in terms of understanding spontaneous 

symmetry breaking and developing mechanics of dissip-
ative (i.e. evolving) systems. 
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