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ABSTRACT 
Disparities between the in situ and satellite values at the positions where in situ values are obtained have been the 
main handicap to the smooth modeling of the distribution of ocean chlorophyll. The blending technique and the 
thin plate regression spline have so far been the main methods used in an attempt to calibrate ocean chlorophyll 
at positions where the in situ field could not provide value. In this paper, a combination of the two techniques has 
been used in order to provide improved and reliable estimates from the satellite field. The thin plate regression 
spline is applied to the blending technique by imposing a penalty on the differences between the satellite and in 
situ fields at positions where they both have observations. The objective of maximizing the use of the satellite 
field for prediction was outstanding in a validation study where the penalized blending method showed a re- 
markable improvement in its estimation potentials. It is hoped that most analysis on primary productivity and 
management in the ocean environment will be greatly affected by this result, since chlorophyll is one of the most 
important components in the formation of the ocean life cycle. 
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1. Introduction 
A detailed study of the ocean environment and its con- 
stituent elements are of utmost importance in guiding 
decision-makers on policies regarding marine activities 
such as fishing and their consequences for human life 
and society as a whole. In the ocean food chain, phytop- 
lankton, which are found in the upper layer of the ocean, 
are of extreme importance. Indeed, aquatic life and pro- 
duction revolve about the distribution and biomass of 
these unicellular algae. Thus, to better understand the 
ocean food chain, it is necessary to track their existence 
and monitor their population distribution in the ocean 
environment. To measure their population by cell counts 
is very difficult, because of their resemblance to other 
non-algae carbon rich particles. An alternative method of 
doing this is in terms of their photosynthetic pigment 
content, chlorophyll, which is endemic across all tax- 

onomic groups of algae [1]. In fact, an appealing method 
of estimating primary productivity in the ocean is deter- 
mined by the concentration of ocean chlorophyll [2] and 
also emphasized by [3]. Therefore, to better monitor and 
predict the abundance of this phytoplankton, it is impor- 
tant that the distribution of chlorophyll concentration in 
this environment be determined as accurately as possible. 
The blending technique described by [4] was successful- 
ly used to analyze sea surface temperature [5]. The pio- 
neers of the use of this technique in the calibration of 
ocean chlorophyll expressed the need for further work to 
be done in order to improve ocean chlorophyll predic- 
tions in areas where observations could not be obtained 
by ship and buoy [6]. One problem faced when using 
the technique in ocean chlorophyll calibration is dis- 
tortion of the blended field as one approaches the 
coastal land. This distortion is due to the sparseness of 
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data obtained by ship and buoy (in situ) and the noisiness 
of the satellite field [7]. These factors have been the main 
handicap to the smooth calibration of ocean chlorophyll 
estimates from the satellite observations. The penalized re- 
gression splines are a technique that could be used to model 
noisy data [8]. The use of this statistical technique in the 
calibration of ocean chlorophyll was also suggested by [1]. 

The objective of this article, therefore, is to demon- 
strate how the principles of penalized regression could be 
applied to the blending process in order to obtain better 
estimate of ocean chlorophyll from the satellite data field. 
The approach would mainly address the noisiness of the 
data fields by introducing a penalty on the differences 
between their observations at positions where both fields 
have values. The belief is that, by penalizing the differ- 
ences between the satellite and the in situ fields, the sa- 
tellite will become closer to the in situ field and can thus 
be used to sufficiently estimate ocean chlorophyll values 
at positions where the in situ field could not provide val- 
ues. Since the process of penalization involves smooth- 
ing, the efficiency of the technique will depend on the 
choices of the smoothing parameters. 

Inspiration to this was drawn from the interpolation 
equation 

( ) ( ) ( )blend sat 1, , ,n
kkf x y f x y g x y

=
= ∑      (1) 

found in Onabid (2011) in the section dealing with the 
proof as to why results from the corrector factor and the 
smooth in-fill methods should coincide. From this equa- 
tion, the term of interest is 

( )
1

,
n

k
k

g x y
=
∑  

which is the sum of the solution to the partial differential 
equation obtained at each boundary point k where there is 
a difference between the satellite and in situ value. In 
order to penalize these differences, the interpolation Eq- 
uation (1) had to be represented using basis functions. 
Consider the equation 
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where kg  is actually the solution to 
2 2
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+ =
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               (3) 

subject to the boundary conditions  

{ }0; ; : 1; ; 1; 1; ; ; ; ;i i k k kx y i k k n x y= − + ∆  . 

This Equation (2) can be re-written with each of the 
kg  separately as 

( ) ( ) ( )blend sat
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, , , ,
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k k
k

f x y f x y x yβ
=

= ∆∑        (4) 

where kβ  is set to the difference between the in situ and 
satellite values at boundary point k and Δk(x; y) repre- 
senting the basis function is the solution to 

2 2

2 2 0g g
x y

∂ ∂
+ =

∂ ∂
                (5) 

with external boundary points set to zero and the internal 
boundary points set to zero everywhere except at the kth 
position where it is set to 1.0, that is the knot of the basis. 

What this means is that, for each internal boundary 
point (knot), the blending process is performed to esti- 
mate the entire blended field with that particular boun- 
dary point acting as the only boundary point for the pro- 
cess. During the process, the value of this boundary point 
equals 1.0 and the resulting field is the basis for this knot. 
The blended field corresponding to this particular knot is 
obtained by multiplying the original knot value with its 
basis. Blended fields obtained from each of the knots are 
summed up. This sum is then added to the satellite field 
to obtain the final blended field which we call the basis 
blend. 

2. Penalizing the Blending Process 
For the penalized regression spline to be applied, it was 
necessary to represent the term of interest in the blending 
process as a regression equation. 

Representing Blending as a Regression  
Equation 
Considering the Equation (4) which is the interpolation 
form of the blending process represented using basis 
functions, also consider the fact that the objective is to 
control the differences between the satellite and the in 
situ fields, it is obvious that focus here should be on the 
term 

( )
1

, ,
n

k k
k

x yβ
=

∆∑  

from where the kβ ss′ could be estimated by penalized 
least squares in order to minimize the effect of these dif- 
ferences and consequently maximize the use of the sate- 
llite field as estimate to ocean chlorophyll at points 
where in situ could not provide observations 

Let 

( ) ( )log insitu log satellite ;k k kZ = −  

be calculated for each point it K, where satellite and in 
situ have observations. This can be written as a regres- 
sion equation of the form, 

( )
1

,
n

k j j j j k
j

Z x yβ ε
=

= ∆ +∑        (6) 

where the jβ s′ are unknown parameters to be estimated 
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and kε  the error term. This expression is equal to 

( ),k k k k k kZ x yβ ε∆= +  

Thus if Zk is expressed using the basis space, one ob- 
tains this model; 

( ) ( ) ( )
( )

1 1 1 1 2 2 2 2 3 3 3 3k

n n n n k

Z x y x y x y

x y

β β β

β ε

= ∆ + ∆ + ∆

+ + ∆ +

 

Fitting this model by least squares will simply result in 
the interpolation scheme since there is exactly one para- 
meter per datum, thus nonparametric techniques were 
then explored. The thin plate regression spline was then 
used to introduce a penalty to this blending regression 
equation. 

3. Penalizing the Blending Regression 
Equation 

From Equation (6), the control of the smoothness of the 
differences can be achieved by either altering the basis 
dimension, that is changing the number of selected knots 
or keeping the basis dimension fixed and then adding a 
penalty term to the least squares objective. The later was 
used. Therefore the penalized least squares objective will 
be to minimize 

( ) ( )( )2

1
, ,

n

k k k k k k k k k
k

Z x y x yβ λ β
=

 − ∆ + ∆ ∑ J    (7) 

where J  is a penalty function which penalizes model 
wiggliness while model smoothness is controlled by the 
smoothing parameter λ , as described by [9]. As a first 
step in estimating the penalized least squares objective, 
the simple penalized least squares technique of ridge 
regression was used. In this process, the intention is to 
penalize each of the parameters separately by introducing 
a penalty to each of the estimated parameters. Following 
this method, the penalized least squares objective will be 
to minimize 

( ) ( ) 2 2
1 1,n n

p k k k k k k kk kQ Z x yβ β λ β
= =
 = − ∆ + ∑ ∑  (8) 

with respect to kβ s′: The penalty is represented by the 
term 2

1
n

k kkλ β
=∑  with λ  being the smoothing para- 

meter to control the trade off between model fit and 
model smoothness. Thus the problem of estimating the 
degree of smoothness of the model is now the problem of 
estimating the smoothing parameter λ . 

Assuming that the smoothing parameter is given, how 
then can the kβ s′ be estimated in this penalized least 
squares objective?  

From Equation (8), the term Δk(xk; yk) reduces to a n×n 
identity matrix. Now, define an augmented Z, say Z; as 

[ ]T1 0 0nZ Z=Z    (with n zeroes) which can 
also be augmented directly in the objective. 

When this is done, Equation (8) could now be written 

as 
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From here, β̂  can be calculated as follows: 
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3.1. Choosing How Much to Smooth 

This refers to the selection of the smoothing parameter 
λ . This must be done with care such that the selected 
value should be suitable, so much so that if the true 
smooth function is f the estimated smooth function f̂ , 
should be as close as possible to it. The reason being if 
λ  is too high, the data will be over-smoothed and if it is 
too low, the data will be under-smoothed hence the re- 
sulting estimate will not be close to the true function. The 
aim as described by [9] will be to select a λ  which will 
minimize the difference between f̂  and f that is to say 
if M is the difference, then λ  should minimize 

( )2

0

1 ˆ
n

i i
i

f f
n =

= −∑M  

This could have been easier if the true values for f ex- 
isted already. Because this is not the case, the problem 
was approached by deriving estimates of M plus some 
variation. This was achieved by making use of the ordi- 
nary cross validation (OCV) technique. In this technique, 
a model is fitted to the rest of the data, when a datum is 
left out. The squared difference between the datum and 
its predicted value from the fitted model is calculated. 
This is done for all the points and the mean taken over all 
the data. Thus the ordinary cross validation criterion is 
written as 

[ ]( )2

0
0

1 ˆ
n

i
i i

i
f Z

n
−

=

= −∑V  

where [ ]ˆ i
if
−  is the estimate from the model fitted to all 

data except Zi. The idea of calculating V0 each time leav- 
ing out a datum has been proven not to be efficient as 
described by [9]. It can be shown that 
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where f̂  is the estimate from fitting to all the data and 
A is the corresponding influence matrix. 

[9] Emphasizes the fact that though OCV is a reasona- 
ble way of estimating smoothing parameters, it has the 
drawbacks of being computationally expensive to mi- 
nimize in the case of additive models where there could 
be many smoothing parameters and secondly it has a 
slightly disturbing lack of invariance. Thus in practice, 
the weights 1−Aii are often replaced by the mean weight 
tr(I − A)/n in order to arrive at the generalized cross 
validation (gcv) score given as 

( )
( )

2

0
g 2

ˆ

I A

n
i iin Z f

tr
=

−
=

−  

∑
V  

This has the computational advantage over OCV and 
can also be argued to have some advantages in terms of 
invariance. Therefore, an easy way to look for the best 
smoothing parameter would be to search through a se- 
quence of λ ′s, each time fitting a penalized regression 
model with the new λ  value and calculating the gcv 
score. At the end, the λ  value corresponding to the 
lowest gcv score will be the optimal smoothing parame- 
ter. 

3.2. Calculating the gcv Score 
Amongst the techniques of ridge regression, integrated 
least squares, integrated squared derivatives and efficient 
method used in computing the gcv score, only the effi- 
cient method herein described provided and better esti- 
mate for the gcv score. 

Efficient Calculation of the gcv Score 
The idea here is to provide a means of obtaining opti- 
mum values for the gcv score, the degree of freedom tr(A) 
and the smoothing parameter λ  which will minimize 
the gcv score. These will be very important since the 
objective is to build a model that will produce estimates 
in the blended field which are as close as possible to the 
true field. The QR decomposition described in [10] will 
be used because it is believed that QR is more stable than 
the Cholesky decomposition. This was achieved as fol- 
lows. 

The objective is to minimize 
2 Ty X Sβ λβ β− +  

with respect to β . 
ˆX Ayβ⇒ =  

where 

( ) 1T T .A X X X S Xλ
−

= +  

The corresponding gcv score for the given λ  is then 
given as 

( )
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n y Ay
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n tr A
λ

−
=
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In order to calculate the efficient gcv score, let X = QR 
where R is the upper triangle and Q consist of the col- 
umns of an orthogonal matrix such that QTQ = I but 

TQQ I≠  

( ) ( )1 1T T T T 1 TA QR R R S R Q Q I R SR Qλ λ
− −− −⇒ = + = +  

From an eigen-decomposition 
T 1 TR SR UDU− − =  

where D is a diagonal matrix of eigen values, the col- 
umns of U are eigenvectors and U is orthogonal. 

( )

( )

1 T T
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         (9) 
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y Ay y y y Ay y AAy

y y y I D y y I D yλ λ− −
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where T Tŷ U Q y= . 
From Equations (9) and (10) it follows that ( )V λ  

could be evaluated very cheaply for each new λ  since 
the QR and eigen-decompositions are only needed once. 

The smoothing parameter ( )λ  corresponding to each 
of these lowest gcv scores were then use in fitting the 
penalized regression models. The results obtained are 
then compared to those from the other techniques. 

4. Validating the Blended Fields Obtained 
from the Various Blending Methods 

The strength of this method in predicting existing in situ 
observation was compared to that of the normal blending 
method. Because penalizing the blending method had to 
make use of the basis function, the blended field obtained 
from the basis function method was also compared. Since 
the basis function method works by the use of a basis set 
(knots), after the selection of the validation data set the 
remaining in situ observations were then used as knots 
for the basis function blending method. The penalized 
blended field was obtained by using parameters obtained 
from the efficient method of calculating gcv as described 
in Section 3.2.1. Randomly selected validation data sets 
each containing 175 observations from the observed in 
situ data for the month of May were used in a validation 
study. May was selected because it had the highest num- 
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ber of observations in the in situ field. The mean squared 
differences between the predicted and the observed in 
situ values were computed and plotted (Figure 1). 

There was not so much difference between predictions 
from the basis and the penalized. Though most of the 
times the differences are visible only after the third or 
fourth decimal place, there are a few times where the dif- 
ferences appear very distinct between the two in favour 
of the penalized blending method. Penalized models are 
always expected to perform better than non penalized 
ones. The poor performance here could have been caused 
by the choice of the smoothing parameter which is being 
obtained in this case by cross validation. 

5. Discussions 
We have been able to successfully establish a procedure 
for implementing smoothing on the blending process by 
making use of corrector factor blending technique model 
of [7]. This was achieved by expressing the interpolation 
formula used by the corrector factor blending technique 
in a form making use of the basis function. The aim of 
expressing the blending process using basis functions 
was to pave the way to implement penalization. This was 
implemented by adding a penalty term to the least 
squares objective. This term contained the penalty func- 
tion which penalizes the model and a smoothing parame- 
ter to control the smoothness of the model. The main 
issue here was to be able to choose the right smoothing 
parameter such that the estimated smooth function should 
be as close as possible to the true function. Cross valida- 
tion technique was used to obtain the smoothing parame- 
ter. To obtain the cross validation score three techniques 
were used, namely ridge regression, integrated least squares 
and the integrated squared derivative. 

Calculating the cross validation score using ridge re- 
gression failed because the final expression for calculat- 
ing the score did not depend on the smoothing parameter. 
 

 
Figure 1. A box plot of the mean squared differences be- 
tween predicted and observed in situ values from the dif- 
ferent blending methods. 

As described by [9], this is not surprising since if a Zk is 
dropped from the model sum of squares term in equation 
(8), the only thing influencing the estimate of kβ  would 
be the penalty term, which will be minimized by setting 

0kβ = , whatever positive value the smoothing parame- 
ter takes. This complete decoupling will cause cross- 
validation to fail. Thus, if a datum is left out, its corres- 
ponding estimate will always be zero since no other data 
has influence on it. This behavior occurs for any possible 
value of the smoothing parameter. 

Making use of the cross-validation score calculated 
from the integrated least squares did not improve on the 
results in this research. This again, according to [9], is 
not surprising because if one considers any three equally 
spaced points x1, x2, x3 with corresponding f(xi) values to 
be 1µ , 2µ  and 3µ . Also, if 1 3µ µ µ∗= =  then in or- 
der to minimize 

( )3

1

2 d
x

x
x xµ∫  

one should set 2 2µ µ∗= . This condition does not hold 
for the data fields used in this research since the data 
fields were sparse, and the missing values were replaced 
by pseudo zeroes, so it was not uncommon to find a set 
of three adjacent points with similar values. In a situation 
like this, [9] states that, if the middle point is omitted 
from the fitting, the action of the penalty will send its 
estimate to the other side of zero from its neighbors. 
Meaning that a better prediction of the omitted datum 
will only be possible with a high smoothing parameter 
and this will be closer to zero since the high smoothing 
parameter will tend to shrink the values of the other in- 
cluded points towards zero and hence the omitted point. 
With this, cross validation will also have the tendency to 
always select an estimate for the omitted points closer to 
zero from the model. This could have been the cause of 
the poor results obtained. The integrated squared deriva- 
tive penalty is not expected to suffer from the same 
problems faced by the previous methods. This is because 
the action of the penalty is simply to try and flatten the 
smooth function around the vicinity of the omitted datum. 
If the smoothing parameter is large, it will increase the 
flattening and consequently pulls the estimate far away 
from the omitted datum. The penalty obtained by this 
technique had very little or no effect on the smoothing 
function hence the equality in results from the penalized 
and the basis function model. 

6. Conclusion 
It is expected that a penalized model would be able to 
perform better than a non penalized model in a situation 
where penalization is necessary. Three techniques have 
been used to obtain penalty matrices in this research with 
the intention of improving the results from normal 
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blending method. The penalized model was obtained by 
first representing the blending method by making use of 
the basis function which was also considered as a model 
on its own. Even though the results from the basis func- 
tion and penalized model were relatively identical since 
most differences occurred at the third or fourth decimal 
place, it is important to know that the difference between 
these methods and the normal blending method is quite 
alarming (Figure 1) and therefore should be encouraged 
especially if more data could be obtained from ship and 
buoy. With the emergence of this result, it is hoped that 
most of the analysis on primary productivity and man- 
agement in the ocean environment will be greatly af- 
fected, since chlorophyll is one of the most important 
components in the formation of the ocean life cycle. 

Future Work 
The failure of the penalized blending regression models 
to perform better than the basis function model could 
have been because the right penalty was not obtained. 
Therefore, more work could be done towards obtaining 
other penalties. Maybe, an integrated squared second 
derivative could be tried or one could try a combination 
of the first and second derivatives (double penalization). 
To enable the blending process to be very close to reality, 
the possibility of extending it to three dimensions could 
be looked into. 
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