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ABSTRACT 
Traffic congestions and road accidents continue to increase in industry countries. There are three basic strate-
gies to relieve congestion. The first strategy is to increase the transportation infrastructure. However, this strat-
egy is very expensive and can only be accomplished in the long-term. The second strategy is to limit the traffic 
demand or make traveling more expensive that will be strongly opposed by travelers. The third strategy is to 
focus on efficient and intelligent utilization of the existing transportation infrastructures. This strategy is gaining 
more and more attention because it’s well. Currently, the Intelligent Transportation System (ITS) is the most 
promising approach to implementing the third strategy. Various forecast schemes have been proposed to manage 
the traffic data. Many studies showed that the moving average schemes offered meaningful results compared to 
different forecast schemes. This paper considered the moving average schemes, namely, simple moving average, 
weighted moving average, and exponential moving average. Furthermore, the performance analysis of the short- 
term forecast schemes will be discussed. Moreover, the real-time forecast model will consider the abnormal con- 
dition detection. 
 
KEYWORDS 
Forecast Scheme; Moving Average; Intelligent Transportation System 

1. Introduction 
This paper introduces a modern forecast strategy. Con-
ceptually, traffic information [1,2] may fall into one of 
the three categories as follows: historical information, 
real-time information, and predictive information. The 
historical data [3,4] are a collection of past observations 
of the system. Real-time information is the most up-to- 
date and can be calculated, e.g., by on-line simulations. 
The real-time information achieves to update the histori-
cal adaptive information, special in the case that the real- 
time information does not match the historical informa-
tion. To optimize the forecast algorithm, we have col-
lected travel data by the mobile phone. For a successful 
forecast of traffic flow, it ought to apperceive the variety 
of environment and can adjust the parameters automati-
cally. Furthermore, it is important that the forecast model 

takes into consideration the abnormal conditions that 
occurred in real-time [5,6]. The paper is organized as 
follows. Section 2 describes the problem in transporta-
tion engineering. Section 3 introduces the information 
collection based on cellular phone services. Section 4 
introduces the short-term forecast scheme based on his-
torical and real-time information. Section 5 discusses the 
performance analysis of the proposed short-term forecast 
scheme based on exponential moving average. 

2. Methodology 
The purpose of this paper is to assess the strengths and 
limitations of available of the traffic data collection 
based on the cellular mobile services and their corres-
ponding processing algorithms. The performance of an 
incident detection system is determined on two levels:  
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data collection technologies and data processing algo-
rithms. Variations in cellular mobile services [7] and 
algorithm schemes result in a variety of solutions for 
incident detection. Various short-term traffic forecasting 
scheme have been proposed [8-19]. In this section we 
introduce the forecast model based on the moving aver-
age. There are three types of moving average, that is, 
simple moving average (SMA), weight moving average 
(WMA), and exponential moving average (EMA) [20- 
23]. In this study, an exponential moving average is con-
sidered. An exponential moving average uses a weight- 
ing or a smoothing factor which decreases exponentially. 
The weighting for each older data point decreases ex- 
ponentially, giving much more importance to recent ob- 
servations while not discarding the older observations 
entirely. Figure 1 illustrated the proposed forecast model. 
The forecast model is divided into two phases, namely, 
detection phase, and forecast phase. The detection phase 
focused on the collected data analysis. To increase the 
accuracy of the forecast model we need to detect the ab-
normal events in the collected data. The forecast scheme 
is based on the exponential moving average. The robust-
ness and accuracy of the exponential smoothing fore- 
cast is high and impressive. The accuracy of the expo-
nential smoothing technique depends on the weight 
smoothed factor alpha value of the current demand. To 
determine the optimal alpha factor value we use the fit-
ting curve. 

There are two kinds of exponential moving average 
forecasting (EMA) that is exponential moving average 
based historical information (EMA-H) and exponential 
moving average based real-time information (EMA-R). 
The EMA-R consists of two main phases, namely detec-  

 

 
Figure 1. Algorithm process. 

tion phase and forecast phase 

2.1. Forecast Based Historic Observations 
The historical database is a collection of past travel ob-
servations of the system. Exponential smoothing is fore-
casting method that gives weight to the observed time 
series unequally. The unequal weight is accomplished by 
using one or more smoothing parameters, which deter-
mine how much weight is given to each observation. The 
major advantage of exponential smoothing methods is 
that gives good forecasts in a wide variety of applications. 
In addition, data storage and computing requirements are 
minimal, which makes exponential smoothing suitable 
for real-time application. 

( ) ( ) ( ) ( )1, , 1 ,M Htt t k tt t k tt t kα α+ = ∗ + − ∗    (1) 

where 0 1α< ≤ , ( ),Mtt t k  the actual travel time in 
section k  at the time ( ),Ht tt t k⋅  the historical travel 
time in section k  at time t . 

Smoothed Parameter Alpha 
To achieve short-term traffic flow forecasting with high 
accuracy, the proposed forecast scheme required to op- 
timize the smoothed parameter alpha. Alpha determines 
how responsive a forecast is to sudden jumps and drops. 
It is the percentage weight given to the prior, and the 
remainder is distributed to the other historical periods. 
Alpha is used in all exponential smoothing methods. The 
lower the value of alpha, the less responsive the forecast 
is to sudden change. The smoothing parameter “alpha” 
lies between 0 and 1. To determine the optimized 
smoothing factor, a sum of the square errors between the 
observed and the forecasted alpha dose rates was ana-
lyzed by increasing the smoothing filter factor from 0.1. 
Sum of the square errors is decreased as the smoothing 
filter factor is increased as showed in Figure 2. 
 

 
Figure 2. Smoothed parameter alpha. 
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2.2. Real-Time Forecasting 
Occurrence of Abnormal conditions in flow travel infor-
mation decrease the accuracy of the forecasting based 
historical information and may increase the complexity 
of the forecasting of unusual incidence. The forecast 
model in real-time gives a small weight to the history 
information and a big weight to the real-time observa- 
tion. 

( ) ( ) ( ) ( )( )1, 1, , ,H M Htt t k tt t k tt t k tt t kγ+ = + + ∗ −    
(2) 

where 0 1γ< < . 
Figure 3 illustrates the real-time forecast model in 

abnormal conditions. 

2.2.1. Smoothed Parameter-Gamma 
Figure 4 illustrated that the value of gamma for real-time  

forecasting is closed to 0.9885. 

2.2.2. Section Mutual Influence 
In the real-time forecasting we take into consideration 
the effect of the upstream (UP) and downstream (DS). 

( ) ( ) 1

2 3

1, 1, desiredHtt t k tt t k
UP DS

γ
γ γ

+ = + + ∗

+ ∗ + ∗
      (3) 

where 

( ) ( )desired , ,M Htt t k tt t k = −   

( ) ( )upstearm , 1 , 1M Htt t k tt t k = − − −   

( ) ( )downstream , 1 , 1M Htt t k tt t k = + − +   

k  is the desired section, ( )1k −  is the upstream section 
( )1k +  is the downstream section. 
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Figure 3. Real-time forecast. 

 

 
Figure 4. Smoothed parameter gamma. 
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2.3. Accident Detection Strategy 
The performance of an incident detection system is de- 
termined on two levels: data collection and data proces- 
sing. Data collection refers to the detection/sense/sur- 
veillance technologies that are used to obtain traffic flow 
data. Data processing refers to the algorithms used for 
detecting and classifying incidents through analyzing the 
traffic parameters from detectors or sensors for the pur- 
pose of alerting observers of the occurrence, severity, 
and location of an incident. The hybrid of data collection 
strategies and data processing methodologies results in a 
variety of solutions for incident detection. The main task 
of the proposed accident detection (AD) algorithm is to 
identify and distinguish different traffic modes. It de- 
pends on an upstream occupation increase and a down- 
stream occupation decrease at the level of loop detector 
where an incident happened. This algorithm compares a 
value of a traffic flow parameter with a known value. 
The algorithm trusts that an upstream occupation will 
increase and downstream occupation will decrease where 
an incident happened. In traffic incident detection, a time 
sequence is used to describe a traffic state. When a cur- 
rent measured value is deviated from the output of the 
algorithm seriously, the algorithm will think that an in-
cident has occurred. The time sequence analytic algo- 
rithms include a moving average algorithm, an exponen- 
tial smoothing algorithm.  
● The accident characterized by temporal variation of 

speed at fixed road section (location) that expressed 
as the coefficient of variation in speed. 

● The spatial variation of speed along road sections 
expressed as the difference in speed between up- 
stream and downstream location (Q). 

( ) ( ), 1 , 2Q tt t s tt t s= −             (4) 

where ( ), 1tt t s , ( ), 2tt t s  average speeds computed 
over period of t  upstream and downstream of a road 
sections, respectively (km/h).  

2.3.1. Incident-Influence Traffic Data 
An incident occurring on section i  within time interval 
t  is considered to have a significant impact on traffic 
when traffic measurements from the upstream and down-
stream stations satisfy the following conditions: 

1) The difference between upstream speed ,si t  and 
downstream speed 1si + , t  is greater than the thre-
shold value;  

2) The ratio of the difference between the upstream 
and downstream speeds to the upstream speed 
( ), 1, ,si t si t si t− +  , is greater than the threshold value; 
and  

3) The ratio of the difference between the upstream 
and downstream speeds to the downstream speed 
( ), 1, 1,si t si t si t− + +  is greater than the threshold val-  

ue.  
The abnormal record shows that at least 30 km/h lower 

traffic speed than the average speed of all records at the 
same time on the same day of the week. The threshold of 
30km/h is a symbolic value of the smallest speed change 
that people would consider “abnormal”. The vehicle 
speed starts to decrease in upstream however the speed in 
downstream starts to increase. 

( ) ( )
( )

, 1,
threshold

,
tt k t tt k t

tt k t
− +

>         (5) 

( , ) ( 1, ) threshold
( 1, )

tt k t tt k t
tt k t
− +

>
+

         (6) 

2.3.2. Real-Time Accident Detection 
The travel time forecast model considers the incident and 
non-incident conditions. We make different between  
● Accident during peak time (morning/afternoon) 
● Accident during regular time 
● Heavy accident 
● Light accident 

The accident is cleared at current time t in section s, 
the duration is known and the speed is considered to be 
30 km reduced of the average speed.  

( ) ( ) ( ) ( )1, 1,H M H
t tttt t k tt t k P tt ttγ+ = + + ∗ ∗ −   (7) 

( ) 1accident
1 tt tP P

e υ−= =
+

, 

1 1 2 2 3 3 4 4t x x x xυ β β β β= + + +  

( ) ( )
1 2,

H H
t t t t

H H
t t

tt tt
x x

σ σ

σ σ

− −
= = , 

( ) ( )1 1
3

1

H H
t t t t

H H
t t

tt tt tt tt
x

σ σ
− −

−

− −
= − , 

( ) ( )1 1
4

1

H H
t t t t

H H
t t

x
σ σ σ σ

σ σ
− −

−

− −
= −  

where X denotes the vector of predictor variables. β is the 
vector of coefficient associated with the predictor va0 
riables. and can be computed according to the binary 
logit model. νt is the logit link function (which is a linear 
combination of the predictor variables).  

2.4. Smoothed Parameter Optimization  
To increase the exponential moving average forecast 
accuracy in real-time, the smoothed parameter alpha and 
gamma in Equation (2) should be optimized. Figure 5 
illustrated the value of the optimized smoothed parameter 
gamma in real-time accident conditions. 

Figure 6 illustrated value of the optimized smoothed  
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Figure 5. Gamma value AD. 

 

 
Figure 6. Gamma value in NAD. 

 
parameter gamma in real-time non-accident conditions.  

Based on Equation (7), the optimized parameters in 
real-time accident conditions and real-time non-accident 
conditions are summarized in Table 1. 

3. Performance Analysis 
There are various measures of forecasting accuracy tech-
niques proposed in the literature [24-29]. The aim of this 
study is to evaluate forecast accuracy travel observations. 
The forecasting accuracy techniques are used to be able 
to select the most accurate forecast scheme. Furthermore 
we aim to analyze the moving average schemes, namely 
simple moving average, weighted moving average, and 
exponential moving average. The forecasting perfor- 
mance of the various models and the measures of the 
predictive effectiveness was evaluated using various  

summary statistics. The comparing experiments are car-
ried out under normal traffic condition and abnormal 
traffic condition to evaluate the performance of four 
main branches of forecasting models on direct travel time 
data obtained by license plate matching (LPM). The 
MAE is a measure of overall accuracy that gives an in- 
dication of the degree of spread, where all errors are as- 
signed equal weights. The MSE is also a measure of 
overall accuracy that gives an indication of the degree of 
spread, but here large errors are given additional weight. 
It is the most common measure of forecasting accuracy. 
Often the square root of the MSE, RMSE, is considered, 
since the seriousness of the forecast error is then denoted 
in the same dimensions as the actual and forecast values 
themselves. Mean square percentage error (MSPE) is the 
relative measure that corresponds to the MSE. The more  
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commonly used measure is the root mean square percen-
tage error (RMSPE). Theil’s Coefficient is another statis- 
tical measure of forecast accuracy. One specification of 
theil’s compares the accuracy of a forecast model to that 
of a naïve model. A theil’s greater than 1.0 indicates that 
the forecast model is worse than the naïve model; a val- 
ues less than 1.0 indicates that it is better. The closer U is 
to 0, the better the model.  

Modern vs. Traditional Traffic Data 
In this section we illustrate the simulation results and 
analysis of the implementation of the measured traffic 
speeds and travel time. The information of the dual 
magnet loop detectors will be compared to the informa- 
tion that is provided from cellular phone service. Based 
on the WEKA platform we have carry out analysis and 
comparison of different Prediction schemes. WEKA 
(Waikato Environment for Knowledge Analysis) is a col- 
lection of machine learning algorithms for data mining 
tasks. WEKA contains tools for data pre-processing, 
classification, regression, clustering, association rules 
and visualization [30]. We have used the WEKA to make 
comparison between the following schemes: 

1) Smoothed Linear Models (LM) 
2) Tree Decision (TD)  
3) Nearest- Neighbor Classifier (NN) 
The comparison is focused on various statistical mea-

surements error, mean absolute error (MAE), root mean 
squared error (RMSE), relative absolute error (RAE), 
root relative squared error (RRSE), and Theil’s coeffi-
cient. Tables 2-4 illustrate general comparison between 
cellular travel speed and sensor travel speed. The results 
of the quality measurements are summarized in Tables 
2-4. Furthermore Tables 2-4 illustrate that the Nearest  

 
Table 1. Optimized parameters in AD/NAD. 

 

AD no AD 

γ

 

0.9993 0.5346 

1β

 

1.0004 0.2215 

2β

 

1.0018 0.1138 

3β

 

0.9998 0.2315 

4β

 

0.9993 0.4643 

 
Table 2. Cellular vs. sensor based on LM. 

Statistical Measur. 
Linear model-LM 

Cellular Sensor 

MAE 7.973 7.1967 

RMSE 11.6976 11.5308 

RAE 41.4674% 69.6342% 

RRSE 49.1034% 68.9102% 

Neighbor Scheme offers a clear and the best results 
compared to the linear model and tree decision schemes. 
Table 5 illustrates a comparison between the SMA, 
WMA, EMA. 

4. Simulation Results 
Results indicate that all three moving average methods, 
SMA, WMA and EMA, have more or less similar per-
formance in forecasting short-term travel times. However, 
as one would expect the method using optimized weights 
produced slightly better forecasts at a higher computa-
tional cost. Quality of forecasts is diminished as the time 
for which forecasts are made is farther in the future. 
Moving average methods overestimate travel speeds in 
slow-downs and underestimate them when the conges-
tion is clearing up and speeds are increasing. Figures 7-9 
described the comparison between SMA, WMA and 
EMA based on the various statistical measurements error. 
Figure 10 compared the EMA to optimized EMA based 
on historical observations. Figures 11 and 12 showed the 
actual observations compared to EMA based Information 
and to EMA based on real-time information. Results in-
dicate that all three moving average methods have more 
or less similar performance in forecasting short-term tra-
vel times. However, as one would expect the method 
using optimized weights produced slightly better fore-  

 
Table 3. Cellular vs. sensor based on TD. 

Statistical Measur. 
Tree decision-TD 

Cellular Sensor 

MAE 9.5974 7.57 

RMSE 14.0847 11.6718 

RAE 49.916% 73.2468% 

RRSE 59.1237% 69.753% 

 
Table 4. Cellular vs. sensor based on NN. 

Statistical Measur. 
Nearest Neighbour 

Cellular Sensor 

MAE 6.4734 6.6224 

RMSE 10.1594 11.0445 

RAE 33.6678% 64.0777% 

RRSE 42.6465% 66.0042% 

 
Table 5. SMA vs. WMA vs. EMA. 

statistical Measurements SMA WMA EMA 

MAE 6.22 8.11 5.17 

RMSE 12.33 14.04 9.57 

RAE 11.84 16.54 11.54 

Theil’s Coefficient 7.21 9.55 5.61   
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Figure 7. SMA, WMA, EMA in comparison. 

 

 
Figure 8. Theil’s coefficient. 

 

 
Figure 9. MAE. 

 
casts at a higher computational cost. Quality of forecast 
is diminished as the time for which forecasts are made is 
farther in the future. Moving average methods overesti-
mate travel speeds in slow-downs and underestimate 
them when the congestion is clearing up and speeds are 
increasing. Figure 13 illustrated the comparison between 
the exponential moving average based historical infor-
mation (EMA-H) and the exponential moving average 
based real-time information (EMA-R) compared to ac-
tual observations. EMA-H detects the abnormal condi-
tions in travel flow traffic based pervious information 
that are collected in same location and at the same time. 
The advantage of the EMA-H is an identification of in-  

cident in flow traffic. However a repeated incident with 
the same characteristics in the future is not certain. Fur-
thermore Figure 13 illustrated that EMA-R identify the 
incident in the flow traffic and provides incident clear-
ness. Tables 6 and 7 illustrated the comparison between 
EMA based historical information and EMA based real- 
time in accident and in non accident conditions. 

5. Conclusion 
Various forecast schemes have been proposed to manage 
the travel flow. In order to select the fit forecast scheme, 
we have carried out analysis and comparison among  
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Figure 10. Comparison between EMA and Opt-EMA. 

 

 
Figure 11. EMA-H vs. actual observations. 

 

 
Figure 12. EMA-R vs. actual observations. 
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Figure 13. EMA-H, EMA-R in comparison. 

 
Table 6. Historical vs. real-time in AD. 

 Hist Real 

mean data 79.234 79.234 

mean prediction 75.324 78.981 

std data 17.737 17.737 

std prediction 22.993 16.673 

Observations with error over 5 km/hr 42.206 40.281 

Observations with error over 10 km/hr 26.006 22.356 

max abs. error 93.492 81.288 

max. relative error 1181.7 4538.8 

mean error 3.9104 0.25324 

mean abs. error 10.588 7.4191 

mean relative error 16.743 12.656 

root mean squared error 20.505 12.118 

root mean squared percent error (1) 39.798 32.049 

root mean squared percent error (2) 25.88 15.294 

Theil’s coefficient 12.82 7.4844 

bias proportion 3.6367 0.04367 

variance proportion 6.57 0.77046 

co-variance proportion 89.793 99.186 

 
different forecast schemes. In this paper, we have intro-
duced various forecast schemes based on the historical 
data and real-time observations. Furthermore, in this pa-
per, we discuss and summarize some prediction methods 
based on their performance analysis. We conclude that the 
optimized exponential moving average is the most accu-
rate method. Moreover, the proposed algorithm has been 

Table 7. Historical vs. real-time in NAD. 

 Hist Real 

mean data 67.805 67.805 

mean prediction 65.622 66.798 

std data 17.809 17.809 

std prediction 18.682 16.968 

Observations with error over 5 km/hr 33.086 31.293 

Observations with error over 10 km/hr 17.385 15.735 

max abs. error 73.39 73.264 

max. relative error 587.12 586.11 

mean error 2.183 1.0076 

mean abs. error 6.6768 5.472 

mean relative error 12.238 10.562 

root mean squared error 12.452 9.2418 

root mean squared percent error (1) 26.42 23.514 

root mean squared percent error (2) 18.364 13.63 

Theil’'s coefficient 9.0011 6.6476 

bias proportion 3.0737 1.1886 

variance proportion 0.49122 0.82716 

co-variance proportion 96.435 97.984 

 
given the best solution for traffic travel forecast. However, 
the number of the road accidents increase rapidly. To re- 
duce the incidents, a new detection scheme should be dev- 
eloped that takes driver’s behaviors into consideration. 
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