
Journal of Computer and Communications, 2014, 2, 85-90
Published Online January 2014 (http://www.scirp.org/journal/jcc)
http://dx.doi.org/10.4236/jcc.2014.22015

OPEN ACCESS JCC

Conversion of Object Oriented System into Software
Product Line with Delta Modeling Abstract Behavioral
Specification

Ricky Timothy Gultom, Maya Retno Ayu Setyautami, Iis Solichah

Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia.
Email: ricky.timothy@ui.ac.id; maya.retno21@ui.ac.id; iis@cs.ui.ac.id

Received November 2013

ABSTRACT
This article contains a system conversion from object oriented design into Software Product Line (SPL) using
delta modeling of Abstract Behavioral Specification (ABS). ABS is a modeling language which targets system
with high level of variety and supports SPL development with delta modeling. The case study of this thesis is a
digital library system called Library Automation and Digital Archive (LONTAR). Originally, LONTAR only
uses SOAP-based web service. With ABS, LONTAR will be converted into SPL and implement another web ser-
vice called REST. The motivation of this conversion of LONTAR from object oriented into SPL is because it is
easier to develop system with ABS than using regular object oriented. Product definition in ABS is relatively
easier than creating a new subclass and do customization to make it works well.

KEYWORDS
System Conversion; Abstract Behavioral Specification; Delta Modeling; Software Product line; Object Oriented

1. Introduction
In software development scenario with high variety level,
software modeling language and powerful tools to help
the implementation process are among of most important
things. Design-oriented languages such as Unified Mo-
deling Language (UML) cannot fulfill this need because
of their lack in executability. Implementation-oriented
languages like Java Modeling Language (JML) are lack-
ing on verifiability. This kind of lackness is tried to be
solved by formal abstract language such as B-Method [1].
However, the usability is low because it is not easy to
use.

The problem is one of the background of development of
Abstract Behavioral Specification (ABS). One of the target
of ABS is highly reusable software. Software reuse has
been a common activity to simplify system design imple-
mentation. One of traditional approaches to software reuse
is the Object Oriented (OO) System. It introduces the con-
cept of abstraction, encapsulation, and polymorphism. The
software reuse lies in its inheritance concept, which pro-
vides object type generalization. While the OO system is
popular, it does not support effective reuse mechanism [2].
It cannot fully accommodate large system with frequent
changes or has many variations of products. One of the

reasons is the reuse mechanism has to maintain the object
type consistency from parent classes to their subclasses.
There is another mechanism to software reuse known as
Software Product Line (SPL), which is more suitable for
large system to implement than OO. It introduces the
concept of core products and variant products [2].

This paper proposed a strategy to convert an OO system
into SPL. We use the ABS delta modeling to form the
conversion mechanism. Delta modeling is used by ABS as
the main code reuse principal instead of inheritance.
Therefore, when we convert OO to SPL, the inheritance in
OO will be replaced with delta modeling ABS.

To verify the conversion mechanism proposed, a case
study has been conducted. The criterion of appropriate case
study is relatively large object oriented system and has
need for variations. This paper chooses digital library
system in Universitas Indonesia, called Library Automation
and Digital Archive (LONTAR), as a case study because it
fulfills the criterion. The issue that we try to discuss in this
paper is the web service provided by LONTAR. Since its
inception, LONTAR only provides SOAP-based web
service. Whereas, REST web service has been commonly
used nowadays. Therefore, there is also a need for
LONTAR to provide REST. With ABS, we try to facilitate

http://www.scirp.org/journal/ajcc�
http://dx.doi.org/10.4236/jcc.2014.22015�
mailto:ricky.timothy@ui.ac.id�
mailto:maya.retno21@ui.ac.id�
mailto:iis@cs.ui.ac.id�

Conversion of Object Oriented System into Software Product Line with Delta
Modeling Abstract Behavioral Specification

OPEN ACCESS JCC

86

LONTAR to fulfill those needs. Moreover, we also try to
show advantage of using ABS rather than object oriented.

This paper is divided into six sections: Introduction,
Literature Study, Conversion Steps, Experiment and Ob-
servation, Concluding Remarks, and finally Acknowledg-
ments. Conversion Steps section contains steps to convert
an object oriented system into SPL using ABS. Content of
each steps is elaborated more clearly in Experiment and
Observation section.

2. Literature Study
2.1. Abstract Behavioral Specification
There are many known modeling languages such as Uni-
fied Modeling Language (UML), Java Modeling Lan-
guage (JML), and Behavior Tree. Each of those lan-
guages has certain flaw or weakness. For example, UML
cannot be executed directly and cannot be verified. On
the other hand, implementation level languages such as
JML are lacking on verifiability aspect. Mathematical
approaches try to solve the problem but they are too
complicated, thus making the usability low.

ABS tries to cover those weaknesses mentioned above.
ABS is a software modeling language which located be-
tween realistic and abstract language. The definition of
realistic language is language in implementation level or
language closely similar to how people think to solve
problems. Meanwhile, abstract language is formal lan-
guage and very mathematical. ABS adds executability
for design-oriented modeling language such as UML and
verifiability for realistic language and tries to improve
usability for abstract language.

According to [3], ABS targets concurrent, distributed,
object oriented software. Moreover, software is devel-
oped with several components and with a high variable
level. To achieve the last one mentioned, ABS imple-
ments delta modeling as the main paradigm to develop
various systems. Further information about ABS can be
accessed in http://www.hats-project.eu/.

2.2. Software Product Lines
Software Product Lines (SPL) is a set of software which
have several similar features [4]. Each element of the set
however has unique features to comply with market de-
mand or special mission. Products in SPL pertain to the
same business goal or application domain, they share the
same architectures; they are also built from the same
components and services [5]. Core assets of SPL are the
architectures, components, and services aforementioned.
They are called core assets because they are the main
resources to create new products in SPL.

Eventually, new products will not be created from
scratch again because they can be built simply by reusing

and reprocessing the core assets which already are there.
Therefore, the process of creating new products will be
faster and more efficient. In addition to that, the new
products will be easier to maintain because they have
similar components.

One way to develop SPL is with Delta Oriented Pro-
gramming (DOP) which is a programming language spe-
cifically designed for implementing SPL approach [6].
The purpose of DOP is to provide expressive and flexible
programming language for SPL. An SPL in DOP is im-
plemented with a core module and a set of delta modules.
Core module is a starting point of other products which
will be created by application of delta module. Core
module has a number of classes as the base of other
products. The definition of base here is a product to be
modified by delta to make a new product.

Delta modules specify changes in core module to im-
plement other products. Those changes are in class level
such as adding, removing, and modifying class. They can
also be in class structure level such as adding and re-
moving field or method.

2.3. LONTAR
Library Automation and Digital Archive (LONTAR) is a
digital library system in Universitas Indonesia. This sys-
tem manages common activities in library such as look-
ing data about a collection, borrowing collection, return-
ing collection, etc. LONTAR also provides web service
to increase its interoperability for various libraries. The
architecture of LONTAR can be seen in Figure 1.

Currently LONTAR only provides SOAP web service
because LONTAR uses Apache Axis as shown in circle
in Figure 1, which is by default only implements SOAP
web service. In its development, there are needs for
digital libraries to implement REST or other web service.

This paper tries to explore possibility for using ABS to
make LONTAR has another web service such as REST.
The plan is to take one specific LONTAR's module
which is the web service module and convert it to SPL.
With it, hopefully it will become easier to implement
another web service. As illustrated, we tried to adjust the
module in circle in Figure 1 according to Figure 2.

3. Conversion Step
Steps from Figure 3 can be generally used for every
object oriented system. Meanwhile, steps in Figure 4 are
specifically used for LONTAR conversion from an
object oriented system into an SPL one. In Figure 4, first
two steps are the same as two first steps in Figure 3.
Significant differences for steps in LONTAR are in third
and fourth step. In Figure 4, step “process and generate”
is elaborated more specifically. The triangular shapes

Conversion of Object Oriented System into Software Product Line with Delta
Modeling Abstract Behavioral Specification

OPEN ACCESS JCC

87

Figure 1. Architecture of LONTAR.

Figure 2. Replacement for one of LONTAR’s module; De-
velopment plan for LONTAR.

Figure 3. Conversion steps from object oriented system into
SPL.

Figure 4. LONTAR’s conversion from object-oriented into
SPL.

symbolize existing deltas, while circles show products
that can be created by applying those deltas. If no deltas
are chosen SOAP product will be made. If CSV delta is
chosen then the product will be REST with CSV and so
on. Fourth and the last step in Figure 4 is to run the
product. Each step will be explained more thoroughly in
the next section.

4. Experiments and Observation
4.1. Creating Dummy Object
Object is an instance of a class. Therefore, to create an
object, a class must already be made. Dummy object
serves as a purpose to allow LONTAR's data in Java to
be processed further in ABS. After the class exists,
dummy object can be created. It is called dummy object
because it will be overridden eventually. The explanation
of how it will be overridden is on the next subsection.

4.2. Override
In override phase, the first idea is directly using library of
retrieval module to access and call LONTAR's index file.
The purpose of this is to get the content of the index file.
After received the contents, they are given back to ABS
for the next step.

Nevertheless, this way is not running smoothly. ABS
version used in this research per April 25th 2013 has not
supported foreign libraries. ABS can only recognize
libraries that are built-in from Java such as java.util and
java.io. As a temporary solution, the genuine codes from
LONTAR are copied to a Java program. This program’s
purpose is to write to a file content of the first ten index
after doing query “software engineering” on LONTAR.

Conversion of Object Oriented System into Software Product Line with Delta
Modeling Abstract Behavioral Specification

OPEN ACCESS JCC

88

This file will be read, created object based on it, and
given to ABS.

4.3. Choose Product

In this phase, features that are going to be realized in a
product will be decided. These features are created from
application of delta to core product.

To achieve that, the first thing to do is to create a list
of string so a delta can be selected to choose appropriate
message format. The names of variables with the content
of them are passed to the aforementioned list. Method
which this list is going to be printed is going to be
modified by delta.

There are three deltas that can be chosen. They are
DCSV to make a message with CSV format, DXML to
create a message with XML format and DJSON for
JSON format. All of them need a parameter in the form
of list of string. This list is going to be processed so the
message can be formed with appropriate format. Another
similarity between the three deltas is that they create a
list of string that its content is the string after being
processed in delta.

Take one of the delta which is DJSON that can be seen
in Figure 5. Delta DJSON takes all the elements of a list
of string one by one and craft it to be in JSON format.
After the deltas are made, next step is to create a file to
control the product line. Figure 6 contains the file to
control the product line. It defines all the features such as
PrintJSON, PrintXML, and PrintCSV with deltas that are
applied for those features. DJSON for PrintJSON,
DXML for PrintXML and DSCV for PrintCSV. The last
step is to create a file which contains two things. First is
the name of products that are going to be made. Second
is the name of features each particular products are using.
The example can be seen in Figure 7.

There are three products UseJSON, UseXML, and Use
CSV. PrintJSON feature is used for product Use JSON,
PrintXML is used for product UseXML and feature
PrintCSV is used for product UseCSV. As the name
suggests, product UseJSON will use feature PrintJSON
and apply delta DJSON to core product and eventually
print the data in JSON format. Same as the two products
before, product UseCSV will use feature PrintCSV and
print in CSV format.

Figure 8 shows the core product which none of the
deltas is chosen. The message is printed in SOAP format.
The format of the message conforms the format descri-
bed in printing method in ABS before any deltas are
applied. The result of using UseJSON product can be
seen in Figure 9. The format of the printed message now
becomes JSON format. This is happened due to delta
DJSON has modified the printing method in ABS.

Figure 5. Delta LONTAR.

Figure 6. LONTAR Product Line.

Figure 7. LONTAR Products.

Figure 8. Core product.

Conversion of Object Oriented System into Software Product Line with Delta
Modeling Abstract Behavioral Specification

OPEN ACCESS JCC

89

Figure 9. UseJSON product.

4.4. Observation
Table 1 consists of general comparison in LONTAR
development between using ABS and using Object
Oriented Approach.

Without ABS, to add other web service in LONTAR,
new classes are needed and the functionalities are similar
with classes that already in LONTAR. These new classes
are used for implementing REST. New classes can be
made as subclasses from the old ones. The difference is
the new classes do not use Apache Axis because it only
can be used for SOAP. The format of REST message
should be defined in the new classes.

Meanwhile, the implementation of code reusability in
ABS is not with inheritance but delta modeling. One of
the reason to do this is because ABS uses strong encap-
sulation while inheritance can weaken encapsulation [7].

ABS uses strong encapsulation to avoid the data
encapsulation weakening. In object oriented three kinds

of data encapsulation are known which are public,
private and protected. In ABS all data are private. Encap-
sulation is even stricter than in object oriented where two
objects even in the same class cannot access each other.

Another advantage in delta modeling is its abilities to
do plug and play where users do not have to do com-
plicated configuration when adding new classes. Users
just have to select appropriate delta to apply to the core
module. We can see the example in previous section. By
just applying DJSON delta, the message is formatted in
JSON format.

With SPL and ABS, to develop LONTAR is relatively
easier. The development process in ABS becomes easier
because developers can be more focused in modification
with deltas. However, in object oriented system, custo-
mization for the new classes to work well with the old
ones without ruining the system is necessary.

5. Concluding Remarks
Based on the experiment, OO System can be converted

Table 1. Table General Comparison between ABS and Ob-
ject Oriented.

No Object Oriented ABS

1 Create new class Create new product

2 Inheritance Delta Modeling

3 Data Encapsulation can be public,
private or protected Every data is private

4 Class defines object type Class does not
define object type

into SPL using delta modeling of ABS. This approach
can be done in four steps, which are creating the dummy
objects, override the dummy object, process and generate,
and run the Java code from the previous step. On the
LONTAR case study there was a problem with the cu-
rrent version of ABS plugin in step “process and generate”
since LONTAR uses Apache Library while ABS only
can process Java Library. Nonetheless, that is only tech-
nical issue. Theoritically, ABS has no problem just like
OO. To resolve the problem, we have found a temporary
workaround. Further development of ABS however is
required.

Delta modeling has another opportunity to be used in
another aspect of OO which is refactoring, one of tech-
nique for restructuring internal structure without chang-
ing its external behavior [8]. Refactoring can be used in
restructuring code, like Java Code, or restructuring model,
like UML Class Diagram. Delta modeling is used to
modify code in ABS without changing its core ABS code.
Thus, refactoring and delta modeling have similar pur-
pose on modifying code or model. However, delta mo-
deling can be verified but refactoring naturally cannot. If
refactoring can be represented in delta modeling, it will
have an opportunity to be verified.

Currently, we are developing translation mechanism
from UML Class Diagram to ABS. This mechanism can
help to create delta modeling representation of refactor-
ing. We will create the complete process as the future
work to explore another use of delta modeling in Object
Oriented System.

Acknowledgements
This paper is part of research entitled “Development of
Highly Adaptable and Reliable Software Development
Tool to Support Requirement Changes and Variation of
User Needs” which is led by Ade Azurat and fully
funded by Penelitian Unggulan Perguruan Tinggi (Hibah
Internal Fasilkom UI BOPTN Tahun 2013). Author also
would like to give special thanks for Reiner Hahnle,
Richard Bubel, Yannick Welsch and Radu Muschevici
for their helpful advises on this research.

Conversion of Object Oriented System into Software Product Line with Delta
Modeling Abstract Behavioral Specification

OPEN ACCESS JCC

90

REFERENCES
[1] D. Cansell and D. Mery, “Foundations of the B Method,”

Computing and Informatics, Vol. 22, 2003, pp. 221-256.
[2] M. Eriksson and A. Hagglunds, “An Introduction to Soft-

ware Product Line Development,” Proceedings of Ume’s
Seventh Student Conference in Computing Science, 2003.

[3] R. Hahnle, “The Abstract Behavioral Specification Lan-
guage: A Tutorial Introduction,” TU Darmstadt, Darm-
stadt, 2012.

[4] P. C. Clements and L. Northrop, “Software Product Lines:
Practices and Patterns,” SEI Series in Software Engineer-
ing, Addison-Wesley, Boston, 2001.

[5] L. Northrop, “Software Product Line Essentials,” Carnegie-
Mellon University, Pittsburgh, 2008.

[6] I. Schaefer, et al., “Delta-Oriented Programming of Soft-
ware Product lines,” 2010.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
221.4371

[7] A. Snyder, “Encapsulation and Inheritance in Object-
Oriented Programming Lanugages,” ACM, New York,
1986.

[8] M. Fowler, “Refactoring Improving the Design of
Existing Code,” Addison-Wesley, Boston, 2011.

