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ABSTRACT 
Tumor growth from a single transformed cancer cell up to a clinically apparent mass spans many spatial and 
temporal orders of magnitude. Implementation of cellular automata simulations of such tumor growth can be 
straightforward but computing performance often counterbalances simplicity. Computationally convenient si- 
mulation times can be achieved by choosing appropriate data structures, memory and cell handling as well as 
domain setup. We propose a cellular automaton model of tumor growth with a domain that expands dynamically 
as the tumor population increases. We discuss memory access, data structures and implementation techniques 
that yield high-performance multi-scale Monte Carlo simulations of tumor growth. We discuss tumor properties 
that favor the proposed high-performance design and present simulation results of the tumor growth model. We 
estimate to which parameters the model is the most sensitive, and show that tumor volume depends on a number 
of parameters in a non-monotonic manner. 
 
KEYWORDS 
Cellular Automaton; Dynamic Boundaries; Tumor Model; Cancer Stem Cells; Sensitivity Analysis 

1. Introduction 
Simulating complex multi-scale cellular automata is still a great challenge despite advances in computational 
power of modern computers in recent years. Cellular automata are increasingly used to simulate tumor growth 
dynamics [1-15]. Whilst many efficient ways exist to simulate deterministic and synchronous cellular automata, 
such as Conway’s “Game of Life” [16], high-performance simulation of stochastic cancer cell kinetics and 
emerging multi-scale tumor population dynamics is still in is infancy. In stochastic Monte Carlo cancer models, 
cells are not governed by simple deterministic rules but by probability distributions of coupled internal states 
and non-trivial interactions with the continuously changing local environment. Additionally, tumor population 
dynamics emerge from the interaction of millions of cells, and often the development of such populations from 
few initial cells needs to be simulated. This poses problems of bridging many temporal and spatial scales. Due to 
the stochastic nature of single cell kinetics many simulations for the same scenario need to be performed in or- 
der to obtain averaged and statistically significant results. To further complicate matters, in typical tumor growth 
models many parameters need to be estimated in high-dimensional parameter sweeps and sensitivity analysis 
needs to be performed to study parameter influence on overall dynamics. 

The main advantage of utilizing cellular automata in cancer modeling is the ability to formalize experimen- 
tally observable single-cell kinetics [17,18] and observe emerging population level dynamics without a priori 
knowledge of tumor behavior. Because of their apparent resemblance of in vitro cell culture models, cellular 
automata may be referred to as in silico experiments [19]. Automata simulations enable visualization, measure- 
ment and perturbation of cell kinetics as well as their interaction with the environment. Herein we describe a 
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simple cellular automaton tumor growth model, and discuss computer memory access, data structures, domain 
setup and implementation techniques that enable high performance multi-scale simulations. 

2. Tumor Growth Model 

A cancer cell is an individual entity that occupies a single grid point of (10 μm)2 on a two-dimensional square 
lattice. Each cancer cell is characterized by its specific trait vector [cct, ρ, μ, α] denoting cell cycle time, prolife- 
ration potential, migration potential and rate of spontaneous death, respectively [20]. We assume a heterogene- 
ous tumor population consisting of so-called cancer stem cells and non-stem cancer cells. Cancer stem cells are 
assumed to be immortal and have unlimited proliferation potential (i.e., α = 0, ρ = ∞), whereas non-stem cancer 
cells can only divide a limited number of times ρmax before cell death. Each cell type can divide symmetrically to 
produce two daughter cells with parental phenotype. Both populations are coupled through asymmetric division 
of cancer stem cells, which with probability 1 - ps (where ps is the probability of symmetric cancer stem cell 
division) produces a cancer stem cell and a non-stem cancer cell, which inherits an initial proliferation poten- 
tial ρ = ρmax that decreases with each subsequent non-stem cell division (Figure 1(a)). Cells need adjacent space 
for migration and proliferation, and cells that are completely surrounded by other cells (eight on a two-dimen- 
sional lattice; Moore neighborhood) become quiescent (Figure 1(b)). In unsaturated environments, cells proli- 
ferate and migrate into vacant adjacent space at random. At each simulation step, cells can undergo spontaneous 
death with rate α and will be instantaneously removed from the system. 

Time is advanced at discrete time intervals Δt = 1/24 day (i.e., 1 hour), and 24 simulation steps represent one 
day. At each simulation step, cells are considered in random order to minimize lattice geometry effects and the 
behavior of each cell is updated. Cell proliferation, migration and death are random events with the respective 
probabilities scaled to the simulation time step. Cell proliferation and migration are temporally mutually exclu- 
sive events. We assume that cells proliferate at each simulation step with probability pd = (24/cct) × Δt, migrate 
with probability (1 - pd)pm and die with probability α. Let pm = µ × Δt where µ denotes cancer cell motility 
speed. 

3. Implementation 

3.1. Memory Architecture and Data Access 

High-performance simulations require fast access to available memory and cached data. How memory is han- 
dled depends heavily on simulation design as well as used data structures and procedures. The memory in mod- 
ern desktop PCs has three layers: the built-in cache memory has the fastest access time (1 - 20 ns) but a very li- 
mited size; random access memory (RAM) is slower (50 - 100 ns) but much larger; and hard disk drives (HDD) 
whilst having large memory have the slowest access time (5 - 10 ms) (Figure 2). 

State-of-the-art processors may have up to 24 Megabytes (MB) of cache memory and can access up to 4096 
Gigabytes (GB) of RAM (c.f., Intel Xeon E7-8830). Cache memory stores the most frequently used RAM loca- 
tions to reduce access time to necessary information [21]. Due to limited memory size, cached content constant- 
ly changes throughout simulations. Simulation time decreases when the spatial locality property is unsatisfied, 
i.e. the CPU frequently requires access to information that is not stored in cache memory locations. If a so-called 
cache miss occurs data needs to be retrieved from much slower RAM or even HDD memory. High frequencies 
 

    
(a)                                                   (b) 

Figure 1. (a) Cancer cell lineage; yellow: cancer stem cell, red-black: non-stem cancer cells with decreasing prolifera- 
tion potential ρ; (b) Tumor cells populate the computational lattice by cell migration and cell proliferation. A cell can 
randomly migrate to or place a daughter cell into one of the eight adjacent lattice points subject to availability. A cell 
becomes quiescent if all adjacent lattice points are occupied. 
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Figure 2. Typical architecture of modern desktop PCs. Central processing unit (CPU) reads memory directly from 
the fastest cache, which, if the data is unavailable reads from the slower random access memory (RAM) and if needed 
from the biggest but slowest hard disk drive (HDD). 
 
of cache misses dramatically reduce computation speed and optimized algorithms should minimize cache miss 
events. 

Let us consider a two-dimensional rectangular lattice coded by a two-dimensional array as commonly used in 
cellular automata. As computer memory is arranged linearly, higher-dimensional arrays are stored row after row 
(or column after column). Therefore, if an array element is accessed only parts of its immediate spatial neigh- 
borhood will be stored in the cache. Especially for large lattices, 2 of 4 neighbors (2-D von Neumann neighbor- 
hood) or 6 of 8 neighbors (2-D Moore neighborhood) are cache missed. Whilst convenient at implementation, 
frequent access of cell neighbors in two- and three-dimensional arrays is memory inefficient and slow. 

3.2. Population Geometry and Data Type Optimization 

Which data structures are the best to use depends on the cellular processes that are considered as well as the 
geometry of the emerging population. Prostate tumors, for example, have a very dense, compact structure whe- 
reas glioblastoma brain tumors are highly diffusive. Such density difference may be represented by the number 
of cells on the computational lattice per area or volume. Let us define a dense tumor as a population of cells 
where each lattice point is occupied by a cell with probability p = 0.99 (i.e., 99%) and a diffusive tumor occu- 
pies lattice points with p = 0.5. For cells to migrate or proliferate adjacent lattice points need to be vacant. De- 
pendent on the expected tumor density—either many or few neighbors for most cells—the most efficient data 
structure for obtaining vacant neighbor lattice sites might be different. To determine cell neighborhood vacan- 
cies, a simple array keeping Boolean information about lattice points occupied by cells will be highly inefficient 
for dense tumors. Let us consider morphological erosion, where each cell that is not completely surrounded by 
other cells is removed from the lattice. For dense population geometries, a coded array containing information 
about number of vacant spots in the cell neighborhood may be more efficient as unsuccessful scanning of each 
neighboring lattice point for vacancy is be avoided (Figure 3(a) and (b)). Appropriate use of C++ data type char 
will not introduce a memory tradeoff as both char and Boolean require one byte of memory. Using intuitive int 
instead of char will require four times more memory and increases computation time as fewer information can 
be stored in cache memory. A computationally expensive drawback of a coded lattice is the requirement to up- 
date all neighboring lattice codes when occupancy of a single grid point changes, which makes this approach 
less efficient for diffusive tumors (Figure 3(c)). 

3.3. Random Neighbor Selection 

Monte Carlo tumor growth simulations frequently require obtaining a free neighboring lattice site at random, for 
example for migration or proliferation. A naïve approach may consider all neighboring lattice sites, store those 
that are vacant in a temporary vector and then select a vector element at random. Alternatively, neighboring lat- 
tice sites may be addressed in random order and the first encountered vacant position is selected (Figure 4(a)). 
This simple alternative random access method significantly decreases simulation time in dense (Figure 4(b)) 
and diffusive tumors (Figure 4(c)) with increasing lattice size (free spot is selected iteratively for each cell on 
the lattice). While the naïve procedure is much slower for diffusive tumors as more vacant lattice sites have to 
be stored in temporary vectors, the alternative random access approach performs equally well irrespective of 
tumor type. 
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Figure 3. Morphological erosion on a simple Boolean array and a coded lattice. (a) Illustration of transformation 
from simple Boolean lattice into coded lattice. In a coded lattice each occupied grid point contains the information 
about the number of free spots in its neighborhood, and 9 represents an empty grid point; (b) and (c) Comparison of 
the evaluation times for dense tumors (b) and diffuse tumors (c). Three considered data structures are simple Boolean 
array (blue diamonds) and coded lattices using char (red squares) or integer values (green triangles). 
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Figure 4. Comparison of two different procedures to select a random free spot from cell neighborhood. Free spot is 
selected iteratively for each cell on the lattice. (a) Naïve procedure visits all neighboring spots, temporarily stores 
those that are vacant and chooses a random element from the temporary vector. Random access procedure uses a 
predefined vector of neighboring lattice sites that is randomly shuffled. The cell neighborhood is searched in that 
random order and then returns the first vacant site; (b) and (c) Average evaluation times of different lattice sizes for 
dense tumors (b) and diffusive tumors (c). 
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Dependent on the modeled cellular processes, additional alterations or improvements may be required. For 
example, one may choose to store hashed information about the cell neighborhood in the lattice. In particular, a 
limited number of possible cell neighborhood configurations may be encoded in identifying keys. 

3.4. Random Ordering 

Many programming languages provide efficient procedures and data structures that can be utilized for cellular 
automata design in combination with simulation specific code. In asynchronous stochastic cellular automata of 
tumor growth random cell ordering and random access of cells is fundamental. A naïve implementation of se- 
lecting cells in a random order may consist of 

1) From a vector containing all cells, pick a cell at random by drawing a random positive integer not larger 
than the vector length; 

2) Erase the selected cell from the vector to avoid its reselecting; 
3) Repeat steps 1 and 2 until there are no cells left in the vector. 
The C++ Standard Template Library (STL) provides numerous algorithms to perform search, sort and shuffle 

operations. Random shuffle rearranges all elements in a specified range randomly in a single invocation. The 
STL random shuffle procedure reduces computation time compared to the naïve approach by multiple orders of 
magnitude even for small vector sizes (Figure 5), clearly demonstrating the power and importance of using 
standard language-specific data structures and algorithms for high-performance simulations. 

3.5. Dynamically Growing Domains 

To simulate a growing tumor population from a single cancer cell computational lattice-induced boundary con- 
straints need to be avoided. An appropriate lattice size must be selected dependent on the achievable tumor size, 
which requires a priori knowledge about emerging population dynamics, tumor density and cell diffusibility. A 
dense, radially symmetrically growing two-dimensional tumor population of 100,000 cells could well fit into a 
400 × 400 lattice. Cells in a highly diffusive irregular tumor, however, will likely hit the boundary of such lattice 
early during tumor growth. Whilst a sufficiently large lattice could ensure avoidance of boundary contact, mem- 
ory requirements and computing performance limit such approach. Large amounts of computational resources 
would be wasted especially early in population expansion when only a few cells are present. 

One possibility is to use dynamic data structures such as a C++ standard template library (STL) map, which 
can be understood as an associative container that stores elements formed by the combination of a key value and 
a mapped value. Unfortunately, accessing elements in a map is logarithmic in size, which for large tumor sizes 
dramatically decreases computational performance (Figure 6). We propose a dynamically allocated array with 
associated procedures that expand the lattice upon cell boundary contact by a fixed amount of lattice points. 
While a static large array of 1000 × 1000 lattice points is the most efficient for large tumors it is inefficient for 
small tumors up to 10,000 cells due to unoccupied lattice sites occupying large amounts of memory. The dy- 
namically expanding array is most efficient for small tumors and comparable to large static arrays for large tu- 
mor populations. 
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Figure 5. Comparison of the efficiency of the built-in STL shuffling procedure and the procedure coded in the naïve 
way. (a) Naive procedure iterates the steps consisted of picking random element from the vector and then erasing it 
until the initial vector is empty. Single invocation to the STL procedure gives us the shuffled vector; (b) Evaluation 
times for those two procedures for different sizes of the shuffled vector. 
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Figure 6. Dynamically growing domain. (a) Computational lattice expands by 50 grid points in the direction(s) where 
a cells reaches the boundary; (b) Simulations of simple tumor growth from a single cell when each cell (cells are con- 
sidered in linear order) proliferates into a random free adjacent spot until the tumor population reaches the prede- 
fined final size (no other action is considered). Evaluation of computing time to reach different cell counts for three 
types of domains: STL map (solid blue curve), large array (red dashed) and dynamically expending array (black 
dash-dotted). 

3.6. Tumor Growth Simulations 

We will use a combination of the presented high-performance techniques to simulate solid tumor growth and 
compare it to a naïve implementation. Let us initialize tumor growth simulations with one cancer stem cell lo- 
cated in the center of a square lattice with trait vector [cct = 24 hours, ρ = ∞, μ = 100 μm/day, α = 0%] and ps = 
0.1. Non-stem daughter cells are initialized with trait vector [cct = 24 hours, ρ = 10, μ = 100 μm/day, α = 1%]. 

These parameter values have previously been shown to enable fast dense tumor growth [20]. Tumor growth 
dynamics with other parameters have been discussed elsewhere [22-24]. Cell cycle time and migration rate can 
be measured experimentally [17], while other parameters are yet to determined. It is conceivable, however, that 
model parameters are organ or even patient specific. We therefore use the initial trait vector as control and study 
the sensitivity of tumor volume to changes in each parameter. We simulate tumor growth for t = 180 days using 
an intuitive implementation (naïve code) and compare to an implementation with a combination of above dis-
cussed improvements (improved code). The naïve simulation is executed on a fixed 750 × 750 square lattice, 
whereas the improved simulation is initiated on a 50 × 50 square lattice with dynamically expanding domains. 
Due to the stochastic nature of the model we simulate N = 100 (improved) and N = 77 (naïve) independent tu- 
mors and report average results. Both implementations yield similar population sizes with comparable cancer 
stem cell and non-stem cancer cell numbers (Figure 7). While the naïve code executes in an average of 4212 
seconds (>70 minutes) the improved code executes in 51 seconds (<1 minute)—an 82-fold reduction in comput- 
ing time. The high-performance of the improved code is due to the dynamically expanding domain as well as ef-
ficient access to information on vacant neighboring lattice sites. More than 70% of all cells at the final time 
point of the simulation have no adjacent space, and less than 5% of cells have two or more vacant lattice sites to 
migrate or proliferate into (Figure 7(d)). Graphical visualization of tumor morphologies at different time points 
show that tumors simulated with either implementation technique are non-differentiable beyond intrinsic sto- 
chastic effects (Figure 8). 

To study the effects of model parameters on emerging tumor volume we separately change the initial parame- 
ter values (control) by 50% in either direction and compare resulting total cell count to the control tumor. Sensi- 
tivity analysis reveals that spontaneous rate of cell death has little impact on total cell number, compared to cell 
migration and symmetric stem cell division rate that strongly correlate with tumor volume. Whilst an increase in 
symmetric stem cell division probability ps and cell migration rate μ yields larger tumor volumes, cell death rate 
α and proliferation potential ρ modulate tumor volume non-monotonically (Figure 9). A 50% parameter value 
increase as well as decrease yields tumor volumes that are smaller than the control tumor, suggesting the exis- 
tence of optimum parameter values that maximize tumor volume. Their specific values, however, will be de- 
pendent on the other model parameters [23]. Interestingly, increasing proliferation potential ρ yields significant- 
ly smaller tumors than lower ρ values, indicating a strong competition between non stem cancer cells and cancer 
stem cells that drives the total population into prolonged phases of dormancy [24]. 
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Figure 7. Model results for simulating 180 days of tumor growth initiated by one cancer stem cell. Naïve (blue curve) 
and improved (red) code simulate comparable tumor growth dynamics with similar non-stem cancer cell (a) and 
cancer stem cell (b) numbers; (c) Average simulation times and standard deviations; (d) Distribution of vacant lattice 
sites in cell neighborhood at final simulation time point; (e) Evolution of average lattice size in the improved code. In- 
itial lattice size 50 × 50, final lattice size 550 × 550. Shown are averages (standard deviations ommited in most panels 
for clarity) for N = 100 (improved code) and N = 77 (naïve) independent simulations. 

 

 

Figure 8. Representative tumor morphologies simulated with naïve (left) and improved (right) code. Colors as defined 
in Figure 1(a). 
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Figure 9. Cancer stem cell driven tumor growth model parameter sensitivity analysis. All initial model parameters 
(control, ctrl) were changed −50% or +50% and average tumor volumes after t = 180 days (N = 50) compared to the 
control volume (log scale). Error bars ommitted for clarity. 

4. Discussion 

Cellular automata are frequently used to simulate solid tumor growth and cancer stem cell dynamics [1,25,26]. 
Intuitive design of stochastic cellular automata for tumor modeling is often counterbalanced by its performance. 
Although cellular automata are lattice-based, naïve implementation as two-dimensional Boolean arrays has little 
computational efficiency. We set out to compare C++ data structures, memory-efficient procedures and dynamic 
domains to decrease computing time. As extension to three spatial dimensions is trivial, we presented imple- 
mentation details in two dimensions for clarity. We found that simple substitutions in intuitive cellular automa- 
ton implementations significantly decrease computing time. First, appropriate use of data type char over int pro- 
vides a 4-fold reduction in memory allocation. Second, consideration of a coded lattice that holds information 
about a cell’s neighborhood vacancies rather then Boolean information whether or not a cell is occupying that 
lattice point significantly decreases computation time if queries about adjacent space are frequently required for 
cell decisions. Third, utilization of the C++ STL shuffle method to provide a random order of elements proves 
superior to repeatedly selecting single elements at random positions within a vector. Finally, we presented a dy- 
namically growing domain that evolves according to the population size, which keeps compuation time excep- 
tionally low when the population is small. Computing time is comparable to a large array when the population 
approaches array carrying capacity, but with the unique option to further expand the domain when needed. 
When all of these adjustments are combined into a simulation of cancer stem cell driven solid tumor growth, the 
improved implementation yields a high-performance over the naïve approach. In simulations of tumor growth 
for 180 days from a single cell to a population of about 140,000 cells, the presented high-performance cellular 
automaton yields an 82-fold reduction in computing time while reproducing the results of the naïve implementa- 
tion. We believe the developed high-performance cellular automaton will serve as a template for future simula- 
tions of solid tumor growth as well as other population dynamics models. We share the source code for the pre- 
sented naïve and improved code on our personal websites and the sourceforge.net repository. 
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