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ABSTRACT 

Recently I published a paper in the journal ALAMT (Advances in Linear Algebra & Matrix Theory) and explored 
the possibility of obtaining products of vectors in dimensions higher than three [1]. In continuation to this work, 
it is proposed to develop, through dimensional analogy, a vector field with notation and properties analogous to 
the curl, in this case applied to the space IR4. One can see how the similarities are obvious in relation to the alge- 
braic properties and the geometric structures, if the rotations are compared in spaces of three and four dimen- 
sions. 
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1. Introduction 

[1] has defined a similar operation to the cross product, to a space of dimension n. In particular, for a 
4-dimensional Cartesian space with Euclidean norm, we have the following results: 

Given three linearly independent vectors, 1F , 2F  and 3F , such that 1 2 3 4ˆ ˆ ˆ ˆi i i i im e n e p e q e   F , then: 

 
1 2 3 4

1 1 1 1
1 2 3

2 2 2 2

3 3 3 3

ˆ ˆ ˆ ˆe e e e

m n p q

m n p q

m n p q

F F F ,                                 (1) 

being 

   1 2 3 0 1, 2,3i i  F F F F .                                 (2) 

The relationship between the norms of the vectors iF  is given by: 

 1 2 3 1 2 3 kF F F F F F ,                                    (3) 

where 

1

2
12 13

21 23

31 32

1 cos cos

cos 1 cos

cos cos 1

k

 
 
 

 .                               (4) 

In (4),  , 1, 2,3ij i j   represents the angles between two vectors that generate the product  1 2 3F F F , with 
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conditions established in [1]. 

2. Basic Properties of Vector Operators in Four Dimensions 

Be summarized important properties about vector operators, here extended to four dimensions, with the objec- 
tive of situate the reader on what is intended to present in Section 3. In these results, it is considered that  

 1 2 3 4, , ,i iu u x x x x  and  1 2 3 4, , ,i i x x x xF F , 1, ,i n  , respectively represent scalar fields and vector  

fields on IR4, with defined partial derivatives. 

2.1. The Del Operator in Four Dimensions 

1 2 3 4
1 2 3 4

ˆ ˆ ˆ ˆe e e e
x x x x

   
    

   
,                               (5) 

being  1̂ 1,0,0,0e  ,  2ˆ 0,1,0,0e  ,  3̂ 0,0,1,0e   and  4ˆ 0,0,0,1e  . 

2.2. The Gradient in Four Dimensions 

1 2 3 4
1 2 3 4

ˆ ˆ ˆ ˆgrad i i i i
i i

u u u u
u u e e e e

x x x x

   
     

   
.                       (6) 

It is valid the following elementary property: 

 
1 1

n n

i i
i i

u u
 

    
 
                                             (P1) 

2.3. The Divergence in Four Dimensions 

 
1 2 3 4

div ; 1, , ,i i i i
i i

m n p q
i n

x x x x

   
       

   
F F                     (7) 

considering that 1 2 3 4ˆ ˆ ˆ ˆi i i i im e n e p e q e   F , and further  1 2 3 4, , ,i im m x x x x ,  1 2 3 4, , ,i in n x x x x , 

 1 2 3 4, , ,i ip p x x x x  and  1 2 3 4, , ,i iq q x x x x . 

It is valid the following elementary property: 

 
1 1

n n

i i
i i 

      
 
 F F                               (P2) 

2.4. Relationship between the Gradient and the Divergence 

      1, ,
,

1, ,i j i j i j

i m
u u u

j n


         

F F F



                    (P3) 

2.5. The Laplacian in Four Dimensions 

2.5.1. The Laplacian of ui 

 
2 2 2 2

2
2 2 2 2
1 2 3 4

; 1, , ,i i i i
i

u u u u
u i n

x x x x

   
     

   
                        (8) 

2.5.2. The Laplacian of Fi 

 
2 2 2 2

2
2 2 2 2
1 2 3 4

; 1, , ,i i i i
i i n

x x x x

   
     

   
F F F F

F                       (9) 
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3. Curl by Analogy in IR4 

It is proposed to introduce an analog curl in IR4. Given two vector fields in IR4, represented 
by 1 1 1 1 2 1 3 1 4ˆ ˆ ˆ ˆm e n e p e q e   F  and 2 2 1 2 2 2 3 2 4ˆ ˆ ˆ ˆm e n e p e q e   F , consider the vector product 

       

     

     

   

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
2 3 4

1 2 1 2 1 2 1 2 1 2 1 2 2
1 3 4

1 2 1 2 1 2 1 2 1 2 1 2 3
1 2 4

1 2 1 2 1 2 1 2 1 2 1
1 2 3

ˆ

ˆ

ˆ

p q q p q n n q n p p n e
x x x

p q q p q m m q m p p m e
x x x

n q q n q m m q m n n m e
x x x

n p p n p m m p m n n
x x x

   
           
   

         
   

         

  
     

  

F F

 2 4ˆm e
 
 
 

            (10) 

It is important to note that this definition provides for the inclusion of two vector fields simultaneously in the 
calculations. 

In the remainder of this paper, the vector field  1 2 F F  is identified by the symbol  1 2, F F , where 
 1 2,F F  is related to the ordered nature of the product of vector, and   characterizes its vectorial aspect 
(however, it should be noted that there is no relation with the usual cross product, defined in IR3). 

In compact notation,  1 2, F F  may be represented by the symbolic determinant 

 

1 2 3 4

1 2 3 41 2

1 1 1 1

2 2 2 2

ˆ ˆ ˆ ˆ

,

e e e e

x x x x

m n p q

m n p q

   
    F F .                             (11) 

The analogy with the curl is based on a symbolic notation, obtained based on structure of determinants and 
their relationship with the vector “Del”. In subsequent section will be shown how this vector thus defined is as- 
sociated to the rotational motion in four-dimensional space. 

Rotational motion, here and in the remainder of this paper, should not be interpreted as a movement with real 
physical meaning, but only in the context of geometric relations between vectors. 

4. Properties of the Vector  ,1 2F F  

Adding to the basic properties (P1)-(P3) involving  , which are valid in any dimension, presents the following 
properties associated with the vector  1 2, F F  and valid in space IR4: 

     1 2 3 1 3 2 3, , ,    F F F F F F F                         (P4) 

Corollary: 

     1 2 3 1 2 1 3, , ,    F F F F F F F                                    (C-4.1) 

         1 2 3 4 1 3 2 3 1 4 2 4, , , , ,       F F F F F F F F F F F F           (C-4.2) 

      1 2 1 2 1 2, ,i i iu u u      F F F F F F                                      (P5) 

       1 2 3 1 2 3 2 1 3 3 1 2, , ,       F F F F F F F F F F F F                       (P6) 

   , , 1, ,i ju u i j n     0                                                (P7) 

  1 2, 0   F F                                                           (P8) 
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        
           

1 2 3 4 3 4 2 1 1 2

2 4 3 1 1 3 1 4 3 2 2 3

,          
                   

F F F F F F F F F F

F F F F F F F F F F F F
    (P9) 

        
       

1 2 3 3 2 1 1 2

2 2
2 3 1 1 1 3 2 2

, ,         
               

F F F F F F F F

F F F F F F F F
         (P10) 

All vector functions present in these properties are such as in formulas (5) to (9). It properties as above has a 
clear parallel with the formulas involving the curl presented in [2]. Demonstrations (P4) to (P8) are elementary, 
simply by the development of both members of the equations. To check the properties (P9) and (P10), one must 
show first the following identity relating five vectors in space IR4: 

PROPOSITION Given the vectors A, B, C, D, E, then: 

             
     

              
     

AB CDE C A E B D D A C B E E A D B C C A D B E

D A E B C E A C B D
     (12) 

PROOF: If 1 2 3 4ˆ ˆ ˆ ˆA A A Am e n e p e q e   A , 1 2 3 4ˆ ˆ ˆ ˆB B B Bm e n e p e q e   B , 1 2 3 4ˆ ˆ ˆ ˆC C C Cm e n e p e q e   C , 

1 2 3 4ˆ ˆ ˆ ˆ ,D D D Dm e n e p e q e   D 1 2 3 4ˆ ˆ ˆ ˆE E E Em e n e p e q e   E , then: 

(a)  
1 2 3 4

1 2 3 4

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆC C C C

D D D D

E E E E

e e e e

m n p q
Me Ne Pe Qe

m n p q

m n p q

    CDE , 

being 
C C C

D D D

E E E

n p q

M n p q

n p q

 , 
C C C

D D D

E E E

m p q

N m p q

m p q

  , 
C C C

D D D

E E E

m n q

P m n q

m n q

  and 
C C C

D D D

E E E

m n p

Q m n p

m n p

  , developed 

according to the definition (1); 

(b)  
1 2 3 4ˆ ˆ ˆ ˆ

A A A A

B B B B

e e e e

m n p q

m n p q

M N P Q

   AB CDE ; 

Substituting (a) in (b), developing and arranging the terms conveniently: 

 

   
   
 

1 2 3 4

1 2 3 4

1 2 3 4

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

A A A A

B B B B

A E A E A E A E B D B D B D B D C C C C

A C A C A C A C B E B E B E B E D D D D

A D A D A D A D B C B C B C

e e e e

m n p q

m n p q

M N P Q

m m n n p p q q m m n n p p q q m e n e p e q e

m m n n p p q q m m n n p p q q m e n e p e q e

m m n n p p q q m m n n p p

   

         

         

     

AB CDE

  
   
   
  

1 2 3 4

1 2 3 4

1 2 3 4

1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ

B C E E E E

A D A D A D A D B E B E B E B E C C C C

A E A E A E A E B C B C B C B C D D D D

A C A C A C A C B D B D B D B D E E

q q m e n e p e q e

m m n n p p q q m m n n p p q q m e n e p e q e

m m n n p p q q m m n n p p q q m e n e p e q e

m m n n p p q q m m n n p p q q m e n

   

         

         

        
        
          

2 3 4ˆ ˆ

QED

E Ee p e q e 

        

        

C A E B D D A C B E E A D B C

C A D B E D A E B C E A C B D

 

From (12), and considering the product of vectors written in the order           A CDE B AB CDE : 
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By making the identifications 
4

1

2

3


  
 
 

A

B F

C F

D F

E F

, one obtains immediately the formula (P9); 

By making the identifications 
3

1

2


  
 
 

A

B F

C

D F

E F

, one obtains immediately the formula (P10). 

5. Geometric Interpretations for Vector Ψ 

For convenience of notation, we identify the four spatial coordinates in IR4 by 1x x , 2x y , 3x z  and 

4x h . 

5.1. The Angular Velocity 

Consider, in IR³, the velocity  , ,m n pv  applied to a point P in space, determined by the position vector 
 , ,x y zr , so that the point P perform a plan rotational motion with constant frequency. The angular velocity 

of this rotational motion is  1 2 3, ,   . 
Since the three vectors are related in the equation  v r , is simple to demonstrate the well-known rela- 

tion 2 v  , in other words, the curl of velocity  , ,m n pv  is a vector collinear to the vector 
 1 2 3, ,   , and twice the norm. 

The idea geometric of rotation will be extended to a space of four dimensions. Consider, therefore, the vector 
 , , ,m n p qv  applied to a point P of the four-dimensional space, determined by the vector  , , ,x y z hr , so 

that the point P also perform a a plan rotational motion with constant frequency. The angular velocity of this ro- 
tational motion is  1 2 3 4, , ,    . 

The objective is to define a geometrical framework that relates the vectors v ,   and r  for the IR4, which 
is analogous to existing framework in IR3. The concept of rotation is presented here in a narrow sense. For a 
broader approach is recommended to consult [3,4]. 

According to [1], to obtain the vector v  from the vectors   and r  in IR4, it is necessary to have a fourth 
vector. Given the nature of rotation as circular with constant frequency, the vectors v ,   and r  are two by 
two perpendicular. 

Let us introduce a vector  ˆ , , ,a b c d  having the following properties: 

A) ̂  is perpendicular simultaneously to the three vectors v ,   and r ; 
B) ̂  is a unit vector; 
C) ̂  is a dimensionless vector. 
These restrictions are intended: 
1) Simplify the proportionality constant that relates the norms of the vectors involved in the product. In this 

case, by (4), 1k  . 
2) Do not change the relationship v r ; 

3) Make the equation of the previous item remains dimensionally consistent. 
The components of the vector ̂  are obtained from the solution of the system (e1)-(e4), modeled on the ar- 

guments presented above: 
(e1) ˆ 0 0m a n b p c q d          v   

(e2) ˆ 0 0x a y b z c h d          r   

(e3) 1 2 3 4ˆ 0 0a b c d                

(e4) 2 2 2 2ˆ 1 1a b c d       

The solution to this system of equations is given by: 
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ˆ , , ,yx hz
AA AA

a b c d
 

           
 ,                             (13) 

where: 

2 3 4x

n p q

A

y z h

   ,                                     (14) 

1 3 4y

m p q

A

x z h

   ,                                     (15) 

1 2 4z

m n q

A

x y h

   ,                                     (16) 

1 2 3h

m n p

A

x y z

   ,                                     (17) 

2 2 2 2
x y z hA A A A     .                                (18) 

Thus, the vector  ˆ , , ,a b c d  can be noted more compactly: 

 1
ˆ , , ,x y z hA A A A   


 ,                              (19) 

or 

1 2 3 4

1 2 3 4

ˆ ˆ ˆ ˆ

1
ˆ

e e e e

m n p q

x y z h

   
 


 ,                              (20) 

or more simply: 

 1
ˆ  


v r  .                                       (21) 

It is interesting to note that the vector   v r   has the dimensions 2 2L T . 
With these definitions and results, the vector  , , ,m n p qv  is obtained from the equation: 

 
1 2 3 4

1 2 3 4

ˆ ˆ ˆ ˆ

ˆ

e e e e

x y z h

a b c d

   
 v r  ,                          (22) 

and the components of the vector v are given by: 

     4 3 2 4 3 2m c d y d b z b c h           ,                    (23) 

     3 4 4 1 1 3n d c x a d z c a h           ,                     (24) 

     4 2 1 4 2 1p b d x d a y a b h           ,                     (25) 
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     2 3 3 1 1 2q c b x a c y b a z           .                      (26) 

The components  , , ,m n p q  of v are determined simultaneously with the components  , , ,a b c d  of ̂ . 
Note also that: 

  2
1

ˆ 1
ˆ 1

              

vωr
v r v r v v v v v

v r


  


 

that is, 

  v v .                                      (27) 

5.2. Relationship between the Vectors ω and  ˆ,v     

Consider the analogous to the curl vector, given by 

 

1 2 3 4

1 1 2 2 3 3 4 4

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ,

e e e e

x y z h e e e e

m n p q

a b c d

   
          v                (28) 

By using relations (23)-(26), shows that: 

1 12  , 2 22  , 3 32  , 4 42  , so that 

 ˆ, 2 v   .                                 (29) 

This result shows that the relationship between curl and angular velocity remains the same, when using the 
vector analogous to the curl, in four-dimensional space. The dimensions of the vectors are also consistent, 
namely, both have dimensions 1T . 

It should be noted that there is no intention to give physical meaning to these equations. Even the dimensional 
analysis is being treated here purely mathematical levels. 

The following shows that the vector  ˆ,  v   in IR4 is reduced in the known cases in IR3. 

5.3. Particular Cases 

5.3.1. Projection onto IR3 
a) Usual cross product and curl 
Being  , ,x y zr ,  1 2 3, ,    and  , ,m n pv , are well known the results: 

     
1 2 3

1 2 3 2 3 1 3 1 2 1 2 3

ˆ ˆ ˆ

ˆ ˆ ˆ

e e e

z y e x z e y x e

x y z

                v r                   (a.1) 

       

1 2 3

1 2 3

1 1 1 2 2 2 3 3 3 1 1 2 2 3 3

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ2 2

e e e

p n m p n m
e e e

x y z y z z x x y

m n p

e e e e e e        

                                   

          

v

v 

        (a.2) 

b) Curl by analogy 
If we consider the vectors r ,   and v  like projections from the space IR4 onto space IR3, concordant re- 

sults are obtained as follows: 
Consider  , , ,0x y zr   0h  ,  1 2 3, , ,0     4 0   and  , , ,0m n pv   0q  . 
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It is calculated 0a b c   , 1d  , and from the relations (23)-(26) we arrive at 2 3m z y   , 

3 1n x z   , 1 2p y x   . Therefore: 

 

   

1 2 3 4

1 2 3 4

1 2 3

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ, 0

0

0 0 0 1

ˆ2 , , ,0 , 2

e e e e

p n m p n m
x y z h e e e e

y z z x x y
m n p

  

   
                                  

  

v

v



 

       (b.1) 

5.3.2. Projection onto IR2 
c) Usual cross product and curl 
Being  , , 0x yr ,  0,0,  and  , ,0m nv , are well known the results: 

1 2 3

1 2

ˆ ˆ ˆ

ˆ ˆ0 0

0

e e e

ye xe

x y

       v r                                          (c.1) 

       

 

1 2 3

1 2 3

3

ˆ ˆ ˆ

ˆ ˆ ˆ

0

ˆ 2

e e e

x y x y
e e e

x y z z z x y

y x

e

   

 

 

        
              



   

v

v 

             (c.2) 

d) Curl by analogy 
If we consider the vectors r,   and v  like projections from the space IR4 onto space IR2, concordant re- 

sults are obtained as follows: 
Consider  , ,0,0x yr   0z h  ,  0,0, ,0   1 2 4 0      and  , ,0,0m nv   0p q  . 

It is calculated 0a b c   , 1d  , and from the relations (23)-(26) we arrive at m y  , n x . There- 
fore: 

 

   

1 2 3 4

1 2 3 4

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ, 0

0 0

0 0 0 1

ˆ2 0,0, ,0 , 2

e e e e

n m n m
x y z h e e e e

z z x y
m n



   
                    

  

v

v



 

               (d.1) 

6. Conclusions 

Through dimensional analogies and structures based on determinants, we could get a vector field in a space of 
four dimensions, with algebraic and geometric properties, equivalent to the properties of vector curl commonly 
defined in IR3. 

Subsequent developments show that the “curl by analogy” thus obtained reduces to the three-dimensional 
case when the fourth coordinate is null in their constitutive equations. 

The geometric frameworks that relate to the vectors r ,   and v  in a circular rotational motion with con- 
stant frequency are equivalent in three and four dimensions, and the appendix of this work also suggests that 
they are equivalent in any dimension. Discussing the behavior of the vector ̂  during such rotations will be 
the subject of future analysis. 

This paper is not intended, of course, to give any physical interpretation of the quantities involved, but only to 
demonstrate the algebraic and geometric analogies related to the rotation in three and four dimensions, including 
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the demonstration of consistency with regard to dimensional analysis. 
In future work it is intended to apply the results obtained in triads of vectors with similar relationships to  

those in between r ,   and v , such as, for example, in relation 
1

ˆ
c

 B u E  between the magnetic  

induction B, electric field E, and vector directional of propagation of electromagnetic wave, represented by û . 
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Appendix 

There is no difficulty in extending the ideas about rotations presented in this work to higher dimensions, simply 
just utilize the aforementioned systematic increase of coordinates for points and vectors, as well as rows and 
columns to the determinants that make up the structures generating products of vectors [1]. Indeed, for any di- 
mension n would: 

   1 2 3ˆ ˆ ˆnn v ωr    ,                                     (A1) 

or 

 

1 2 3 4

1 2 3 4

11 12 13 14 1

21 22 23 24 2

3,1 3,2 3,3 3,4 3,

n

n

n

n
n

n n n n n n

x x x x x

a a a a a

a a a a a

a a a a a

    

    

v






     


.                  (A2) 

And also:  

   1 2 3ˆ ˆ ˆ, , , , nn   v     ,                               (A3) 

or 

 

1 2 3 4

1 2 3 4

1 2 3 4

11 12 13 14 1

3,1 3,2 3,3 3,4 3,

ˆ ˆ ˆ ˆ ˆn

n

nn

n

n n n n n n

e e e e e

x x x x x

v v v v v

a a a a a

a a a a a    

    
    










     


 .                  (A4) 
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