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ABSTRACT 
In the present article, we apply the modified piecewise variational iteration method to obtain the approximate 
analytical solutions of the differential equations with piecewise continuous arguments. This technique provides a 
sequence of functions which converges to the exact solution of the problem. Moreover, this method reduces the 
volume of calculations because it does not need discretization of the variables, linearization or small perturba- 
tions. The results seem to show that the method is very reliable and convenient for solving such equations. 
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1. Introduction 
Differential equations with piecewise continuous arguments (EPCA) are special type of delay differential equa- 
tions (DDEs). The theory of EPCA was initiated in [1,2] and developed by many authors [3-7]. These systems 
have been under intensive investigation for the last twenty years. EPCA describe hybrid dynamical systems and 
combine properties of both differential and difference equations. They are appeared in modeling of various 
problems in real life such as biology, mechanics, and electronics. For some applications of this equation we refer 
the interested reader to [1,8-10]. Several important properties of the analytic solution of EPCA as well as nu- 
merical methods have been studied in [11-16]. 

In this paper, we consider the following two EPCA: 
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and the coupled system 
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                              (2) 

with initial value 0 00 TX ( ) ( x , y )= , where ia  0 1 5( i , , , )=   are real constants and [.] denotes the greatest 
integer function and TX ( t ) ( x( t ), y( t ))= . 

In this work, we apply the modified piecewise variational iteration method (MPVIM) to systems (1) and (2) to 
obtain approximate analytical solutions. The VIM gives several successive approximations by using the iteration 
of the correction functional. This method was proposed by the Chinese researcher Jihuan He [17-19] as a mod-
ification of a general Lagrange multiplier method [20]. VIM is one of the non-perturbation methods that does 
not require any small or large parameter. An elementary introduction of VIM is given in [21]. The main con-
cepts in VIM, such as general Lagrange multiplier, restricted variation, correction functional are explained sys-
temically. For more comprehensive survey on this method and its applications, the reader is referred to the re-
view articles [22,23] and the references therein. 
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The VIM has been favorably applied to various kinds of linear and nonlinear problems. The main property of 
the method is in flexibility and ability to solve linear and nonlinear equations accurately and conveniently. The 
flexibility and adaptation provided by this method have made the method a strong candidate for approximate 
analytical solutions. The VIM plays an important role in recent researches for solving various kinds of problems 
(see for example [24-28] and the references therein). However, the researches on the application of VIM on 
DDE are relatively fewer. As far as we know, only delay Burgers equation [29], delay logistic equation [30] and 
pantograph equation [31-33] are considered. As for the analytical study of EPCA with VIM, up to now, there are 
almost no results published. Therefore, we will conduct this study. 

The organization of this paper is as follows. In Section 2, we simply provide the mathematical framework of 
the VIM. In Section 3, we apply the modified piecewise variational iteration method on the systems (1) and (2) 
after analyzing the conventional VIM and piecewise variational iteration method. Some numerical results are 
given in Section 4. Finally, in Section 5, a brief conclusion is provided. 

2. He’s Variational Iteration Method 
In this section, we introduce the basic idea underlying the VIM for solving nonlinear equations. Consider the 
general differential equation 

Lu Nu g( x ),+ =                                  (3) 

where L  and N  are linear and nonlinear operators, respectively, and g( x )  is the inhomogeneous term. In 
VIM, a correction functional for (3) can be written as 



1 0

x
nn n nu ( x ) u ( x ) ( s )[ Lu ( s ) Nu ( s ) g( s )]d s,λ+ = + + −∫                       (4) 

where λ  is a general Lagrange’s multiplier, which can be identified optimally via integration by parts and the 
variational theory, and  nu  denotes the restricted variation, i.e.  0nuδ = . It is to be noted that the Lagrange 
multiplier λ  can be a constant or a function. After determining the Lagrange multiplier λ , an iteration for-
mula, without restricted variation, should be used for the determination of the successive approximations 

1nu ( x )+  of the solution u( x ) . The zeroth approximation 0u  can be selected freely. Consequently, the solu-
tion is given by 

nn
u( x ) lim u ( x )

→∞
=                                     (5) 

3. The Application of VIM  
In this section the application of VIM is discussed for solving systems (1) and (2). 

3.1. System (1) 
We consider system (1), according to the VIM, the correction function is given by 

( )1 10 n

t '
n nn nu ( t ) u ( t ) ( s ) u ( s ) au ( s ) a u ([ s ]) d s.λ+ = + − −∫                        (6) 

To find the optimal value of λ  we have 

1 0 n

t '
n nu ( t ) u ( t ) ( s )u ( s )d s,δ δ δ λ+ = + ∫                            (7) 

that results 

( )1 0
1

t
n n ns tu ( t ) u ( t ) '( s )u ( s )d s.δ λ δ δ λ+ =

= + − ∫                      (8) 

Thus we have the following stationary conditions 
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This in turn gives 1λ = − . So we obtain the following iteration formula 

( )1 0 10 n

t '
n n n nu ( t ) u ( t ) u ( s ) a u ( s ) a u ([ s ]) d s,+ = − − −∫                       (10) 
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and the approximation solution is given by 

1nn
u( t ) lim u ( t )+→∞

= .                                   (11) 

During the process of computation, the greatest integer function [.] causes us many problems. To overcome 
them, we recall a modified VIM: the piecewise variational iteration method (PVIM), which was introduced by 
Geng [34,35]. In PVIM, the interval 0[ ,X ]  is divided into some equal subintervals, then the in -order ap-
proximation 

ii ,nu ( x )  are obtained on these subintervals. Following this way, we introduce the modified piece-
wise variational iteration method (MPVIM). In our method, the interval 0[ , )∞  is divided into lots of subin-
tervals 1[ k ,k )+  with unit length, where k N∈ . 

On the interval 0 1[ , ] , let 

( )1 1 1 0 1 0 1 1 10

t '
,n , ,n ,n ,nu ( t ) u ( t ) u ( s ) a u ( s ) a u ([ s ]) d s,+ = − − −∫  

1 0 0,u ( t ) u( ),=                                       (12) 

where 0 1t [ , ]∈ . Then we can obtain the 1n -order approximation 
11,nu ( t )  on 0 1[ , ] . 

On the interval 1 2[ , ] , let 

( )2 1 2 0 2 0 2 1 20

t '
,n , ,n ,n ,nu ( t ) u ( t ) u ( s ) a u ( s ) a u ([ s ]) d s,+ = − − −∫  

12 0 1 1, ,nu ( t ) u ( ).=                                     (13) 

The integration in (13) can be computed in 0 1[ , ]  and 1[ ,t ] , respectively. Then the 2n -order approxima-
tion 

22 ,nu ( t )  on 1 2[ , ]  can be obtained. 
In a similar way, on the interval 1[ k ,k ]− , 3 4k , ,=   let 

( )1 0 0 10

t '
k ,n k , k ,n k ,n k ,nu ( t ) u ( t ) u ( s ) a u ( s ) a u ([ s ]) d s,+ = − − −∫  

10 1 1
kk , k ,nu ( t ) u ( k ).
−−= −                                (14) 

The integration in (14) can be computed in a series of subintervals: 0 1[ , ] , 1 2[ , ], , 1[ k ,t ]− . Then we can 
obtain the kn -order approximation 

kk ,nu ( t )  on 1[ k ,k ]− . 
Therefore, according to (12)-(14), the approximation of (1) on the entire interval 0[ , )∞  can be obtained. 

3.2. System (2) 
According to VIM, the iteration formula for (2) can be constructed as follows 

( )1 2 30 n

t '
n n n nx ( t ) x ( t ) x ( s ) a x ( s ) a y ([ s ]) d s,+ = − − −∫  

( )1 4 50 n

t '
n n n ny ( t ) y ( t ) y ( s ) a y ( s ) a x ([ s ]) d s.+ = − − −∫                     (15) 

Similar to Subsection 3.1, in view of MPVIM we have the following formulas. 
On the interval 0 1[ , ] , let 

( )1 1 1 0 1 2 1 3 10

t '
,n , ,n ,n ,nx ( t ) x ( t ) x ( s ) a x ( s ) a y ([ s ]) d s,+ = − − −∫  

( )1 1 1 0 1 4 1 5 10

t '
,n , ,n ,n ,ny ( t ) y ( t ) y ( s ) a y ( s ) a x ([ s ]) d s,+ = − − −∫  

1 0 0,x ( t ) x( ),=  

1 0 0,y ( t ) y( ).=  

Then we can obtain the 1n -order approximation 
11,nX ( t )  on 0 1[ , ] , where TX ( t ) ( x( t ), y( t ))= . 

On the interval 1 2[ , ] , let 

( )2 1 2 0 2 2 2 3 20

t '
,n , ,n ,n ,nx ( t ) x ( t ) x ( s ) a x ( s ) a y ([ s ]) d s,+ = − − −∫  

( )2 1 2 0 2 4 2 5 20

t '
,n , ,n ,n ,ny ( t ) y ( t ) y ( s ) a y ( s ) a x ([ s ]) d s,+ = − − −∫  
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12 0 1 1, ,nx ( t ) x ( ),=  

12 0 1 1, ,ny ( t ) y ( ).=  

Then we can obtain the 2n -order approximation 
22 ,nX ( t )  on 1 2[ , ] . 

Similarly, on the interval 1[ k ,k ]− , 3 4k , ,=   let 

( )1 0 2 30

t '
k ,n k , k ,n k ,n k ,nx ( t ) x ( t ) x ( s ) a x ( s ) a y ([ s ]) d s,+ = − − −∫  

( )1 0 4 50

t '
k ,n k , k ,n k ,n k ,ny ( t ) y ( t ) y ( s ) a y ( s ) a x ([ s ]) d s,+ = − − −∫  

10 1 1
kk , k ,nx ( t ) x ( k ),
−−= −  

10 1 1
kk , k ,ny ( t ) y ( k ).
−−= −  

Then we can obtain the kn -order approximation 
kk ,nX ( t )  on 1[ k ,k ]− . 

Therefore, according to (16)-(18), the approximation of coupled system (2) on the entire interval 0[ , )∞  can 
be obtained. 

4. Results and Discussion 
In this section, we apply the MPVIM presented in Section 3 and the classical θ -methods to two concrete EPCA. 
Numerical results show that the MPVIM is very effective. 

For (1), we choose 0 2a = , 1 1a = −  and 0 1u = . According to (12)-(14), taking 3k =  and 5in = , 
1i , ,k.=   We can obtain the approximations of (1) on 0 3[ , ] . The numerical results are depicted in Figure 1. 

This figure shows the comparison of approximation obtained by using the present method with the exact solu-
tion and the numerical solution. Moreover, for (2), we choose 2 1a = , 3 2a = − , 4 2a = , 5 1a = −  and 

0 0 1x y= = . In Figure 2 we compare the 5th-order approximation of MPVIM with the numerical solution. 
 

 

 

 
Figure 1. A comparison of the results of the exact solution (upper), the 5th-order MPVIM solution (middle) and the 
numerical solution (lower) with θ = 0.6 and m = 20 to (1). 

 

 

 
Figure 2. A comparison of the results of the 5th-order MPVIM solution (upper) and the numerical solution (lower) 
with θ = 0.3 and m = 20 to (2). 
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The above numerical examples demonstrate that the present method is quite effective and simple. 

5. Conclusions 
An efficient algorithm based on the VIM has been successfully applied to the EPCA. As can be seen from the 
numerical results, implementing only a few steps in the MPVIM, the approximate analytical solutions with high 
accuracy can be obtained. 

It can be concluded that the MPVIM is a powerful and promising tool for solving such kinds of delay diffe-
rential equations. This method can also be extended to the EPCA of the advanced type and mixed type, which 
are our future research issues. 
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