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ABSTRACT 
In the paper, we take up a new method to prove a result of value distribution of meromorphic functions: let f be 
a meromorphic function in  , and let ( ) ( )= /e 0za z P z ≡ , where P is a polynomial. Suppose that all zeros of f 

have multiplicity at least 1k + , except possibly finite many, and ( ) ( )( ), ,T r a o T r f=  as r →∞ . Then 
( )kf R−  has infinitely many zeros. 

 
KEYWORDS 
Meromorphic Function; Spherical Derivative; Quasi-Normality 

1. Introduction 
The value distribution theory of meromorphic functions occupies one of the central places in Complex Analysis 
which now has been applied to complex dynanics, complex differential and functional equations, Diophantine 
equations and others. 

In his excellent paper [1], W.K. Hayman studied the value distribution of certain meromorphic functions and 
their derivatives under various conditions. Among other important results, he proves that if f(z) is a trans- 
cendental meromorphic function in the plane, then either f(z) assumes every finite value infinitely often, or every 
derivative of f(z) assumes every finite nonzero value infinitely often. This result is known as Hayman’s 
alternative. Thereafter, the value distribution of derivatives of transcendental functions continued to be studied. 

In this paper, we study the value distribution of transcendental meromorphic functions, all but finitely many 
of whose zeros have multiplicity at least 1k + , where k  is a positive integer. 

In 2008, Liu et al. [2] proved the following results. 
Theorem A Let 2k ≥  be an integer, let ( )f z  be a meromorphic function of infinite order ( )fρ  in  , 

and let ( ) ( )e 0za z P z= ≡/ , where P  is a polynomial. Suppose that 
1) all zeros of f  have multiplicity at least 1k + , except possibly finitely many, and 
2) all poles of f  are multiple, except possibly finitely many. 
Then ( ) ( ) ( )kf z a z−  has infinitely many zeros. 
Theorem B Let 2k ≥  be an integer, let ( )f z  be a meromorphic function of finite order ( )fρ  in  , 

and let ( ) ( )e 0za z P z= ≡/ , where P  is a polynomial. Suppose that 
1) all zeros of f  have multiplicity at least 1k + , except possibly finitely many, and 

2) 
( )
( )

( )
( )

, ,
lim

, ,r

T r a T r f
T r f T r a→∞

 
+ = ∞  

 
. 
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Then ( ) ( ) ( )kf z a z−  has infinitely many zeros. 
In the present paper, we prove the following result, which is a significant improvement of Theorem 1.  
Theorem 1 Let 1k ≥  be an integer, let f  be a meromorphic function of order ( ) 2fρ >  in  , and let 
( ) ( )e 0za z P z= ≡/ , where P  is a polynomial. Suppose that all zeros of f  have multiplicity at least 1k + , 

except possibly finitely many. Then ( ) ( ) ( )kf z a z−  has infinitely many zeros. 
Theorem 1 and Theorem 2 taken together imply the following result. 
Theorem 2 Let 2k ≥  be an integer, let f  be a meromorphic function in  , and let ( ) ( )e 0za z P z= ≡/ , 

where P  is a polynomial. Suppose that 
1) all zeros of f  have multiplicity at least 1k + , except possibly finitely many, and 
2) ( ) ( )( ), ,T r a o T r f=  as r →∞ . 

Then ( ) ( ) ( )kf z a z−  has infinitely many zeros. 

2. Notation and Some Lemmas 
We use the following notation. Let   be complex plane and D  be a domain in  . For 0z ∈  and 0r > , 
( ) { }0 0,z r z z z r∆ = − <  and ( )0,1∆ = ∆ . We write nf f

χ
⇒  in D  to indicate that the sequence { }nf  

converges to f  in the spherical metric uniformly on compact subsets of D  and nf f⇒  in D  if the 
convergence is in the Euclidean metric. 

Let f  be a meromorphic function in  . Set  

( )
( )
( )

( ) ( )
2# #

2

1 and , d d .
1 D

f z
f z S D f f z x y

f z

′
 = =  π+

∫∫          (1.1) 

The Ahlfors-Shimizu characteristic is defined by  

( ) ( )
0 0

,
, d .

r S t f
T r f t

t
= ∫  

Remark Let ( ),T r f  denote the usual Nevanlinna characteristic function. Since ( ) ( )0, ,T r f T r f−  is 
bounded as a function of r , we can replace ( )0 ,T r f  with ( ),T r f  in the paper.  

The order ( )fρ  of the meromorphic function f  is defined as  

( ) ( ) ( ) ( )0log , log ,
lim or lim .

log logr r

T r f T r f
f f

r r
ρ ρ

→∞ →∞
= =  

Lemma 1 [3] Let { }nh  a sequence of holomorphic functions in D  such that nh h H ′⇒ =  locally 
uniformly in D , where H  is univalent in D . Let { }nf  be a sequence of functions meromorphic in D  
such that for each n , 

1) all zeros of nf  have multiplicity at least 1k + ; and 
2) ( ) ( ) ( )k

n nf z h z≠ . 
Then { }nf  is quasinormal of order 1 in D . If, moreover, no subsequence of { }nf  is normal at 0z D∈ , 

then  

( ) ( ) ( )1 1

0 0 0

*
1 1d d dkz

n k k kz z z
f z f z h

χ ζ ζ
ζ ζ ζ ζ−

−⇒ = ∫ ∫ ∫   

locally uniformly in { }0D z  and there exists 0δ >  such that ( )( )0 , , 1nS z f kδ∆ ≤ +  for all n . 
Remark Since Lemma 1 is not stated explicitly in [3], let us indicate how it follows from the results of that 

paper. The proof that { }nf  is quasinormal of order 1 is essentially identical to that of Theorem 1  of [3]. That 
proof also shows that condition (b) of Lemma 7 in [3] holds for 1 0a z= . It then follows from Lemma 7 that 

( ) ( )*
nf z f z

χ
⇒  locally uniformly on { }0D z . The bound on ( )( )0 , , nS z fδ∆  follows from Lemma 9 of [3]. 

See also [4, Remark on page 484].  
Lemma 2 [5, Lemma 2] Let   be a family of functions meromorphic in D , all of whose zeros have 

multiplicity at least k , and suppose that there exists 1A ≥  such that ( ) ( )kf z A≤  whenever ( ) 0f z = . 
Then if   is not normal at 0z , there exist, for each 0 kα≤ ≤ , 

1) points nz , 0nz z→ ; 
2) functions nf ∈ ; and 
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3) positive numbers 0nρ →  

such that ( ) ( ) ( )n n n n nf z g g
χ

αρ ρ ζ ζ ζ− + = ⇒  in  , where g  is a nonconstant meromorphic function in  ,  
all of whose zeros have multiplicity at least k , such that ( ) ( )# # 0 1g g kAζ ≤ = + . 

Lemma 3 Let ( )f z  be a meromorphic function of order ( ) 2fρ >  in  , then there exist na →∞  and 
0nδ →  such that  

( ) ( )( )# and , , as .n n nf a S a f nδ→ ∞ ∆ →∞ →∞  

Proof We claim that there exist nt →∞  and 0nε →  such that  

( )( ) ( )
2#1, , d d .

n n
n n z t

S t f f z x y
ε

ε
− <

 ∆ = →∞ π ∫∫                   (1.2) 

Otherwise there would exist 0ε >  and 0M >  such that  

( )( )0 , ,S z f Mε∆ <  

for all 0z ∈ . From this follows  

( ) ( ) ( )2# 21, d d ,
z r

S r f f z x y O r
<
 = = π ∫∫  

and hence  

( ) ( ) ( )2
0 0

, .
r S t

T r f O r
t

= =∫  

Now we have ( ) ( )0log ,
lim 2

logr

T r f
f

r
ρ

→∞
= ≤  which contradicts the hypothesis that ( ) 2fρ > . 

Observing that ( )( ) ( )
2#1, , d d ,

n n
n n z t

S t f f z x y
ε

ε
− <

 ∆ = →∞ π ∫∫  hence there exists a sequence { }na  such  

that 0n na t− →  and ( )#
nf a →∞  as n →∞ . Let n n n na tδ ε= + − . Obviously, 0nδ →  and  

( ) ( ), ,n n n nt aε δ∆ ⊂ ∆ , and hence ( )( ), ,n nS a fδ∆ →∞  as n →∞ . 
Lemma 4 Let k +∈  and d ∈ . Let f  be a transcendental meromorphic function, all of whose zeros  

have multiplicity at least 1k + . Set ( ) ( )
ed z

f z
g z

z
= . Suppose that ( ) 2fρ > . Then there exists a sequence  

na →∞  and 0nδ →  such that  

( ) ( ) ( ) ( )( )0, and , ,
e en n

k
n n

n na ad d
n n

f a f a
S a g

a a
δ→ →∞ ∆ →∞  

as n →∞ . 
Proof Since ( ) 2fρ >  and ( )e 1d zzρ = , we have ( ) 2gρ > . By Lemma 3, there exist nb →∞  and 0nε →  

such that  

( ) ( )( )# and , , as .n n ng b S b g nε→ ∞ ∆ →∞ →∞  

Set ( ) ( )n ng z g z b= + . Clearly, ( ) ( )# #0n ng g b= →∞ . Thus { }ng  is not normal at 0. Obviously, all zeros 
of g  have multiplicity at least 1k +  in { }0 , and hence all zeros of ( )ng z  have multiplicity at least 

1k +  in ∆  for sufficiently large n . Using Lemma 2 for ( )1 2kα = − , there exist points 0nz → , and 
positive numbers 0nρ →  and a subsequence of { }ng  (that we continue to call { }ng ) such that  

( ) ( )
( ) ( )1 2

n n n
n k

n

g z
G G

χρ ζ
ζ ζ

ρ −

+
= ⇒  

in  , where G  is a nonconstant meromorphic function in  , all of whose zeros have multiplicity at least 
1k + . 

We claim that ( ) ( ) 0
kG cζ ≡/ , where 0c  is a constant. Otherwise, ( ) 1

0 1
k k

kG c c cζ ζ ζ −= + + + , where 
1 2, , ,c c   and kc  are constants. Then, either G  is a constant function, or all zeros of G  have multiplicity 
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at most k . A contradiction. 
Let 0ζ  be not a zero or pole of ( ) ( )kG ζ , and let 0n n n na b z ρ ζ= + + . Now we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2
0 0 ,i i k i i

n n n n n ng a g z Gρ ζ ρ ζ− −= + =  

where 0,1, ,i k=  . Since 0nρ →  and 0ζ  is not a zero or pole of ( ) ( )kG ζ , we have na →∞ , 
( ) ( ) 0i

ng a →  and ( ) ( )k
ng a →∞  as n →∞ , where 0,1, , 1i k= − . 

Set 0 1T =  and ( ) ( )1 1iT d d d i= ⋅ − + − , where 1,2,3, ,i k=  . Clearly, 

( )( ) ( )( )

( )

0 0

0

e
e e

e e ,

i d zi n i nn id z i d z n i
n i

i i

ii n
d z d zn i

ni
i

C T z
z C z

z

C T
z z R z

z

= =

= =

=

=

= =

= =

∑ ∑

∑
 

where ( ) 0

i
i n n i

n ii

C T
R z

z
=

=
= ∑  satisfying ( ) 1nR z →  as z →∞ . 

Now, we have 
( ) ( ) 0
e n

n
nad

n

f a
g a

a
= →  and 

( ) ( ) ( )( )( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0

0 0

0

ee

e e e

e e

e e

.

n n n

n
n

n n

n n

i k i k ii d zkd zk n
n i

a a ad d d
n n n

z a
z a

i k i k
k i k ii d z d z i

n i n i
i i

a ad d
n n

z a z a

i k
k ii

n i n n
i

C z g zz g zf a
a a a

C z R z g z z C R z g z

a a

C R a g a

=
−

=

=
=

= =
− −

= =

= =

=
−

=

= =

= =

= →∞

∑

∑ ∑

∑

 

Set 0n n n n n n na b zδ ε ε ρ ζ= + − = + + . Obviously, 0nδ →  and ( ) ( ), ,n n n nb aε δ∆ ⊂ ∆ , and hence  
( )( ), ,n nS a gδ∆ →∞  as n →∞ . 

3. Proof of Theorem 
Proof We assume that ( ) ( ) ( )kf z a z−  has at most finitely many zeros and derive a contradiction. Let 
( ) dR z cz  as z →∞ , where { }0c∈   and d ∈ . 

Set ( ) ( )
ed z

f z
g z

z
= . By Lemma 4, there exists a sequence na →∞  and 0nδ →  such that 

( )( ), , asn nS a g nδ∆ →∞ →∞                         (1.3) 

and 

( ) ( ) ( )
0 and as .

e en n

k
n n
a ad d

n n

f a f a
n

a a
→ →∞ →∞                    (1.4) 

Set ( ) ( )
e n

n
n ad

n

f z a
f z

a
+

= . By (1.4), 

( ) ( ) ( ) ( )
( ) ( )

0 0 and 0 as .
e en n

k
kn n

n na ad d
n n

f a f a
f f n

a a
= → = →∞ →∞              (1.5) 

Hence, no subsequence of { }nf  is normal at 0z = . 
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Since ( ) ( ) ( )kf z a z−  has at most finitely many zeros, we have for sufficiently large n , 

( ) ( ) ( )e
for all .

e

n

n

z a
k n

n ad
n

P z a
f z z

a

++
≠ ∈∆  

Observing that  

( )e
e as

e

n

n

z a
n z
ad

n

P z a
c n

a

++
⇒ →∞  

in ∆ . It follows from Lemma 1 (applied to ( ) ( )e
e

n

n

z a
n

n ad
n

P z a
h z

a

++
=  in ∆ ), and there exists ( )* 0,1δ ∈  such 

that for all n  

( )( )*0, , 1.nS f kδ∆ ≤ +                          (1.6) 

Set ( ) ( ) ( ) 1 e
d

z
n n n

n

zg z g z a f z
a

−

− 
= + = + 

 
. Then 

( )
( ) ( )

( )

#
2

2

1 e 1 e 1

1 e

d d
z z

n n
n n n

n d
z

n
n

z z df z f z
a a a z

g z
z f z

a

     
′+ − + +     +     

=
 
+ + 

 

 

and hence 

( )
( )

( )

( )

( )

2 2

2#
2 22 2

2 2

2 1 e 2 1 e 1

.

1 e 1 e

d d
z z

n n
n n n

n
d d

z z
n n

n n

z z df z f z
a a a z

g z

z zf z f z
a a

     
′+ + +     +     

  ≤ + 
         + + + +               

          (1.7) 

Using the simple inequality  

( )2 2 2

12max ,1
1

C C C
C x x

≤
+ +

 

for 0C > , we have 

( )

( )

( )

2

2
2#

2 22
2

2 1 e
12 max 1 e , .

1 e1 e

d
z

n d
n z

ndd n
zz

n
nn

z f z
a z f z

a zz f z aa

    ′+         ≤ +              + + +           

       (1.8) 

The second term on the right of (1.7) is  

( )

( )

2

2 2

2
2

2 1 e
1 11 1 .
2 2

1 e

d
z

n
n

d
n n

z
n

n

z f z
ad d

a z a zz f z
a

   +    + ≤ +
 + +  + +    

               (1.9) 
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Putting (1.7), (1.8), and (1.9) together, we have for *z δ<  and sufficiently large n , 

( ) ( ) ( )
2 22# # 212 2e 2 .

2n ng z f z   ≤ ⋅ ⋅ + ×                        (1.10) 

It follows from (1.1), (1.6), and (1.10),  

( )( ) ( ) ( )2* 2
2

10, , 2 2e 1 2 .
2nS g k Mδ∆ ≤ ⋅ + + × =  

Thus, 

( )( ) ( )( )* *
2, , 0, ,n nS a g S g Mδ δ∆ = ∆ ≤  

which contradicts (1.3). 
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