
Journal of Computer and Communications, 2014, 2, 27-32 
Published Online January 2014 (http://www.scirp.org/journal/jcc) 
http://dx.doi.org/10.4236/jcc.2014.21005  

Learning Dynamics of the Complex-Valued Neural 
Network in the Neighborhood of Singular Points 

Tohru Nitta 
 

National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan. 
Email: tohru-nitta@aist.go.jp 
 
Received December 4th, 2013; revised December 28th, 2013; accepted January 4th, 2014 
 
Copyright © 2014 Tohru Nitta. This is an open access article distributed under the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In accordance of 
the Creative Commons Attribution License all Copyrights © 2014 are reserved for SCIRP and the owner of the intellectual property 
Tohru Nitta. All Copyright © 2014 are guarded by law and by SCIRP as a guardian. 

ABSTRACT 
In this paper, the singularity and its effect on learning dynamics in the complex-valued neural network are elu-
cidated. It has learned that the linear combination structure in the updating rule of the complex-valued neural 
network increases the speed of moving away from the singular points, and the complex-valued neural network 
cannot be easily influenced by the singular points, whereas the learning of the usual real-valued neural network 
can be attracted in the neighborhood of singular points, which causes a standstill in learning. Simulation results 
on the learning dynamics of the three-layered real-valued and complex-valued neural networks in the neighbor-
hood of singularities support the analytical results. 
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1. Introduction 
Complex-valued neural networks have been applied in 
various fields dealing with complex numbers or two- 
dimensional data such as signal processing and image 
processing [1,2]. The complex-valued neural network 
can represent more information than the real-valued neu- 
ral network because the inputs, the weights, the threshold 
values, and the outputs are all complex numbers, and the 
complex-valued neural network has some inherent prop-
erties such as the ability to transform geometric figures 
[3-5] and the orthogonal decision boundary [6,7]. 

In the applications of the multi-layered type real-va- 
lued neural networks, the error back-propagation learning 
algorithm (called here, Real-BP [8]) has often been used. 
Naturally, the complex-valued version of the Real-BP 
(called here, Complex-BP) can be considered, and was 
actually proposed by several researchers independently 
in the early 1990’s [3-5,9-11]. This algorithm enables the 
network to learn complex-valued patterns naturally. 

On one hand, the researches on the singularity of the 
learning machines with a hierarchical structure have pro- 
gressed in the past several years [12-15]. It has turned out 

that the singularity has a negative effect on learning dy-
namics in the learning machines such as real-valued 
neural networks and gaussian mixture models. Here, a 
singular point is a point on which the derivatives of an 
error function are all zero, that is, it is a critical point and 
can be a local minimum, a local maximum or a saddle 
point. 

In this paper, the singularity and its effect on learning 
dynamics in the complex-valued neural network are 
elucidated. As a result, we find that the linear combina-
tion structure in the updating rule of the complex-valued 
neural network increases the speed of moving away from 
the singular points; the complex-valued neural network 
cannot be easily influenced by the singular points, whereas 
the learning of the usual real-valued neural network can 
be attracted in the neighborhood of singular points, which 
causes a standstill in learning. Simulation results on the 
learning dynamics of the three-layered real-valued and 
complex-valued neural networks in the neighborhood of 
singularities support the analytical results. It should be 
noted here that it has been reported that the learning  
speed of the Complex-BP is two or three times faster 
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than that of the Real-BP on average via computer simu-
lations [5,16]. This is due to the learning structure of 
the complex-valued neural networks described above. 

2. Problem on the Singularity 
Recently, it has turned out that the singularity has a nega-
tive effect on learning dynamics in the real-valued neural 
networks [12,13,15]. That is, the hierarchical structure or 
a symmetric property on exchange of weights of the the 
real-valued neural networks have singular points. For 
example, if a weight v between a hidden neuron and an 
output neuron is eaual to zero, then no value of the 
weight vector w between the hidden neuron and the input 
neurons affects the output value of the real-valued neural 
network. Then, the weight v is called an unidentifiable 
parameter, which is a kind of singular point. It has been 
proved that singular points affect the learning dynamics 
of learning models, and that they can cause a standstill in 
learning. 

3. The Complex-Valued Neural Network 
This section describes the complex-valued neural net-
work used in the analysis. First, we will consider the fol-
lowing complex-valued neuron. The input signals, weights, 
thresholds and output signals are all complex numbers. 
The net input Un to a complex-valued neuron n is defined 
as: ,n nm m nmU W X V= +∑  where Wmm is the (complex- 
valued) weight connecting the complex-valued neurons n 
and m, Xm is the (complex-valued) input signal from the 
complex-valued neuron m, and Vn is the (complex-valued) 
threshold value of the complex-valued neuron n. To 
obtain the (complex-valued) output signal, convert the 
net input Un into its real and imaginary parts as follows: 

inU x y z= + = , where i denotes 1− . The (complex- 
valued) output signal is defined to be 

( ) ( ) ( )i ,C z x yϕ ϕ ϕ= +            (1) 

where  

( ) ( )
( ) ( )( ) ( ) ( )( )

def
tanh

exp exp exp exp ,

u u

u u u u

ϕ =

= − − + −
 

u∈R  (R denotes the set of real numbers) and is called 
hyperbolic tangent. Note that [ ] [ ]1 < Re , Im < 1C Cϕ ϕ− . 
Note also that ( )C zϕ  is not holomorphic as a complex 
function because the Cauchy-Riemann equations do not 
hold:  

( ) ( )
( )( ) ( )( )2 2

i

1 i 1 0

C C

C C

z x z y

x y

ϕ ϕ

ϕ ϕ

∂ ∂ + ∂ ∂

= − + − ≠
 

where iz x y= + . 

A complex-valued neural network consists of such 
complex-valued neurons described above. The network 
used in the analysis will have 3 layers: L-H-1 network. 
The activation function Cψ  of the output neuron is 
linear, that is, ( )C z zψ =  for any z∈C  where C  
denotes the set of complex numbers. For any input pat-
tern ( )T

1, , L
Lx x= ∈x C  to the complex-valued neur-

al network where kx ∈C  is the input signal to the input 
neuron ( )1k k L≤ ≤  and T  denotes transposition, the 
output value of the output neuron is defined to be 

( ) ( )( ) ( ) 0
1

; ,
H

H H T
j C j

j
f ν ϕ ν

=

= + ∈∑  x θ w x C     (2) 

where ( )TT 1
0

L
j j jw += ∈w w C , 0jw ∈C  is the thre- 

shold of the hidden neuron j , ( )T
1, , L

j j jLw w= ∈w C   

is the weight vector of the hidden neuron j  ( jkw ∈C  
is the weight between the input neuron k  and the 
hidden neuron j ) ( )1 j H≤ ≤ , ( )TT 11 L+= ∈x x C , 

jν ∈C  is the weight between the hidden neuron j  and 
the output neuron ( )1 j H≤ ≤ , 0ν ∈C  is the threshold 
of the output neuron, and  

( ) ( )TT T
0 1 1, , , , , ,H

H Hν ν ν=  
 θ w w  which summarizes all 

the parameters in one large vector. 
Given N  complex-valued training data  
( ) ( )( ){ }, 1, ,p p Lx y p N∈ × = C C , we use a complex-  

valued neural network to realize the relation expressed 
by the data. The objective of the training is to find the 
parameters that minimize the error function defined by  

( )( ) ( ) ( ) ( ) ( )( )( )
1

, ; ,
N

H p H p H
H

p
E l y f

=

= ∈∑θ x θ R      (3) 

where ( ), :l y z × →C C R  is a loss function such that 
( ), 0l y z ≥  and the equality holds if and only if y z= . 

Note that l  is not holomorphic as a complex function 
because it takes a real value. To the author’s knowledge, 
all of the multi-layered complex-valued neural networks 
proposed so far (for example [3-5,9-11]) employ the 
mean square error ( ) ( ) 2, 1 2l y z y z= −  which takes a 
real value. 

4. Analytical Dynamics 
This section reveals the behavior of the three-layered 
complex-valued neural network in the neighborhood of 
singular points, compared with that of the three-layered 
real-valued neural network via theoretical analysis. 

Consider a 1-1-1 complex-valued neural network de-
scribed in Section 3 for the sake of simplicity. For any 
input signal 1x ∈C  to the complex-valued neural net-
work, the output value of the output neuron is defined to 
be 

( ) ( )( ) ( )1 1 T
1 1 1 0; Cf x ν ϕ ν= + ∈ θ w x C       (4) 
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where ( )T 2
1 10 11w w= ∈w C , 10w ∈C  is the threshold 

of the hidden neuron, 11w ∈C  is the weight between the 
input neuron and the hidden neuron, ( )T 2

11 x= ∈x C , 
1ν ∈C  is the weight between the hidden neuron and the 

output neuron, C∈0ν  is the threshold of the output 
neuron, and ( ) ( )T1 T

0 1 1, ,ν ν= θ w . The number of learna-
ble parameters (weights and thresholds) is 8 where a 
complex-valued parameter is counted as two because it 
consists of a real part and an imaginary part. The loss 
function is defined as 

( )( ) ( ) ( )( ) 2
1 1 1

1 1
1, ; ; ,
2

l y x y f x= −θ θ       (5) 

where y∈C  is the training signal for the output neu-
ron. 

In the case of the standard gradient learning method, 
the average learning dynamics is given as follows: 

( )
( )( ) ( )( )1 1

1 1

1
1 1

ˆ ˆ, ; , ;
i ,R I

l y x l y x
tν ε

ν ν

 ∂ ∂
 = − +
 ∂ ∂
 



θ θ
   (6) 

( )
( )( ) ( )( )1 1

1 1

11
11 11

ˆ ˆ, ; , ;
i ,R I

l y x l y x
w t

w w
ε
 ∂ ∂
 = − +
 ∂ ∂
 



θ θ
   (7) 

( )
( )( ) ( )( )1 1

1 1

0
0 0

ˆ ˆ, ; , ;
i ,R I

l y x l y x
tν ε

ν ν

 ∂ ∂
 = − +
 ∂ ∂
 



θ θ
   (8) 

( )
( )( ) ( )( )1 1

1 1

10
10 10

ˆ ˆ, ; , ;
i ,R I

l y x l y x
w t

w w
ε
 ∂ ∂
 = − +
 ∂ ∂
 



θ θ
   (9) 

where [ ]
def

1 1x̂ E x= , [ ]ReRz z=  and [ ]ImIz z=  for a  
learnable parameter z . 

Then, we investigate the behavior of the weight 1ν  
between the hidden neuron and the output neuron in the 
neighborhood of the singularity 1 0ν = . Letting 1 0ν = , 
from Equation (6), we can easily obtain  

( ) ( ) ( )T
1 0 1

ˆ ,Ct yν ε ν ϕ= − ⋅  w x          (10) 

where ( )T
1

ˆ ˆ1 x=x . 
Next, consider a 2-1-2 real-valued neural network. For 

any input signal ( )T 2
1 2,x x= ∈x R  to the real-valued 

neural network, the output value of the real-valued neural 
network is defined to be 

( ) ( ) ( )( )TT T 2
1 10 2 20; , ,g ν ϕ ν ν ϕ ν= + + ∈   x θ w x w x R (11) 

where ( )TT 3
10w= ∈w w R , 10w ∈R  is the threshold 

of the hidden neuron, ( )T 2
11 12,w w= ∈w R  is the weight 

vector between the input neurons and the hidden neuron 
( 1 jw ∈R  is the weight between the input neuron j  and 
the hidden neuron ( )1,2j = ), ( )TT 31= ∈x x R , 

( )T 2
1 2,ν ν= ∈ν R  is the weight vector between the 

hidden neuron and the output neurons ( lν ∈R  is the 
weight between the hidden neuron and the output neuron 
l  ( )1,2l = ), ( )T 2

0 10 20,ν ν= ∈ν R  is the threshold vec-
tor of the output neurons ( 0lν ∈R  is the threshold of the  

output neuron l ( )1,2l = ), ( ) ( )
def

tanh ,u u uϕ = ∈R , and  

( )TT T T
0 , ,=θ ν ν w . The number of learnable parameters 

(weights and thresholds) is 7, which is almost equal to 
that of the complex-valued neural network described 
above. Thus, the comparison of the learning dynamics 
using those neural networks is fair. The loss function is 
defined as  

( ) ( ) 21, ; ; ,
2

l g= −y x θ y x θ          (12) 

where ( )T 2
1 2,y y= ∈y R  is the training signal for the 

output neurons. 
The average learning dynamics of the real-valued 

neural network using the standard gradient learning me-
thod is given as follows:  

( ) ( )
1

1

ˆ, ;
,

l
tν ε

ν
∂

= −
∂



y x θ
           (13) 

( ) ( )
2

2

ˆ, ;
,

l
tν ε

ν
∂

= −
∂



y x θ
           (14) 

( ) ( )
11

11

ˆ, ;
,

l
w t

w
ε
∂

= −
∂



y x θ
           (15) 

( ) ( )
12

12

ˆ, ;
,

l
w t

w
ε
∂

= −
∂



y x θ
           (16) 

( ) ( )
10

10

ˆ, ;
,

l
w t

w
ε
∂

= −
∂



y x θ
           (17) 

( ) ( )
10

10

ˆ, ;l
tν ε

ν
∂

= −
∂



y x θ
           (18) 

( ) ( )
20

20

ˆ, ;
,

l
tν ε

ν
∂

= −
∂



y x θ
           (19) 

where [ ]
def

ˆ E=x x . Letting 0=ν , from Equations (13)  
and (14), we can easily obtain  

( ) ( ) ( )T
1 1 10

ˆ ,t yν ε ν ϕ= − ⋅  w x          (20) 

( ) ( ) ( )T
2 2 20

ˆ ,t yν ε ν ϕ= − ⋅  w x          (21) 

where ( )TTˆ ˆ1=x x . This is the average dynamics of 
the weights ( )T

1 2,ν ν=ν  between the hidden neuron and 
the output neurons in the neighborhood of the singularity 

0=ν . 
We compare below the average dynamics of the com-

plex-valued neural network with that of the real-valued 
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neural network in the neighborhood of singularity. Equa-
tion (10) can be rewritten as  

( ) ( ) ( )
( ) ( )

1 0 11 1 11 1 10

0 11 1 11 1 10 ,

R R R R R I I R

I I R I I R I

t y w x w x w

y w x w x w

ν ε ν ϕ

ν ϕ

= − ⋅ − +
+ − ⋅ + + 



 (22) 

( ) ( ) ( )
( ) ( )

1 0 11 1 11 1 10

0 11 1 11 1 10 .

I R R R I I R I

I I R R I I R

t y w x w x w

y w x w x w

ν ε ν ϕ

ν ϕ

= − − ⋅ + +
+ − ⋅ − + 



 (23) 

As shown in Equations (22) and (23), ( )1
R tν  and 

( )1
I tν  consist of two linear combinations of ϕ , respec-

tively. The following are its explanatory equations. 

( ) ( ) ( )1 2Parameter of the Complex ,NN a u b uϕ ϕ∆ = +  
(24) 

( ) ( )3Parameter of the Real .NN c uϕ∆ =     (25) 

For example, if a b c= =  and 1 2 3u u u= = , then ∆
(Parameter of the Complex NN) = ( )12 2a uϕ = ×∆  (Pa-
rameter of the Real NN) holds. And also, ∆  (Parameter 
of the Complex NN) cannot be equal to zero easily 
because ( )1a uϕ  is not necessarily equal to zero even if 
one term on ( )2b uϕ  is almost equal to zero. This struc-
ture causes a high possibility of ( )1

R tν  and ( )1
I tν  of 

taking larger values, compared with ( )1 tν  and ( )2 tν  
(Equations (20) and (21)). Thus, we can assume that the 
speed of the complex-valued neural network of moving 
away from the singularity is faster than that of the real- 
valued neural network. 

5. Simulations 
We present below the simulation results on the learning 
dynamics of the three-layered complex-valued neural 
networks using the standard gradient learning method in 
the neighborhood of singularities, and compare them 
with those of the three-layered real-valued neural net-
works using the standard gradient learning method. 

In the experiments, the three sets of (complex-valued) 
learning patterns shown in Table 1 were used, and the 
learning constant ε  was 0.5. We chose the three-layered 
1-1-1 complex-valued neural network where 1 0=w  and 

1 0ν =  were singular points, and the three-layered 2-1-2 
real-valued neural network where 0=w  and 0ν =  were 
singular points described in Section 4. The comparison 
using those neural networks is fair because the numbers 
of the parameters (weights and thresholds) are almost the 
same: the number of parameters for the 1-1-1 complex- 
valued network is 8, and that for the 2-1-2 real-valued 
neural network 7 where a complex-valued parameter 

iz x y= +  is counted as two because it consists of a real 
part x  and an imaginary part y . In the real-valued 
neural network, the real component of a complex number 
was input into the first input neuron, and the imaginary  

Table 1. Learning patterns. 

(a) Learning pattern 1 

Input pattern Output pattern 

1.0 i 

(b) Learning pattern 2 

Input pattern Output pattern 
i −i 

(c) Learning pattern 3 

Input pattern Output pattern 
0.1 + 0.1i 0.5 + 0.5i 

 
component was input into the second input neuron; the 
output from the first output neuron was interpreted to be 
the real component of a complex number, and the output 
from the second output neuron was interpreted to be the 
imaginary component. The initial values of the weights 
and the thresholds were set as shown in Table 2. Note 
that the initial values of the weights between the hidden 
layer and the output layer were set in the neighborhood 
of the singular points: 1 0.000001 0.000001iν = +  in the 
complex-valued neural network, and  

1 20.000001, 0.000001ν ν= =  in the real-valued neural 
network. The eight initial values (eight cases) were used 
for the weights 11w  or ( )11 12,w w  between the input 
layer and the hidden layer. We judged that learning fi-
nished, when the training error was equal to 0.0001, that 
is, ( ) ( )( )1 1

1; 0.0001y f x− =θ  in the case of the com-
plex-valued neural network, and ( ); 0.0001g− =y x θ  
in the case of the real-valued neural network. 

We investigated the learning speed (i.e., learning cycles 
needed to converge) for each of the 3 learning patterns in 
the experiments described above. The results of the ex-
periments are shown in Table 3. We can find from these 
experiments that the average learning speed of the com-
plex-valued neural network is approximately 1.4 times 
faster than that of the real-valued neural network. The 
superscript * of a number means that the weights be-
tween the hidden layer and the output layer stayed in the 
neighborhood of the singular point 0  or ( )0,0  from 
the beginning to the end of leaning. Table 4 shows the 
Euclidean distances between the weights (between the 
hidden layer and the output layer) and the singular point 
0  or ( )0,0  after the first learning cycle. In every case, 
the weights of the complex-valued neural network moved 
in the distance from the singular point 0  compared 
with those of the real-valued neural network. We believe 
that this phenomenon originates in the linear combinations 
of ϕ  in Equations (22) and (23) shown in Section 4. 

In the experiments on the learning patterns 1 and 2, the 
learning speeds of the cases * were slow uniformly. All 
the average learning speeds except the cases * were faster 
than the average learning speed. In the cases *, the  
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Table 2. Initial values of the weights and the thresholds. 

(a) Complex-valued neural network 

w10 v1 v0 
0.5 + 0.5i 0.000001 + 0.000001i 0.0 

 
 case 1 case 2 case 3 case 4 

w11 −0.5 −0.5 + 0.5i 0.5i 0.5 + 0.5i 
 

 case 5 case 6 case 7 case 8 
w11 0.5 0.5 – 0.5i –0.5i −0.5 – 0.5i 

(b) Real-valued neural network 

w10 v1 v2 v10 v20 
0.5 0.000001 0.000001 0.0 0.0 

 
 case 1 case 2 case 3 case 4 

w11 −0.5 −0.5 0.0 0.5 
w12 0.0 0.5 0.5 0.5 

 
 case 5 case 6 case 7 case 8 

w11 0.5 0.5 0.0 −0.5 
w12 0.0 −0.5 −0.5 −0.5 

 
Table 3. Learning speed (the number of learning cycles 
needed to converge). Case number means the initial values 
of the weights between the input layer and the hidden layer 
(See Table 2). The superscript * of a number means that the 
weights between the hidden layer and the output layer 
stayed in the neighborhood of the singlar point 0 or (0, 0) 
from the beginning to the end of leaning. 

(a) Learning pattern 1 

Case number 1 2 3 4 5 6 7 8 
Complex NN 7 5 3 4 3 5 7 13* 

Real NN 13* 13* 7 5 5 5 7 13* 
 

Case number Average Average except the cases* 
Complex NN 5.9 4.9 

Real NN 8.5 5.8 

(b) Learning pattern 2 

Case number 1 2 3 4 5 6 7 8 
Complex NN 7 13* 7 5 3 4 3 5 

Real NN 7 5 5 5 7 13* 13* 13* 
 

Case number Average Average except the cases* 
Complex NN 5.9 4.9 

Real NN 8.5 5.8 

(c) Learning pattern 3 

Case number 1 2 3 4 5 6 7 8 
Complex NN 7 7 6 5 5 5 6 7 

Real NN 9 8 8 8 8 8 9 9 
 

Case number Average Average except the cases* 
Complex NN 6.0 6.0 

Real NN 8.4 8.4 

Table 4. The Euclidean distances between the weights (be- 
tween the hidden layer and the output layer) and the sin- 
gular point 0 or (0, 0) after the first learning cycle: 1ν  for 

the complex-valued network, and ν  for the real-valued 
neural network. Case number means the initial values of 
the weights between the input layer and the hidden layer 
(See Table 2). 

(a) Learning pattern 1 

Case number 1 2 3 4 5 
Complex NN 0.23 0.38 0.44 0.53 0.44 

Real NN 0.00 0.00 0.23 0.38 0.38 

 
Case number 6 7 8 Average 
Complex NN 0.38 0.23 0.00 0.33 

Real NN 0.38 0.23 0.00 0.20 

(b) Learning pattern 2 

Case number 1 2 3 4 5 
Complex NN 0.23 0.00 0.23 0.38 0.44 

Real NN 0.23 0.38 0.38 0.38 0.23 

 
Case number 6 7 8 Average 
Complex NN 0.53 0.44 0.38 0.33 

Real NN 0.00 0.00 0.00 0.20 

(c) Learning pattern 3 

Case number 1 2 3 4 5 
Complex NN 0.21 0.21 0.23 0.25 0.25 

Real NN 0.14 0.16 0.18 0.19 0.18 
 

Case number 6 7 8 Average 
Complex NN 0.25 0.23 0.21 0.23 

Real NN 0.16 0.14 0.13 0.16 
 

weights between the hidden layer and the output layer 
could not move away from the singular point, but, as a 
result, the learning speed became slow. And also, the 
number of cases * of the complex-valued neural network 
was 1, and that of the real-valued neural network 3, 
which suggested that the complex-valued neural network 
was not influenced by singular points compared with the 
real-valued neural network. 

In the experiment on the learning pattern 3, the aver-
age learning speed of the complex-valued neural network 
was 1.4 times faster than that of the real-valued neural 
network, although there was no cases * in both of the 
neural networks. Figure 1 shows the weights between 
the hidden layer and the output layer after the first learn-
ing cycle and those after the learning finished for the 
learning pattern 3. Judging from Figure 1 and Table 4, 
the speed of the complex-valued neural network of mov-
ing away from the singularity is faster than that of the 
real-valued neural network, and it causes a difference of 
the learning speed. 
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Figure 1. The behavior of the weights between the hidden 
layer and the output layer. Their initial values were set in 
the neighborhood of the singular point (the origin). The 
eight initial values (eight cases) were used for the weights 
between the input layer and the hidden layer (see Table 2). 
The distance of the weight of the complex-valued neural 
network from the singularity after the first learning cycle 
was larger than that of the real-valued neural network. 

6. Conclusions 
We compared theoretically and experimentally the in-
fluence of the singular points on the learning dynamics in 
the complex-valued neural network with that in the real- 
valued neural network. As a result, we found that the 
linear combination structure in the updating rule of the 
complex-valued neural network increased the speed of 
moving away from the singular points; the complex-va- 
lued neural network could not be easily influenced by the 
singular points. This is considered to be a result which 
supports the fast convergence of the Complex-BP algo-
rithm. 

It might be premature to conclude the statements de-
scribed above are true because this paper deals with only 
very simple cases such as the network structures and the 
learning patterns. In the future, we will investigate more 
complicated cases. 
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