
Journal of Software Engineering and Applications, 2014, 7, 14-26
Published Online January 2014 (http://www.scirp.org/journal/jsea)
http://dx.doi.org/10.4236/jsea.2014.71003

OPEN ACCESS JSEA

Analysis and Programming of Kernel for Embedded
Systems

Kyumann Im1, Woonchul Ham2

1Division of Electronics and Information Engineering of Chonbuk National University, Duckjin-Dong, Jeonju-city, South Korea;
2Division of Electronics and Information Engineering of Chonbuk National University, Duckjin-Dong, Jeonju-city, South Korea.
Email: ikmann@hanmail.net, wcham@chonbuk.ac.kr

Received September 23rd, 2013; revised October 20th, 2013; accepted October 28th, 2013

Copyright © 2014 Kyumann Im, Woonchul Ham. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
In accordance of the Creative Commons Attribution License all Copyrights © 2014 are reserved for SCIRP and the owner of the
intellectual property Kyumann Im, Woonchul Ham. All Copyright © 2014 are guarded by law and by SCIRP as a guardian.

ABSTRACT
In this study, we present a miniOS kernel implemented via analysis of the context switching, the scheduler, and
the memory management of the original OS kernel for an embedded system based on ARM core. Since this is a
large subject, we have limited our scope to them only that made up an embedded operating system. The imple-
mented miniOS kernel is composed only by them, to the exclusion of all other functions of the original kernel.
Our goal is to modify the OS kernel depending on the product function. The implementation method of the mi-
niOS kernel can be applicable to any OS being mounted based on the ARM core. Modifying the kernel depend-
ing on the product function can improve the OS booting speed as well as save the system memory. The functions
of the scheduler, the context switching, and the memory management are described with the source in each sec-
tion. The miniOS kernel was implemented in the Assembly and C language and was verified through the build
and the test. The results are shown in the Section 5.

KEYWORDS
Context Switching; Scheduler; Kernel; OS Timer; Embedded System

1. Introduction
With an explosive increase of the development of the em-
bedded systems with which OS is mounted, the develop-
ment of independent OS became more significant. How-
ever, in most cases, companies and individuals that deve-
lop embedded systems create only device drivers and re-
lease the products. It seems that few companies and indi-
viduals are interested in the independent OS development.
Of course, we can think that the main factors of this pheno-
menon require a lot of development costs and time, pro-
bably. So we present the miniOS kernel made via the im-
plementation of the context switching and the scheduler
for an embedded system based on ARM core (ARM 920T).
Today, saying that all OSs support the multitasking is not
an exaggeration. Generally, the embedded OS can be di-
vided into five parts as follows [1]:

1. Process (task) Management: thread, process, sche-
duling, synchronization, inter process communication

(IPC)
2. Memory Device Management: memory, virtual, file

system
3. Networking: TCP/IP, various protocol
4. User Management: user account, access authority
5. Device Driver: serial access, random access, net-

work
The context switching and the scheduler in the OS that

supports the multi-tasking are the most significant core
parts. Thus, in this study, we present the implementation
of the miniOS kernel that can operate the context switch-
ing and the scheduler [2]. Of course, we tried to write
about the function concisely and easily for people to un-
derstand it as well as possible. We did not use any com-
plex algorithm in the algorithm implementation. In im-
plementing the miniOS kernel, we used easy instructions
for the assembly instructions that should be inevitably
used as well. In this study, we utilized EZ-X5 board
equipped with the main processor, PXA255 chip of

http://www.scirp.org/journal/jsea�
http://dx.doi.org/10.4236/jsea.2014.71003�
mailto:ikmann@hanmail.net�
mailto:wcham@chonbuk.ac.kr�

Analysis and Programming of Kernel for Embedded Systems

OPEN ACCESS JSEA

15

ARM92 series. Also EZ-X5 is equipped with NAND
Flash memory 64MB and SDRAM 64 MB and it has an
Ethernet controller, a USB controller, and other periphe-
ral devices. Section 2 presents an overview and imple-
mentation of the context switching. In Sections 3 and 4,
the context switching and the scheduler implementation
process are presented with sources. A practical example
with the results obtained in this study is presented in Sec-
tion 5. Finally Section 6 contains the conclusions and fu-
ture work.

2. Context Switching and Scheduler
2.1. Multitasking
Operating systems such as Windows or Linux are multi-
task operation systems [3]. So when you use operating
systems, it is possible for us to fulfill multiple tasks at the
same time. For example, while listening to music, we can
create documents with a word processor. Also even while
finding resources we need for making our documents
through the website search by launching the web browser,
if a friend talks to us through a messenger, we can chat
with the friend for a while. We feel like that all of these
tasks run at the same time. However, in reality several
programs are not operating at the same time since the
processor (CPU) can run only one program at a time.
Therefore, physically processors as many as programs
running concurrently are needed in order that several
programs operate at the same time. But multitasking
works well in a computer with a single processor as well.

Then, although a processor can perform only one com-
mand at a time, how can multiple commands be perform-
ed simultaneously? Even in a computer with a single pro-
cessor, multi-tasks can be operated smoothly because the
processor is very fast. The processor executes tasks which
run currently very fast and alternately. For this reason, to
the person who perceives slowly compared to the pro-
cessor, the tasks look likely to operate simultaneously.
This concurrent operation can be thought to be a time-
sharing system [4].

2.2. Context Switching
Operating system supporting the multi-tasking, according
to certain rules, continues to switch the task that has the
context in the current processor at regular time intervals.
Here, the behavior that changes the context of a task in
the processor into the context of another task. Also, swi-
tching tasks requires certain rules, which are under the
responsibility of the scheduler to be explained in the fol-
lowing.

There are registers from r0 to r15 and spsr (saved pro-
gram status register) in the context of the ARM. When
we implement the context switching between a task and
ISR (Interrupt Service Routine), we recover the context

of the task after backing it up into the stack of ISR be-
cause there was only one task to be addressed. However,
when we implement the context switching between tasks,
we should back up the context of the current processor
into the TCB (Task Control Block).

Then, we can recover it from the processor after taking
the context from the TCB of a different task. In order to
prepare for this like process, the task control block should
be implemented. The context switching should be made at
regular time intervals. Thus OS is also associated with a
timer. Furthermore, since OS timer operates as IRQ (In-
terrupt Request), the context switching is implemented in
the IRQ handler. Figure S1 shows the structure of con-
text switch [5,6].

2.3. Scheduler
The scheduler plays a role to determine the next task that
be switched to the context switching. Several kinds of
scheduling techniques have been developed and operat-
ing system can be selected and used in accordance with
the purpose of developing. The overall transition process
of the task is as follows: first of all, backing up the con-
text of the task running currently into the TCB of the
right task. Secondly, by calling the scheduler, making it
choose the next task to work. Thirdly, putting the context
brought from TCB of the task which is selected like this
into the register of the processor. Lastly, the newly nam-
ed task is executed.

3. Implementation of Context Switching
3.1. IRQ Handler
In OS, the context switching should be occurred periodi-
cally. Thus, OS handles the context switching whenever
operation OS timer. By using a stack in IRQ handler
when implementation OS timer, it was treated an ISR
and a context switching (see Code 1).

This part will be replaced with the context switching
code by using TCB. A context switching process imple-
mented in IRQ handler can be divided into three parts.
The first process is making IRQ disable in order that in-
terrupts are not overlapped. The second one is backing
up register values of the processor into the task control
block, and that depending on the type of an occurred IRQ,
the C language handler function determines a task switch.
The third one is putting the context data received from
TCB of the task to be performed next time into the pro-
cessor and jumping into the working position of the right
task. Each part of Code 1 will be discussed in each sec-
tion.

3.2. Task Context Backup
First, Code 2 (a part of Code 1) is that the context of the

Analysis and Programming of Kernel for Embedded Systems

OPEN ACCESS JSEA

16

entry.s
.global miniOS_irqhandler
miniOS_irqhandler:
msr cpsr_c, #0xc0 | 0x12// IRQ mode
ldr sp, = TCB_PtrCurrentTask
ldr sp, [sp]
sub lr, lr, #4
add sp, sp, #4
stmia sp!, {r0-r12}^
stmia sp! {sp,lr}^
stmia sp! {lr}
sub sp, sp, #68
mrs r1, spsr
stmia sp!, {r1}
ldr sp, TCB_IRQStack
bl irqHandler
ldr sp, = TCB_PtrNextTask
ldr sp, [sp]
ldmia sp!, {r1}
msr spsr_cxsf, r1
ldmia sp!, {r0-r12}^
ldmia sp!, {r13, r14}^
ldmia sp!, {pc}^

Code 1. Context switching.

msr cpsr_c, #0xc0 | 0x12 // IRQ mode
ldr sp, = TCB_PtrCurrentTask
ldr sp, [sp]
sub lr, lr, #4
add sp, sp, #4
stmia sp!, {r0-r12}^
stmia sp! {sp,lr}^
stmia sp! {lr}

sub sp, sp, #68
mrs r1, spsr
stmia sp!, {r1}

Code 2. Task context backup.

currently running task is backed up.

In the first line, the part to modify cpsr is for making
IRQ disable in order not to occur Interrupt. To handle
nested Interrupt, various situations should be considered
and additionally code becomes more complicated. In this
subsection, we will describe how to implement both the
way that allows nested Interrupt and the way that does
not allow it. In the way that does not allow nested Inter-
rupt, after Interrupt occurs and it enters an ISR (Interrupt
Service Routine), the next interrupt does not occur until
the end of ISR. Therefore, when a programmer creates
the ISR, the programmer must be careful not to execute
too much long time operations or operations such as run-
ning an infinite loop by mistake, and so on.

On the other hand, the first purpose of the allowed
nested interrupt handler is to react quickly to interrupt. In
other words, it is possible that a handler does not need to
wait for interrupts which occur asynchronously and In-
terrupts does not need to wait for the handler either. The
second purpose is not to delay an execution of code oc-
curring simultaneously and regularly while various in-
terrupts are served. If possible, the handler always checks

stacks and it should prevent breakage of registers.
The entry code of allowed nested interrupt handler is

the same as a simple interrupt handler, but a different
point is that nested interrupt is not allowed to test the flag
updated by ISR when it exits the handler. The flag tells
whether we need to handle another interrupt or not. If we
do not have any part to handle, the interrupt service rou-
tine is completed and the handler finishes working. Other-
wise, if we still need to process an interrupt, the handler
can re-enable the interrupt and carry out some works to
perform a context switch. Re-enabling the interrupt in-
cludes the work of converting to SVC and System Mode
in IRQ Mode.

Since in IRQ Mode, only the register r14 is accessible
and the original value of this register might be broken by
an overwritten new value, if the interrupt occurred by
using the bl instruction (Code 1), making IRQ re-
enabled should be cautious. Since while the data are on
IRQ stack, the handler is not able to perform a context
switch, IRQ stack should be empty so as to perform a
context switch. Here, all registers stored in IRQ stack are
usually sent to SVC stack (or stack of the task) and these
are sent to the block of memory allocated on the stack
named as “stack frame” as well. TCB_PtrCurrentTask
variable number will be explained in detail in the section
of scheduler. The following code (Code 3) is a part of
Code 1.

The above two lines put the value of a pointer of
TCB_PtrCurrentTask obtained through reading into the
stack pointer (sp). In other words, they bring the address
value of the pointer and the value of a pointer variable is
the address value of the memory. Thus, the address value
taken from TCB_PtrCurrentTask is the address of the
TCB of the task currently operating, as it were, it is the
address value of the memory which is located in varia-
bles of Mini_free_task structure (see Figure 1).

USER mode and IRQ mode share registers except for
the stack pointer (sp) and the link register (lr) (ref.
ARM920T Usre’s manual). Besides, the address to which

ldr sp, = TCB_PtrCurrentTask
ldr sp, [sp]

Code 3. Save miniOS pointer to stack pointer (sp).

Figure 1. TCB_PtrCurrentTask pointer variable.

Analysis and Programming of Kernel for Embedded Systems

OPEN ACCESS JSEA

17

ISR has to return is stored in lr. So, the register which is
freely available in IRQ mode is only sp. For this reason,
sp is used as an index address of stima. The following
code (Code 4) is a part of Code 1.

Code 5 is the part of backing up registers of a proces-
sor into TCB. In the first line of sources, 4 bytes are sub-
tracted from the lr with the return address. It is a crucial
difference between SWI to enter the interrupt by using
the SWI command and IRQ to occur in hardware. In or-
der to understand this, ARM’s pipeline structure and the
point at which occurred each the exception should under-
stand. In the next line, four is added to the stack pointer
pointing to the location of the start of TCB.

As a result, sp will skip the space of the context_spsr
variable and point to the first address of the context
[CONTEXTNUM] array. The order to back up 13 register
values from r0 to r12 into the context array is the com-
mand, stima sp! {r0-r12}^. Then, it backs up the values
of sp and lr of USER mode into the context_sp, con-
text_lr. Finally, it makes a backup the values of the lr of
IRQ mode, the address to go back into the remaining
context_pc. The following code (Code 6) is a part of
Code 1.

In the above two lines, the link registers of each line
are different each other. In stima, when we address, the
specified register by attaching the end caret (^) is USER
mode register. If nothing, it reads registers of operation
mode (sp and IRQ mode in the above sources) specified
in cpsr. Therefore, the first line of code is a command
storing sp and lr of USER mode into the memory. Then
68 bytes are subtracted from sp.

sub lr, lr, #4
add sp, sp, #4
stmia sp!, {r0-r12}^
stmia sp! {sp,lr}^
stmia sp! {lr}
sub sp, sp, #68
mrs r1, spsr
stmia sp!, {r1}

Code 4. The part of backing up registers of processor of
Code 1.

TCB_task.h
typedef struct _mini_free_task{

unsigned int context_spsr;
unsigned int context [CONTEXTNUM];
unsigned int context_sp;
unsigned int context_lr;
unsigned int context_pc;

}Mini_free_task;

Code 5. TCB task header file.

stmia sp! {sp,lr}^
stmia sp! {lr}

Code 6. User mode (Read IRQ mode register).

Since the current context_pc is filled with values, in
order that sp points to the context_spsr, 17 words should
go backward. In a 32-bit environment, 17 words are 68
bytes. In that state, after reading the values of spsr to r1,
the value of r1 is written to the memory pointed by the
stack pointer. Here, because r1 was already backed up in
the previous step, even if a different value replaces it,
which does not matter. Resultantly, spsr of IRQ mode is
backed up into the context_spsr. Through the above pro-
cess, all contexts stored in the current processor were
backed up into TCB. Then enter into IRQ handler func-
tion written in C language.

3.3. Entry of IRQ Handler Function

The sp is returned to the initial value of the stack as-
signed to IRQ mode by putting the TCB_IRQStack value
back because it was used to back up the context at the
sources of the top. And it enters irqHandler() function by
bl command. The contents of irqHandler() function will
be discussed after a while. After we completed the IRQ
handler function written in C language, we should recov-
er the context again. The following code (Code 7) is a
part of Code 1.

3.4. Recovery of Task Context

The following source code (Code 8) is a part of Code1
and shows recovery of task context.

TCB_PtrNextTask variable is also a global pointer va-
riable of all the kennel areas. The scheduler determines
the task to operate after the current task is backed up. In
miniOS kernel the pointer to TCB of the task determined
by the scheduler is assigned to a TCB_PtrNextTask vari-
able. The first two lines bring the address of task control
block to the stack pointer through a pointer variable and
work on the same principle as dealing with TCB_
PtrCurrentTask variables.

As shown in Figure 2, one working register should be
used in order to recover spsr. So, the spsr must be recov-
ered at first before repairing work registers. And only
through that way, the working registers can be fully re-

ldr sp, = TCB_IRQStack
bl irqHandler

Code 7. Set IRQ stack.

ldr sp, = TCB_PtrNextTask
ldr sp, [sp]
ldmia sp!, {r1}
msr spsr_cxsf, r1
ldmia sp!, {r0-r12}^
ldmia sp!, {r13, r14}^
ldmia sp!, {pc}^

Code 8. Task context recovery.

Analysis and Programming of Kernel for Embedded Systems

OPEN ACCESS JSEA

18

Figure 2. Recovery context from task control block.

covered without being damaged. That’s the reason why
in TCB, the context_spsr is located on the most top. Next,
the first four bytes of TCB are read as r1. The first word
of TCB (four bytes in 32-bit systems) is the context_spsr.
In this way, the spsr of that right task is backed up into
r1 and it is restored to the spsr of a processor. 13 regis-
ters from r0 to r12 are restored as processors in the task
control block as well. In the same way, r13(sp), r14(lr)
are restored. In addition, the return address put in the
context_pc when the context was backed up previously is
restored into a pc. As a result, by the above procedure,
the processor execution flow jumps to the return address
with completion of the right command at the same time.
spsr is also recovered into the cpsr and returns to USER
mode. Lastly, when we use the caret(^) at addressing
parts of ldmia instruction, if we have a pc in the register
list, it jumps to the value stored in the pc and simulta-
neously spsr is restored into the cpsr.

4. Implementation of Scheduler
The scheduler in the core of the OS plays the biggest role.
Multi-tasking scheduler is implemented in a context
switching method. We will describe on a scheduling, the
process of determining a task to switch, independent of
the context switching that switches between tasks. Each
OS (Operating System) has its own scheduling policy and
the scheduler algorithm is made in the form of the most
satisfying this scheduling policy. There is the way of
round-robin, which is the most basic scheduler way, and
there is Linked-list scheduler as a high-quality way. Linked-

list algorithm is shown appendix (ACode 6).

4.1. Scheduler Strategy of OS
For instance, RTOS (Real Time OS) gives the priority to
the task and uses the scheduling policy that ensures the
execution time. In this case, according to the priority
policy by the scheduler, the task of the high priority
should be allowed to keep occupying the processor. And
exceptionally, the case that the low-priority task has to be
executed earlier than the higher-priority task should be
handled. In order to facilitate this process, the scheduler
algorithm must be created in considering a number of
various cases. Moreover, in the case of the operating sys-
tem that uses the priority, the situation that some tasks of
the low-priority which did not receive the scheduling for
a long-term period stay continuously in a standby state
can occur. The scheduler is charge of finding these tasks
and adjusting the priority to be executed appropriately as
well. In addition to that, the scheduler makes computer-
intensive tasks be done earlier by temporarily lowering
the priority of the tasks which work for a long time, as
the disk IO, and so on. Like this, the operation to in-
crease the overall response of a system is also the role of
the scheduler.

4.2. Implementation of Round Robin Scheduler
Depending on the scheduling strategies, there are a lot of
scheduling algorithms. An easy-to-implement algorithm
of many algorithms can be said to be a round-robin algo-
rithm. In this study, the scheduler which adopted the
round-robin algorithm will be implemented. Of course
the roles of the scheduler are very diverse, but the most
important role of it is to determine a task to be performed
after a current running task. So, the scheduler to imple-
ment will be designed to determine only one task to be
performed next. As can be seen from Figure 3, the
round-robin algorithm selects the tasks existing in a cir-
cular list one by one and orderly, going around in a cir-
cle.

The round-robin scheduler is the method to choose the
next task regardless of a current status or the priority of
the task. The following Code 9 is about implement sources
of the round-robin scheduler. TCB_PtrCurrentTask and
TCB_PtrNextTask as pointer variables of a Mini_free_
task structure are variables of the context switching code.
The following code is about the sources of the scheduler
function.

TCB of a current running task is always pointed by the
TCB_PtrCurrentTask pointer variable. TCB of the task
run next that is selected by the scheduler is always
pointed by the TCB_PtrNextTask pointer variable. The
miniOS kernel is booted for the first time in the TCB
(Task Control Block), also, the first user task that is dis-

Mini_free_task

context_spsr

context_lr

context_sp

context_pc

context[…]

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

spsr

ARM Core Registers

Analysis and Programming of Kernel for Embedded Systems

OPEN ACCESS JSEA

19

miniOS.c
int TCB_current_index;
Mini_free_task TCB;
Mini_free_task *TCB_PtrCurrentTask;
Mini_free_task *TCB_PtrNextTask;

void scheduler(void)
{

TCB_current_index++;
TCB_current_index %= (task_manage.max_task_id + 1);
TCB_PtrNextTask =

&task_manage.free_task_pool[TCB_current_index];
TCB_PtrCurrentTask = TCB_PtrNextTask;

}

Code 9. Scheduler code.

Figure 3. Round-robin algorithm.

carded after several initialization work is assigned into
the TCB, which is used as a sort of trash bin to discard
the previous register values contained in the processor.

The TCB_current_index is a variable with the index of
the task currently running in the free task block list.
When the round-robin scheduling, the scheduler deter-
mines a task to be selected next, increasing this variable
one by one. But the value of the TCB_current_index
should not be larger than the max_task_id of the task
manager. If TCB_current_index becomes greater than
max_task_id, it should be returned back to the index 0.

Because of the round-robin scheduling, a task to be
performed next is the task which is located in the next
index of the free task block. So, it increases one mi-
TCB_current_index variable. However, by just increas-
ing, the round robin is not performed.

Therefore, the TCB_current_index variable and the
task_manage.max_task_id variable have to be zero again
by the MOD operation, if the size of the index variable
becomes the maximum value. The pointer of TCB with
the conformed TCB_current_index variable as an index
is assigned into the TCB_PtrNextTask pointer. In the
above sources, since the miniOS_current_ index is in-
creased, TCB address of the task to be performed next is
put into the TCB_PtrNextTask pointer.

4.3. Scheduler Initialization Code

In this section, we will describe on the initialization code
of the scheduler (Code 10).

If task_manage_max_id increasing one by one when-
ever a task is registered is less than 0, because this means
that none of the user task in registered, there is no subject

miniOS.C
int scheduler_init(void)
{

if(task_manage.max_task_id < 0)
{

return −1;
}
TCB_PtrCurrentTask = &TCB;
TCB_PtrNextTask = &task_manage.free_task_pool[0];
mini_current_index = −1;
return 0;

}

Code 10. Scheduler initialization.

to be scheduled. If there is no user task, that an embed-
ded OS is booted has no meaning. So, we return −1
which means an error, and the initial value of the
TCB_PtrCurrentTask pointer becomes equal to the ad-
dress of the TCB, a global variable to use as a trash bin.

From now on, we will discuss on the context switching
code (Code 2) of Section 3.2. If start the context switch-
ing for the first time, the values of the current processor’s
registers are backed up at the location of the address that
pointed by the TCB_PtrCurrentTask pointer. In the con-
text switching, because the processor’s values have no-
thing to do with the values of the user task, they are
thrown away as garbage values, in the same way that the
initial value of the TCB_PtrCurrentTask pointer is assign-
ed to the TCB. The initial value of the TCB_PtrNextTask
is the first index of the free task block list. When we boot,
after discarding the initial values of the processor’s reg-
isters, the values to enter the register of the processor
should be the context of the first list. So, the initial value
of the TCB_PtrNextTask is the pointer of the task control
block of the first task. As soon as it enters the scheduler
function (Code 4), since one TCB_PtrNextTask value is
increased, the initial value of this variable is set to −1.

4.4. Main Function of miniOS Kernel
Scheduler_init() function as initialization function of the
scheduler should be performed after the user task is reg-
istered in the kernel, only then, because the value of the
task_manage.max_task_id can be obtained accurately. So,
the position to call it should be in the next place of the
miniOS_user() function [7,8]. The kernel main() function
is as the following (Code 11).

After the scheduler_init() function is called, if the re-
turn value is negative, booting is stopped, coming out the
message, “miniOS kernel error.” As a result, because
there is not principal to do the work, the kernel cannot
proceed further.

4.5. OS Timer Handler

The position of the implemented schedule is very impor-
tant. As mentioned in the previous section, the operation

task
n

task
1

When you reach the end, it goes back to the beginning again.

Choose by one tasks of the list.

Analysis and Programming of Kernel for Embedded Systems

OPEN ACCESS JSEA

20

miniOS.c
int main()
{

int i;
miniOS_init();
miniOS_user();
if(scheduler_init < 0)
{

printf("miniOS Kernel Error!!!\n");
return -1;

}
for(i=0; i<= task_manage.max_task_id;i++)
{
printf(TCB : TASK%d - init PC(%p) \t init SP(%p) \n",

i+1, task_manage.free_task_poo[i].context_pc,
task_manage.free_task_poo[i].context_sp);
}
printf("Function TASK1 : %p\n", usertask1);
printf("Function TASK2 : %p\n", usertask2);
printf("Function TASK3 : %p\n", usertask3);
irq_enable();
while(1)
{

msleep(1000);
}
return 0;

}

Code 11. Main function of miniOS kernel.

of the context switching should be linked with OS timer.
Therefore, the implemented scheduler should be called in
the OS timer handler. The irqHandler() function of the
miniOS.c is implemented as shown below (Code 12).

The values of the TCB_PtrNextTask and the values of
the TCB_PtrCurrentTask are equal until the scheduler is
called. So, if there is another IRQ, instead of OS timer,
even it goes in and out to the IRQ handler, a task switch
does not occur. The reason is because the current task
and the next task are assigned to the same task. Only
when the OS timer occurs and it goes in and out to the
IRQ handler, the TCB_PtrNextTask is selected by the
scheduler. Eventually, as the current task and the next
task are specified as different tasks, the task switch is
performed. The total code of the miniOS Kernel is shown
appendix (ACode 1).

4.6. USER Task
The user task in the embedded OS is the program which
is not be terminated, like OS. Also, the user task function
should not be terminated, instead, it should include an
infinite loop code inside itself. The user task function is
shown in appendix (ACode 5). Figures 4 and 5 are
shown memory map.

5. Test of miniOS Kernel
In this section, we will explain a build and test on the
implemented miniOS kernel and show the results of run-
ning the miniOS kernel. The following results show the

miniOS.c
void irqHandler(void)
{

if(ICIP & (1 << 27)) != 0)
{

OSSR = OSSR_M1;
OSMR1 = OSCR + 3686400;
scheduler();

}
}

Code 12. OS timer handler.

Figure 4. Memory address allocated to user task.

Figure 5. Boot and miniOS kernel memory map.

outcomes obtained by booting after mounting the miniOS
kernel image obtained by running the Makefile on the
EZ-B/D. In Figure 6, as the test results, that numbers of
output values come out in order of 1, 2, and 3 can be veri-
fied. And we can see from the above test results that tasks,
1, 2, and 3 are repeated after running three tasks. That cor-
rect output values come out means that the context switch-
ing also works very well. As a result, that the implemented
round-robin scheduling operates exactly can be verified.

Analysis and Programming of Kernel for Embedded Systems

OPEN ACCESS JSEA

21

TCB : TASK1 - init PC(a000bbe4) init SP(a04ffffc)
TCB : TASK2 - init PC(a000bc40) init SP(a05ffffc)
TCB : TASK3 - init PC(a000bc9c) init SP(a06ffffc)
Function TASK1 : a000bbe4
Function TASK2 : a000bc40
Function TASK3 : a000bc9c
TASK1 - x:a04fffe8 y:a04fffe4 z:a04fffe0
TASK2 - x:a05fffe8 y:a05fffe4 z:a05fffe0
TASK3 - x:a06fffe8 y:a06fffe4 z:a06fffe0

Figure 6. The results of build and test.

6. Conclusion
In this study, we presented how a context switching and a
scheduler in OS should be implemented through the ac-
tual resources. To be a multi-tasking OS, essentially, the
context switching and the scheduler should be imple-
mented. And since the miniOS kernel also manifests the
multitasking embedded OS, the context switching and
the scheduler were implemented. In Section 3, we ex-
plained the concept of the context switching and what
strategies should be applied to the context switching in
ARM is examined through the actual codes. We also im-
plemented the scheduler associated with the context swi-
tching by using the simplest form of the round-robin al-
gorithm and checked the results coming from operating
the user tasks in an infinite loop function. Moreover, we
verified that the stack allocation was made accurately
based on the results of the output values of the user task
function. In the future, we will implement more concrete
and practical context switching and linked-list scheduler,

and we will be able to handle interrupt which allows
nested interrupt.

REFERENCES
[1] A. Silberschatz, G. Gagne and P. B. Galvin, “Operating

System Concepts,” 8th Edition, Willey, New York, 2009.
[2] C. L. Liu and J. Layland, “Scheduling Algorithms for Mul-

tiprogramming in a Hard Real-Time Environment,” Jour-
nal of the ACM, Vol. 20, No. 1, 1973, pp. 46-61.
http://dx.doi.org/10.1145/321738.321743

[3] A. Silberschatz, G. Gagne and P. B. Galvin, “Operating
System Concepts,” 8th Edition, Willey, New York, 2009.

[4] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pier-
son and F. Pollack, “HYDRA: The Kernel of a Multipro-
cessor Operating System,” Communications of the ACM,
Vol. 17, No. 6, 1974, pp. 337-345.
http://dx.doi.org/10.1145/355616.364017

[5] ARM920T USER’S MANUAL. http://www.arm.com
[6] K. W. Batcher and R. A. Walker, “Interrupt Triggered Soft-

ware Prefetching for Embedded CPU Instruction Cache,”
Proceedings of the 12th IEEE Real-Time and Embedded
Technology and Applications Symposium, Washington DC,
4-7 April 2006, pp. 91-102.

[7] J. Liedtk, “Improving IPC by Kernel Design,” SOSP’93
Proceedings of the 14th ACM Symposium on Operating
Systems Principles, Asheville, 5-8 December 1993, pp.
175-188.

[8] M. Barr, “Programming Embedded Systems: With C and
GNU Development Tools,” 2nd Edition, O’Reilly, 2006.

http://dx.doi.org/10.1145/321738.321743�
http://dx.doi.org/10.1145/355616.364017�
http://www.arm.com/�

Analysis and Programming of Kernel for Embedded Systems

OPEN ACCESS JSEA

22

Appendix

[A1] Figure S1 shows the structure of context switch.
[A2] The following code shows the total source code

of the miniOS kernel (miniOS.c) and miniOS.h.

miniOS.h

#ifndef _KERNEL_H_
#define _KERNEL_H_

#include <pxa255.h>
#include <time.h>
#include <stdio.h>
#include <string.h>
#include <miniOS_memory.h>
#include <miniOS_task.h>
#endif

miniOS.c

#include <miniOS.h>
extern Mini_memory_mange memory_mange;
extern Mini_task_mange task_manage;

int miniOS_current_index;
Mini_free_task TCB;
Mini_free_task *TCB_PtrCurrentTask;
Mini_free_task *TCB_PtrNextTask;

void scheduler(void)
{

TCB_current_index++;
TCB_current_index %= (task_manage.max_task_id + 1);
TCB_PtrNextTask =

&task_manage.free_task_pool[TCB_current_index];
TCB_PtrCurrentTask = TCB_PtrNextTask;

}

void swiHandler(void)
{

printf("System Call %d\n", syscallnum);
}

void irqHandler(void)
{

if(ICIP & (1 << 27)) != 0)
{

OSSR = OSSR_M1;
OSMR1 = OSCR + 3686400;
scheduler();

}
}

void OS_timer_init(void)
{

ICCR = 0x01;
ICMR |= (1<< 27);
ICLR &=~(1 <<27);
OSCR = 0;
OSMR1 = OSCR+3686400;
OSSR = OSSR_M1;

}

void OS_timer_start(void)
{

OIER |= (1<<1);
OSSR = OSSR_M1;

}

void irq_enable(void)
{

asm("msr cpsr_c, #0x40 | 0x13");
}

void irq_disable(void)
{

asm("msr cpsr_c, #0xc0 | 0x13");
}

int scheduler_init(void)
{

if(task_manage.max_task_id < 0)
{

return -1;
}
TCB_PtrCurrentTask = &TCB;
TCB_PtrNextTask = &task_manage.free_task_pool[0];
TCB_current_index = -1;
return 0;

}

int scheduler_init(void)
{

if(task_manage.max_task_id < 0)
{

return -1;
}
TCB_PtrCurrentTask = &TCB;
TCB_PtrNextTask = &task_manage.free_task_pool[0];
TCB_current_index = -1;
return 0;

}

int main()
{

int i;
miniOS_init();
miniOS_user();

if(scheduler_init < 0)
{

printf("miniOS Kernel Error!!!\n");
return -1;

}

for(i=0; i<= task_manage.max_task_id; i++)
{

printf(TCB : TASK%d - init PC(%p) \t init SP(%p) \n",
i+1, task_manage.free_task_poo[i].context_pc,

task_manage.free_task_poo[i].context_sp);
}
printf("Function TASK1 : %p\n", usertask1);
printf("Function TASK2 : %p\n", usertask2);
printf("Function TASK3 : %p\n", usertask3);

irq_enable();

while(1)
{

msleep(1000);
}
return 0;

}

ACode1. Total source code of the miniOS kernel.

Analysis and Programming of Kernel for Embedded Systems

OPEN ACCESS JSEA

23

Figure S1. Structure of context switch.

[A3] The following code shows source code of the en-

try point for miniOS Kernel.

// The following code is shown Entry point source code of
// miniOS Kernel

entry.s
.global _ram_entry
_ram_entry:

b kernel_init
b _ram_entry
b miniOS_swiHandler
b miniOS_irqHandler

#define irq_stack0xa0380000

.global kernel_init
kernel_init:

msr cpsr_c, #0xc0 | 0x12// IRQ mode
ldr r0, = TCB_IRQStack
sub sp, r0,#4
msr cpsr_c, #0xc0 | 0x13// SVC mode
ldr r0, =svc_stack
sub sp, r0,#4
msr cpsr_c, #0xc0 | 0x1f// SYSTEM mode
ldr r0, =sys_stack
sub sp, r0,#4

bl main
b _ram_entry

.global miniOS_swiHandler
miniOS_swiHandler:

stmfd sp!, {r0-r12, r14}
msr r1, spsr
stmfd sp!, {r1}
ldr r10,[lr, #-4]
bic r10, r10, #0xff000000
mov r0, r10

bl swiHandler
ldmfd sp!, {r1}
msr spsr_cxsf, r1
ldmfd sp!, {r0-r12, pc}^

.global miniOS_irqhandler
miniOS_irqhandler:

msr cpsr_c, #0xc0 | 0x12// IRQ mode
ldr sp, = TCB_PtrCurrentTask
ldr sp, [sp]
sub lr, lr, #4
add sp, sp, #4
stmia sp!, {r0-r12}^
stmia sp! {sp,lr}^
stmia sp! {lr}
sub sp, sp, #68
mrs r1, spsr
stmia sp!, {r1}
ldr sp, irq_stack

bl irqHandler
ldr sp, = TCB_PtrNextTask
ldr sp, [sp]
ldmia sp!, {r1}
msrsp sr_cxsf, r1

ldmia sp!, {r0-r12}^

ACode2. Source code of the entry point for miniOS Kernel.

[A4] The following code show the source code of the
memory manager function miniOS_memory.h and mi-
niOS_memory.c

// The follow code is a memory manager Function
// (miniOS_memory.c) and Header file(miniOS_memory.h).

miniOS_memory.h

#ifndef _MINI_MEM
#define _MINI_MEM
#define MAXMEMBLK 40

typedef struct _mini_free_memory{

unsigned int block_start_address;
unsignrd int block_end_address;
int usedaddress;

}Mini_free_memory;

typedef struct _mini_memory_manage{

Mini_free_memory free_memory_pool[MAXMEMBLK];
void (*init)(void);
unsigned int allocation(void);

}Mini_memory_manage;

void memory_init(void);
unsigned int memory_allocation(void);
#endif

miniOS_memory.c
#include <miniOS.h>
Mini_memory_manage memory_manage;
#define STARTUSRSTACKADDR 0xA0400000
#define USRSTACKSIZE 0x00100000

unsigned int memory_allocation(void)
{

int i;
for(i=0; i< MAXMEMBLK; i++)
{

if(memory_manage.free_memory_pool[i].usedaddress == 0)
{

memory_manage.free_memory_pool[i].usedaddress = 1;
return memory_manage.free_memory_pool[i].
block_end_address;

}

Analysis and Programming of Kernel for Embedded Systems

OPEN ACCESS JSEA

24

}
return 0;

}

void memory_init(void)
{

unsigned int pointer = STARTUSRSTACKADDR;
int i;
for(i=0; i< MAXMEMBLK; i++)
{

memory_manage.free_memory_pool[i].block_start_address
= pointer;

memory_manage.free_memory_pool[i].block_end_address
= pointer+USRSTACKSIZE - 4;

memory_manage.free_memory_pool[i].usedaddress = 0;
pointer += USRSTACKSIZE;

}
memory_manage.init = memory_init;
memory_manage.allocation = memory_allocation;

}

ACode3. Source code of memory manager function.

[A5] The following code show the source code of the
task manager function miniOS_task.h and miniOS_
task.c.

miniOS_task.h

#ifndef _MINI_TASK
#define _MINI_TASK
#define MAXTASKNUM 30
#define CONTEXTNUM 10

typedef struct _mini_free_task{

unsigned int context_spsr;
unsigned int context[CONTEXTNUM];
unsigned int context_sp;
unsigned int context_lr;
unsigned int context_pc;

}Mini_free_task;

typedef struct _mini_task_manage{

Mini_free_task free_task_poolMAXTASKNUM];
int maximum_task_id;
void (*init)(void);
int (*create)(void(*startfunction)(void));

}Mini_task_manage;

void task_init(void);
int task_create(void(*startfunction)(void));
#endif

TCB_task.c
#include <miniOS.h>
extern Mini_memory_manage memory_manage;
extern Mini_task_manage task_manage;

#define STARTUSRCPSR 0x68000050

int task_create(void(*startfunction(void))
{

int task_index = 0;
unsigned int stack_top = 0;
task_manage.max_task_id++;
task_index = task_manage.max_task_id;
if(task_index>MAXTASKNUM)
{

return -1;

}
stack_top = memory_manage.allocation();
if(stack_top == 0)
{

return -2;
}
task_manage.free_task_pool[task_index].context_spsr

= STARTUSRCPSR;
task_manage.free_task_pool[task_index].context_sp

= stack_top;
task_manage.free_task_pool[task_index].context_pc

= (unsigned int)startfunction;
return task_index;

}
void task_init(void)
{

int i;
for(i=0; i<MAXTASKNUM; i++)
{

task_manage.free_task_pool[i].context_spsr = 0x00;
memset(task_manage.free_task_pool[i].context, 0,

sizeof(unsigned int)*CONTEXTNUM);
task_manage.free_task_pool[i].context_sp = 0x00;
task_manage.free_task_pool[i].context_lr = 0x00;
task_manage.free_task_pool[i].context_pc = 0x00;

}
task_manage.max_task_id = -1;
task_manage.init = task_init;
task_manage.create = task_create;

}

ACode4. The source code of the task manager function.

[A6] The following code show the source code of the
user task.

// USER TASKS for test of the miniOS kernel.

mini_OS_user.c

void usertask1(void)
{

int x,y,z;
x=1;
y=2;
z=x+y;

while(1)
{

printf("TASK1 - a:%P\tb:%p\tc:%p\n", &x,&y,&z);
msleep(1000);

}
}

void usertask2(void)
{

int x,y,z;
x=1;
y=2;
z=x+y;
while(1)
{

printf("TASK2 - a:%P\tb:%p\tc:%p\n", &x,&y,&z);
msleep(1000);

}
}

void usertask3(void)
{

int x,y,z;

Analysis and Programming of Kernel for Embedded Systems

OPEN ACCESS JSEA

25

x=1;
y=2;
z=x+y;

while(1)
{

printf("TASK3 - a:%P\tb:%p\tc:%p\n", &x,&y,&z);
msleep(1000);

}
}

ACode5. Source code of USER task.

[A7] The following code is linked-list source code for
tasks. This source code is linked-list algorithm consider-
ing the priority of the tasks. We must know the address of
the previous task which was right ahead in order to insert
the new task selected in the order of priority into the
linked-list. The source code (ACode6) finds out the ad-
dress of the previous task which was right ahead as an
example to insert a new task into the linked-list. Here, it
is assumed that the task 1 is the highest and the task n is
the lowest in terms of the priority order. That is, the
priority order of tasks is 1 > 2 > 3 > 4 > 5 > … > n.
Linked-list algorithm can be used in scheduler algorithm.

#include <stdio.h>
#include <stlib.h>

// Self-referential structure for the task
typedef struct task{

int d;
struct task* next;

}TASK;

// Function to specify the task
indicate_task(TASK* q)
{

while(q != 0)
{

printf("%d", q->d);
q = q->next;

}
}

// Removing function the memory that allocated to the task
free_list(TASK* p)
{

TASK* q;
while(p != 0);
{

q=p;
p=p->next;
free(q);

}
}

// Function to find the address of the task just before of a new
// task that will be inserted in the linked-list (identify the address //
of the first task)
TASK* find(TASK* root, int keyvalue, int* first_task)
{

TASK* q;
TASK* f;
f = q = root;
while(f->n != 0 && f->d < keyvalue)
{

q = f;
f = f->next;

}
if(root = f) first_task = 1;
else first_task = 0;
return q;

}

// dynamic memory allocation function for task
TASK* allocation_task_memory_node()
{

TASK* p;
p = (TASK*)malloc(sizeof(TASK));
if(p==NULL) exit(0);
return p;

}

indicate_task(TASK* q);
free_list(TASK* p);
TASK* find (TASK* root, int key);
TASK* allocation_task_memory_node();

// global variables for storing the start address of the task
TASK* g_root;

main()
{

TASK* p, *q;
int first_task=0;
g_root=0;

// 1) The first memory allocation of the first task when the
// absence of anything task in linked-list.

p = allocation_task_memory_node();
p->d = 3;
p->next = 0;
q = find(g_root, p->d, &first_task);
if(first_task){p->next = g_root; g_root = p;}
else{p->next = q; q = p;}

// 2) The first memory allocation of forefront task when
// the presence of a single task in Linked-list.

p = allocation_task_memory_node();
p->d = 1;
p->next = 0;
q = find(g_root, p->d, &first_task);
if(first_task){p->next = g_root; g_root = p;}
else{p->next = q; q = p;}

// 3) The memory allocation of when insert a new task
// between existing task in the linked-list .

p = allocation_task_memory_node();
p->d = 2;
p->next = 0;
q = find(g_root, p->d, &first_task);
if(first_task){p->next = g_root; g_root = p;}
else{p->next = q; q = p;}

// 4) The memory allocation of when a new task is to be inserted
// at the end of linked-list.

p = allocation_task_memory_node();
p->d = 5;
p->next = 0;
q = find(g_root, p->d, &first_task);
if(first_task){p->next = g_root; g_root = p;}
else{p->next = q; q = p;}
indicate_task(g_root);
free_list(g_root);

}

ACode6. Source code of linked-list algorithm.

Analysis and Programming of Kernel for Embedded Systems

OPEN ACCESS JSEA

26

The following 1), 2), 3), 4), and 5) show cases that the
new task can be inserted to the linked-list in the order of
priority for ACode6.

1) The following figure shows the case that the new
task is at the very front for the first time in the situation
that there is not any task in the linked-list.

tasknode3

3
g_root

p

p -> next = g_root
g_root = p

2) The following figure shows the case that according
to the priority, the new task is at the very front in the sit-
uation that there is one task in the liked-list.

tasknode1tasknode3

13

pg_root

p -> next = g_root
g_root = p

3) The following figure shows the case that the new
task is between existing tasks in the liked-list in the order
of priority.

p
tasknode2tasknode1

21
tasknode3

3

pg_root
p -> next = g_root -> next

g_root -> next = p

4) The following figure shows the case that according
to the priority, the new task is at the very end of the
linked-list.

tasknode1 tasknode3tasknode2

1 32
tasknode5

5

pg_root p -> next = g_root -> next -> next -> next
g_root -> next -> next -> next = p

5) The following figure shows finds out the address of

the previous task which was right ahead as an example to
insert a new task into the linked-list.

tasknode1

tasknode4

tasknode3tasknode2

1

4

32
g_root

q first_task

tasknode5

5
tasknode n

n

p

	Appendix
	[A1] Figure S1 shows the structure of context switch.
	[A2] The following code shows the total source code of the miniOS kernel (miniOS.c) and miniOS.h.
	ACode1. Total source code of the miniOS kernel.
	/
	Figure S1. Structure of context switch.
	[A3] The following code shows source code of the en- try point for miniOS Kernel.
	ACode2. Source code of the entry point for miniOS Kernel.
	[A4] The following code show the source code of the memory manager function miniOS_memory.h and miniOS_memory.c
	ACode3. Source code of memory manager function.
	[A5] The following code show the source code of the task manager function miniOS_task.h and miniOS_ task.c.
	ACode4. The source code of the task manager function.
	[A6] The following code show the source code of the user task.
	ACode5. Source code of USER task.
	ACode6. Source code of linked-list algorithm.
	1) The following figure shows the case that the new task is at the very front for the first time in the situation that there is not any task in the linked-list.

