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ABSTRACT 
In this paper, we introduce some new classes of the totally quasi-G-asymptotically nonexpansive mappings and 
the totally quasi-G-asymptotically nonexpansive semigroups. Then, with the generalized f-projection operator, 
we prove some strong convergence theorems of a new modified Halpern type hybrid iterative algorithm for the 
totally quasi-G-asymptotically nonexpansive semigroups in Banach space. The results presented in this paper 
extend and improve some corresponding ones by many others. 
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1. Introduction 
In this paper, we denote by   and   the set of real number and the set of nature number respectively. Let 
E  be a real Banach space with its dual *E  and C  be a nonempty, closed and convex subset of E . The 
mapping 

*
: 2EJ E →  is the normalized duality mapping, defined by 

( ) { }* * * * *: , , ,J x x E x x x x x x x E= ∈ = ⋅ = ∈  

Recall that a mapping :T C C→  is said to be nonexpansive  [1,2], if for each ,x y C∈ , 

.Tx Ty x y− ≤ −  

A mapping :T C C→  is said to be totally  venonexpansiallyasymptotic   , if there exists nonnegative real  
sequences { }nµ  and { }nν  with 0, 0n nµ ν→ →  as ( )n →∞  and a strictly increasing continuous function 

:ϕ + +→   with ( )0 0ϕ = , such that for each ,x y C∈ , 

( ) , 0.n n
n nT x T y x y x y nν ϕ µ− ≤ − + − + ∀ ≥  

We use : E Eφ +× →   to denote the Lyapunov function defined by 

( ) 2 2, 2 , , , .x y x x Jy y x y Eφ = − + ∀ ∈  

Obviously, we have 
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( ) ( ) ( )2 2
, .x y x y y xφ− ≤ ≤ +  

Recently, Chang et al. [3-5] and Li [6] introduced the uniformly totally quasi-φ -asymptotically nonexpansive 
mappings and studied the strong convergence of some iterative methods for the mappings in Banach space. 

Definition 1.1 [1] A countable family of mapping { }iT  is said to be uniformly totally quasi-φ -asymptotically  
nonexpansive, if ( )1 in

F T∞

=
≠ ∅



, and there exist nonnegative sequences { }nµ , { }nν  with 0, 0n nµ ν→ →   

(as n →∞ ) and a strictly increasing continuous function :ψ + +→   with ( )0 0ψ = , such that for each  
0i ≥ , and each ( )1

, in
x C p F T∞

=
∈ ∈



,, 

( ) ( ) ( )( ), , , .i n np T x p x p xφ φ µ ψ φ ν≤ + +                          (1) 

More recently, Wang et al. [7] studied the strong convergence for a countable family of total quasi-φ - 
asymptotically nonexpansive mappings by using the hybrid algorithm in 2-uniformly convex and uniformly 
smooth real Banach spaces. Quan et al. [8] introduced total quasi-φ -asymptotically nonexpansive semigroup 
containing many kinds of generalized nonexpansive mappings as its special cases and used the modified 
Halpern-Mann iteration algorithm to prove strong convergence theorems in Banach spaces. 

We use ( )F T  to denote the common fixed point set of the semigroup T , i.e. ( ) ( )( )0tF F T t≥= T . 
Definition 1.2 [8] One-parameter family ( ){ }: : , 0T t C C t= → ≥T  is said to be a quasi-φ -asymptotically 

nonexpansive semigroup, if ( )F ≠ ∅T  and the following conditions are satisfied: 
(a) ( )0T x x=  for each x C∈ ; 
(b) For each x C∈ , ( ) ( ) ( )T s t x T s T t x+ = , ,t s +∀ ∈ ; 
(c) For each x C∈ , the mapping ( )t T t x→  is continuous; 
(d) For each x C∈ , ( )p F∈ T , there exists a sequences { } [ )1,nk ⊂ +∞  with 1nk →  as n →∞ , such 

that 

( )( ) ( ), , , .n
np T t x k p x nφ φ≤ ∀ ∈                              (2) 

One-parameter family ( ){ }: : , 0T t C C t= → ≥T  is said to be a totally quasi-φ -asymptotically nonex-  

pansive semigroup, if ( )F ≠ ∅T , the conditions (a)-(c) and the following condition are satisfied: 
(e) If ( )F ≠ ∅T , there exist sequences { }nµ , { }nν  with , 0n nµ ν →  as n →∞  and a strictly increasing 

continuous function →:ψ  with 0=(0)ψ , such that 

( )( ) ( ) ( )( ), , , , ,n
n np T t x p x p x nφ φ µ ψ φ ν≤ + + ∀ ∈                 (3) 

for all x C∈ , ( )p F∈ T . 
On the other hand, Wu et al. [9] introduced the generalized f-projection which extends the generalized 

projection and always exists in a real reflexive Banach space. Li et al. [10] proved some properties of the 
generalized f-projection operator and studied the strong convergence theorems for the relatively nonexpansive 
mappings. 

In 2013, by using the generalized f-projection operator, Seawan et al. [11] introduced the modified Mann type 
hybrid projection algorithm for a countable family of totally quasi-φ -asymptotically nonexpansive mappings in 
a uniformly smooth and strictly convex Banach space with Kadec-Klee property. 

Motivated by the above researches, in this paper, we introduce a new class of the totally quasi-G-asymptoti- 
cally nonexpansive mappings which contains the class of the totally quasi-φ -asymptotically nonexpansive 
mappings and we extend from a countable family of mappings to the totally quasi-G-asymptotically nonexpan- 
sive semigroup. Then we modify the Halpern type hybrid projection algorithm by using the generalized f-pro- 
jection operator for uniformly total quasi-G-asymptotically nonexpansive semigroup and prove some strong 
convergence theorems under some suitable conditions. The results presented in this paper extend and improve 
some corresponding ones by many others, such as [1,2,7,8,10,11]. 

2. Preliminaries 
This section contains some definitions and lemmas which will be used in the proofs of our main results in the 
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next section. 
Throughout this paper, we assume that E  be a real Banach space with its dual space *E . A Banach space  

E  is said to be strictly convex, if < 1
2

x y+
 for all ,x y E∈  with 1x y= =  and x y≠ . E  is said to 

be uniformly convex, if 0limn n nx y→∞ − =  for any two sequences { }nx , { }ny  in E  with 1n nx y= =  

and 1lim 2
n n

n
x y

→∞

+
= . A Banach space E  is said to be smooth, if 0lim t

x ty x
t→

+ −
 exists for each  

,x y E∈  with 1x y= = . E  is said to be uniformly smooth, if the limit is attainted uniformly for each 
1x y= = . 

It is well known that the normalized dual mapping *:J E E→  holds the properties: 
(1) If E  is a smooth Banach space, then J  is single-valued and semi-continuous; 
(2) If E  is uniformly smooth Banach space, then J  is uniformly norm-to-norm continuous operator on 

each bounded subset of E . 
A Banach space E  is said to have Kadec-Klee property, if for any sequence { }nx E∈  satisfies 

nx x E→ ∈  and nx x→ , then nx x→ . As we all know, if E  is uniformly convex, then E  has the 
Kadec-Klee property. 

Now, we give a functional { }*:G C E× → +∞ , defined by 

( ) ( )
22* * *, 2 , 2 ,G fξ η ξ ξ η η ρ ξ= − + +                          (4) 

where Cξ ∈ , * *Eη ∈ , ρ  is a positive real number and { }:f C → +∞  is proper, convex and lower 
semi-continuous. From the definition of G  and f , it is easy to see the following properties: 

(1) ( )*,G ξ η  is convex and continuous with respect to *η  when ξ  is fixed; 
(2) ( )*,G ξ η  is convex and lower semi-continuous with respect to ξ  when *η  is fixed. 

Definition 2.1 [9] *: 2f C
C E →∏  is said to be a generalized f-projection operator, if for any * *Eη ∈ , 

( ) ( ){ }* * *: , , .inf
f

x CC
u C G u G xη η η

∈
= ∈ =∏                              (5) 

Lemma 2.2 [9] Let E  be a real reflexive Banach space with its dual *E , C  be a nonempty closed and  
convex subset of E . Then *f

Cy∏  is a nonempty closed and convex subset of C  for all * *y E∈ . Moreover,  
if E  is strictly convex, then f

C∏  is a single-valued mapping. 
Recall that if E  is a smooth Banach space, then the normalized dual mapping J  is single-valued, i.e. there 

exists unique * *Eη ∈  such that * Jxη =  for each x E∈ . Then (4) is equivalent to 

( ) ( )2 2, 2 , 2 .G Jx x Jx Jx fξ ξ ρ ξ= − + +                           (6) 

And in a smooth Banach space, the definition of the generalized f-projection operator transforms into: 
Definition 2.3 [10] Let E  be a real smooth Banach space and C  be a nonempty, closed and convex subset  

of E . The mapping *: 2f C
C E →∏  is called generalized f-projection operator, if for all x E∈ , 

( ) ( ){ }: , , .inf
f

CC
x u C G u Jx G Jx

ξ
ξ

∈
= ∈ =∏                               (7) 

Now, we give the definition of the totally quasi- G -asymptotically nonexpansive mapping and the totally 
quasi- G -asymptotically nonexpansive semigroup. 

Definition 2.4 A mapping :T C C→  is said to be a quasi-G-asymptotically nonexpansive, if ( )F T ≠ ∅  
and there exists a sequence { } [ ]1,nk ⊂ +∞  with 1nk →  (as n →∞ ), such that 

( ) ( ), , , 0,n
nG p JT x k G p Jx n≤ ∀ ≥                                   (8) 

for any x C∈  and ( )p F T∈ . 
A mapping :T C C→  is said to be a totally quasi-G-asymptotically nonexpansive, if ( )F T ≠ ∅  and there 

exist sequences { }nµ , { }nδ  with , 0n nµ δ →  as n →∞  and a strictly increasing continuous function 
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:τ →   with ( )0 0τ = , such that 

( ) ( ) ( )( ), , , , ,n
n nG p JT x G p x G p Jx nµ τ δ≤ + + ∀ ∈                      (9) 

for all x C∈  and ( )p F T∈ . 
Remark 2.5 It is easy to see that a quasi-φ -asymptotically nonexpansive mapping is a quasi-G-asymptoti- 

cally nonexpansive mapping with ( ) 0f p =  for all ( )p F∈ T . A totally quasi-φ -asymptotically nonex- 
pansive mapping is a totally quasi-G-asymptotically nonexpansive mapping with ( )( )n n f pδ µ ψ= . Therefore, 
our totally quasi-G-asymptotically nonexpansive mappings here are more widely than the totally quasi-φ - 
asymptotically nonexpansive mappings which contain many kinds of generalized nonexpansive mappings as 
their special cases. 

Definition 2.6 One-parameter family ( ){ }: : , 0T t C C t= → ≥T  is said to be a quasi-G-asymptotically 
nonexpansive semigroup on C , if the conditions (a)-(c) in Definition 1.2 and the following condition are 
satisfied: 

(f) There exists a sequence { } [ ]1,nk ⊂ +∞  with 1nk →  as n →∞  such that 

( )( ) ( ), ,n
nG p T t x k G p Jx≤                                (10) 

holds for all ,x y C∈ , n∈ . 
One-parameter family ( ){ }: : , 0T t C C t= → ≥T  is said to be a totally quasi-G-asymptotically nonex- 

pansive semigroup on C , if the above conditions (a)-(c) in Definition 1.2 and the following condition are 
satisfied: 

(g) if ( )F ≠ ∅T  and there exist sequences { }nµ ,{ }nδ  with , 0n nµ ν →  as n →∞  and a strictly in- 
creasing continuous function :τ →   with ( )0 0τ =  such that for all x C∈  and ( )p F∈ T , 

( )( ) ( ) ( )( ), , ,n
n nG p JT t x G p Jx G p Jxµ τ δ≤ + +                          (11) 

holds for each n∈ . 
Remark 2.7 It is easy to see that a quasi-φ -asymptotically nonexpansive semigroup is a quasi-G-asymptoti- 

cally nonexpansive semigroup with ( ) 0f p =  for all ( )p F∈ T . A totally quasi-φ -asymptotically 
nonexpansive semigroup is a totally quasi-G-asymptotically nonexpansive semigroup with ( )( )n n f pδ µ ψ= .  
When we use ( )mt m +∈  instead of t  in Definition 2.6 and denote ( )mT t  by mT , { } 1

: :m m
T C C ∞

=
= →T ,  

then a quasi-G-asymptotically nonexpansive semigroup becomes a countable family of total quasi-G-asymptoti- 
cally nonexpansive mappings which contains a countable family of total quasi-φ -asymptotically nonexpansive 
mappings (see [3,4,7]) as it’s special case. So our totally quasi-G-asymptotically nonexpansive semigroup here 
is the most widely family of the nonexpansive mappings so far. 

The following Lemmas are necessary for proving the main results in this paper. 
Lemma 2.8 [12] Let E  be a uniformly convex and smooth Banach space, and { }nx , { }ny  be two 

sequences of E . If ( ), 0n nx yφ →  and either { }nx  or { }ny  is bounded, then 0n nx y− → . 
Lemma 2.9 [13] If E  is a strictly convex, reflexive and smooth Banach space, then for ,x y E∈ , 
( ), 0x yφ =  if and only if x y= . 
Lemma 2.10 [14] Let E  be a real Banach space and { }:f E → +∞  be a lower semicontinuous 

convex functional. Then there exists * *x E∈  and α ∈  such that 

( ) *, ,f x x x α≥ +                                         (12) 

for each x E∈ . 
Lemma 2.11 [10] Let E  be a real reflexive and smooth Banach space and C  be a nonempty, closed and  

convex subset of E . Let x E∈ , f
Cz x∈∏ . Then 

( ) ( ) ( ), , , , .y z G z Jx G y Jx y Cφ + ≤ ∀ ∈                           (13) 

Lemma 2.12 Let E  be a uniformly smooth and strictly convex Banach space, C  be a nonempty closed 
and convex subset of E . Let :T C C→  be a totally quasi-G-asymptotically nonexpansive mapping defined 
by (9). If 1 1 0µ δ= = , then the fixed point set ( )F T  of T  is closed and convex subset of C . 
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Proof Let { }np  be a sequence in ( )F T  with np p→  as n →∞ , we prove that ( )p F T∈ . In fact, 
since T  is a quasi-G-asymptotically nonexpansive mapping, we have 

( ) ( ) ( )( )1 1, , , .n n nG p JTp G p Jp G p Jpµ τ δ≤ + +  

Since 1 1 0µ δ= = , it is equivalent to that 

( ) ( )2 22 22 , 2 2 , 2 . n n n n n np p JTp JTp f p p p Jp Jp f pρ ρ− + + ≤ − + +  

So, 

( ) ( ), , 0.n np Tp p pφ φ≤ →  

By lemma 2.8, we have that ( )p F T∈  which implies that ( )F T  is closed. Next we prove that ( )F T  is 
convex, i.e. for any ( ),x y F T∈ , ( )0,1λ ∈ , we prove that ( ) ( )1z x y F Tλ λ= + − ∈ . In fact, 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

22

22

2 2 2

, 2 , 2

2 , 2 1 , 2

, 1 , 1 .

n n n

n n n

n

G z JT z z z JT z JT z f z

z x JT z y JT z JT z f z

z G x Jz G y JT z x y

ρ

λ λ ρ

λ λ λ λ

= − + +

= − − − + +

= + + − − − −

                   (14) 

( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( )
( ) ( ) ( )( )

( )
( )( ) ( ) ( )( )

2 2

2 2

2 2 2

, 1 ,

, , 1 , ,

2 , 2 ,

1 2 , 2 ,

(1 ) 2

, 1 , .

n

n n n n

n n

n n

n

n n

G x Jz G y JT z

G x Jz G x Jz G y Jz G y Jz

x x Jz Jz f x G x Jz

y y Jz Jz f y G y Jz

x y z f z

G x Jz G y Jz

λ λ

λ µ τ δ λ µ τ δ

λ ρ µ τ δ

λ ρ µ τ δ

λ λ ρ δ

λµ τ λ µ τ

+ −

   ≤ + + + − + +   
 = − + + + + 

 + − − + + + + 

= + − − + +

+ + −

              (15) 

Submitting (15) into (14), we have 

( ) ( )( ) ( ) ( )( )22, 2 , , 1 , .n n n
n n nz T z z z JT z JT z G x Jz G y Jzφ λµ τ λ µ τ δ= − + ≤ + − +  

This implies that nT z z→  and 1n nT z TT z z+ = → . Hence we have z Tz= , i.e. ( )z F T∈ . This completes 
the proof of Lemma 2.12. 

3. Main Results 
Theorem 3.1 Let E be a uniformly convex and uniformly smooth Banach space and C  be a nonempty closed 
and convex subset of E. Let :f E →   be a convex and lower semicontinuous function with ( )( )intC D f⊂   
such that ( ) > 0f x  for all x C∈  and ( )0 0f = . Let ( ){ }: , 0T t C C t= → ≥T  be a closed and totally  

quasi-G-asymptotically nonexpansive semigroup defined by Definition 2.6. Assume that ( )T t  is 
uniformly asymptotically regular for all 0t ≥  and ( ) ( )( )0tF F T t≥= ≠ ∅T . Let the sequence { }nx  
be defined by 

( ) ( )

( ) ( ) ( ) ( ){ }
1

1 1

1
, 1

1 , 1
0

1 1

, chosen arbitrarily;  ,

1 ,

: , , 1 , ,sup

,
n

n
n t n n n

n n n t n n n n
t

f

n
C

x E C C

y J Jx JT t x

C z C G z Jy G z Jx G z Jx

x x

α α

α α ξ

+

−

+
≥

+

∈ =


 = + −  

 = ∈ ≤ + − +


 =


∏

                  (16) 
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where ( ) ( )( ),supn n n np F G p Jxξ µ τ δ∈= +T  and the sequence { } ( )0,1nα ⊂ . If 0limn nα→∞ =  and 1 1 0µ δ= = , 

then { }nx  converges strongly to ( ) 1
f
F x∏ T

. 
Proof We divide the proof into five steps. 
Step 1. Firstly, we prove that ( )F T  and nC  are closed and convex subsets in C . 
Since ( )T t  is a totally quasi-G-asymptotically nonexpansive mapping, it follows the Lemma 2.12 that 

( )( )F T t  is a closed and convex subset of C . So ( ) ( )( )0tF F T t≥= T  is closed and convex subset of 
C . 

Again, by the assumption, 1C C=  is closed and convex. Suppose that nC  is the closed and convex subset 
of C  for 2n ≥ . In view of the definition of G , we have that 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

{ }

1 , 1
0

, 1
0

22
, ,

0

: , , 1 ,sup

: , , 1 ,

: 2 , .

n n n t n n n n
t

n n t n n n n n
t

n n n t n n t n n
t

C z C G z Jy G z Jx G z Jx

z C G z Jy G z Jx G z Jx C

z C z Jx Jy x y C

α α ξ

α α ξ

ξ

+
≥

≥

≥

= ∈ ≤ + − +

= ∈ ≤ + − +

= ∈ − ≤ − +

 

 

 

This shows that 1 nC +  is closed and convex for all 1n ≥ . 
Step 2. Next, we prove that ( ) nF C⊂T . 
In fact, 1( )F T C C⊂ = . Suppose that ( ) nF T C⊂ , for some 2n ≥ . Since ( ){ }: , 0T t C C t= → ≥T  is a 

totally quasi-G-asymptotically nonexpansive semigroup, for each ( ) np F T C∈ ⊂ , we have 

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )
( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )( )

( )

, 1

22
1 1

2 2
1 1

2

1

1

1

,  , 1

 2 , 1 1 2

 2 , 2 1 ,

1 2

 , 1 ,

 , 1 , 1 ,

 , 1

n
n t n n n

n n
n n n n n n

n
n n n n

n
n n

n
n n n

n n n n n n n

G p y G p Jx JT t x

p p Jx JT t x Jx JT t x f p

p p Jx p JT t x Jx

JT t x f p

G p Jx G p JT t x

G p Jx G p Jx G p Jx

G p Jx

α α

α α α α ρ

α α α

α ρ

α α

α α α µ τ δ

α

= + −

= − + − + + − +

≤ − − − +

+ − +

= + −

≤ + − + − +

≤ + −( ) ( ), ,n n nG p Jx ξ+

 

where ( )( )0 ,supn n n nt G p Jxξ µ τ δ≥= + . This shows that 1np C +∈ , which implies that ( ) nF C⊂T  for all 
1n ≥ . 

Step 3. We prove that { }nx  is bounded and ( ){ }1,nG x x  is convergent. 
Since :f E →   is a convex and lower semicontinuous function, by virtue of Lemma 2.10, we have that 

there exists * *x E∈  and α ∈  such that ( ) *,f x x x α≥ +  for each x E∈ . Then for each nx E∈ , we 
have that 

( ) ( )

( )

2 2
1 1 1

2 2 *
1 1

2 2*
1 1

2 2*
1 1

2 22* *
1 1 1

,  2 , 2

 2 , 2 , 2

 2 , 2

 2 2

   2 .

n n n n

n n n

n n

n n

n

G x Jx x x Jx x f x

x x Jx x x x

x x Jx x x

x x Jx x x

x Jx x x Jx x

ρ

ρ ρα

ρ ρα

ρ ρα

ρ ρ ρα

= − + +

≥ − + + +

= − − + +

≥ − − + +

= − − + − − +

                            (17) 

Again since 1
f

n Cn
x x=∏  and ( ) nF C⊂T , from Lemma 2.11, we have ( ) ( )1 1, ,nG x Jx G p Jx≤  for any  

( )p F∈ T . Hence, from (17), we have 
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( ) ( ) ( )2 22* *
1 1 1 1 1, ,  2 .n nG p Jx G x Jx x Jx x x Jx xρ ρ ρα≥ ≥ − − + − − +  

Therefore { }nx  and ( ){ }1,nG x Jx  are bounded. As 1 1 11

f
n n nCn

x x C C+ ++
= ∈ ⊂∏  and 1n

f
n Cx x=∏ , by using 

Lemma 2.11, we have that 

( ) ( ) ( )1 1 1 1, , , 0.n n n nG x Jx G x Jx x xφ+ +− ≥ ≥  

This implies that ( ){ }1,nG x Jx  is bounded and nondecreasing. Hence the limit ( )1,limn nG x x→∞  exists. 
Step 4. Next, we prove that ( )nx x F→ ∈ T . 
By the definition of nC , for any positive integer m n≥ , we have 1m

f
m m nCx x C C= ∈ ⊂∏ . Again from 

Lemma 2.11, we have that 

( ) ( ) ( )1 1, <= , , 0m n m nx x G x Jx G x Jxφ − →  

as ,m n →∞ . It follows from Lemma 2.8 that , 0limn m m nx x→∞ − = . Hence { }nx  is a Cauchy sequence in 
C . Since C  is a nonempty closed and convex subset of Banach space E , we can assume that nx x C→ ∈ . 
Therefore, we have 

( )
( ), 0.suplim limn n n n

n n p F T
G p Jxξ µ τ µ

→∞ →∞ ∈

 
= + = 

 
                          (18) 

Since 1 1n nx C+ +∈  and 0nα → , it follows from the definition of nC  that we have 

( ) ( ) ( ) ( )1 , 1 1 1
0

, , 1 , .sup n n t n n n n n n
t

G x Jy G x Jx G x Jxα α ξ+ + +
≥

≤ + − +  

( )

( )( )
( ) ( )( )

22
1 1 , , 1

22
1 1 , 1 1

2 2
1 1 1

2 , 2

 2 , 2

1 2 , 2 .

n n n t n t n

n n n n t n

n n n n n n n

x x Jy y f x

x x Jy x f x

x x Jx x f x

ρ

α ρ

α ρ ξ

+ + +

+ + +

+ + +

− + +

≤ − + +

+ − − + + +

 

( )( )
( )

22 2 2
1 1 , , 1 1

22
1 1 , 1

2 ,  1 2 ,

2 , .

n n n t n t n n n n n

n n n n t n

x x Jy y x x Jx x

x x Jy x

α

α ξ

+ + + +

+ +

− + ≤ − − +

+ − + +
 

That is 

( ) ( ) ( ) ( )1 , 1 1 1 1, , 1 , . n n t n n n n nx y x x x xφ α φ α φ ξ+ + +≤ + − +                          (19) 

Since nx u→  and 0nα → , from (18), (19), we can get 

( )1 ,, 0.lim n n t
n

x yφ +
→∞

=  

Then, by Lemma 2.8, we have 

, .lim n t
n

y x
→∞

=                                          (20) 

As J  is uniformly continuous on each bounded subset of E , we have nJx Jx→ . Then from (20), for any 
0t ≥ , we have 

( ) ( )

( ) ( )

( ) ( )

, 1

1

0 1lim lim

1  lim

1 .lim

n
n t n n n

n n

n
n n n

n

n
n n

n

Jy Jx Jx JT t x Jx

JT t x Ju Jx Jx

JT t x Jx

α α

α α

α

→∞ →∞

→∞

→∞

= − = + − −

 ≥ − − − − 

= − −
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Since ( )1 1limn nα→∞ − = , we have that 

( ) 0,lim n
n

n
JT t x Jx

→∞
− =  

uniformly for all 0t ≥ . 
Since J is uniformly continuous, we obtain that 

( ) 0,lim n
n

n
T t x x

→∞
− =                                 (21) 

uniformly for all 0t ≥ . 
Since ( )T t  is asymptotically regular for all 0t ≥ , from (21), we have 

( ) ( ) ( ) ( )( )1 1 0lim limn n n n
n n n n

n n
T t x x T t x T t x T t x x+ +

→∞ →∞
− = − + − =  

Then ( ) ( ) ( )1n n
n nT t x T t T t x x+ = →  as n →∞ . By virtue of the closedness of ( )T t  and ( )n

nT t x x→   
as n →∞ , we can obtain that ( )T t x x= , which implies ( )( )x F T t∈  for all 0t ≥ . 

Hence, ( ) ( )( )0n t
x x F F T t

≥
→ ∈ =



T . 

Step 5. Finally, we prove that ( ) 1
f

n Fx x x→ =∏ T
. 

Since ( ) nF C E⊂ ⊂T  is closed and convex, by Lemma 2.2, we know that ( ) 1
f
F x∏ T

 is single-valued. 

Assume that ( ) 1
f
F xϖ =∏ T

. Since ( ) nF Cϖ ∈ ⊂T  and 1n

f
n Cx x=∏ , we have ( ) ( )1 1, ,nG x Jx G Jxϖ≤  for 

all 1n ≥ . As we know, ( ),G y Jx  is convex and lower semicontinuous with respect to y when x is fixed. So we 
have 

( ) ( ) ( ) ( )1 1 1 1, , , , .limsupliminf n n
n n

G x Jx G x Jx G x Jx G xϖ
→∞ →∞

≤ ≤ ≤  

As ( )x F∈ T , from the definition of ( ) 1
f
F x∏ T

, we can obtain that ( ) 1
f
Fx xϖ= =∏ T

 and nx x→  as  

n →∞ . This completes the proof of Theorem 3.1. 
Just as in Remark 2.7, we use ( )mt m +∈  instead of t  in Definition 2.6 and denote ( )mT t  by mT , 

{ } 1
: :m m

T C C ∞

=
= →T  becomes a countable family of total quasi-G-asymptotically nonexpansive mappings. 

Then we get the following corollary. 
Corollary 3.2 Let E  be a uniformly convex and uniformly smooth Banach space and C  be a nonempty  

closed and convex subset of E . Let { } 1
: :m m

T C C ∞

=
= →T  be a countable family of closed and totally quasi-G- 

asymptotically nonexpansive mappings. Let :f E →   be a convex and lower semicontinuous function with 
( )( )intC D f⊂  such that ( ) > 0f x  for all x C∈  and ( )0 0f = . Assume that mT  is uniformly asympto-  

tically regular for all m +∈  and ( ) ( )mm
F F T+∈

= ≠ ∅


T . Let the sequence { }nx  defined by 

( )

( ) ( ) ( ) ( )

1

1 1

1
, 1

1 , 1

1 1

, chosen arbitrarily; 

1 ,

: , , 1 , ,sup

,
n

n
n m n n m n

n n n m n n n n
m

f

n
c

x E C C

y J Jx JT x

C z C G z Jy G z Jx G z Jx

x x

α α

α α ξ
+

+

−

+
∈

+

∈ =


 = + −  
   = ∈ ≤ + − + 
  

 =


∏



         (22) 

where, ( ) ( )( ),supn n n np F G p Jxξ µ τ δ∈= +T  and { } ( )0,1nα ⊂ . If 0limn nα→∞ =  and 1 1 0µ δ= = , then { }nx   

converges strongly to ( ) 1
f
F x∏ T

. 

In Corollary 3.2, when ( ) 0f x ≡  for all x C∈ , { } 1
:m m

T C C ∞

=
= →T  be a countable family of closed and 

totally quasi-φ -asymptotically nonexpansive mappings. Then we can get the following theorem. 
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Corollary 3.3 Let E  be a uniformly convex and uniformly smooth Banach space and C  be a nonempty  
closed and convex subset of E . Let { } 1

:m m
T C C ∞

=
= →T  be a countable family of closed and totally quasi-φ - 

asymptotically nonexpansive mappings. Assume that mT  is uniformly asymptotically regular for all m +∈   
and ( ) ( )mm

F F T+∈
= ≠ ∅



T . Let the sequence { }nx  defined by 

( )

( ) ( ) ( ) ( )

1

1 1

1
, 1

1 , 1

1 1

, chosen arbitrarily;  ,

1 ,

: , , 1 , ,sup

,
n

n
n m n n m n

n n n m n n n n
m

n c

x E C C

y J Jx JT x

C z C z Jy z Jx z Jx

x x

α α

φ α φ α φ ξ
+

+

−

+
∈

+

∈ =


 = + −  

  

= ∈ ≤ + − + 
 

 = Π



           (23) 

where, ( ) ( )( ),supn n n np F p Jxξ µ τ φ δ∈= +T  and { } ( )0,1nα ⊂ . If 0limn nα→∞ =  and 1 0δ = , then { }nx   

converges strongly to ( ) 1
f
F x∏ T

. 
Remark 3.4 The results in this paper improve and extend many recent corresponding main results of other 

authors (see, for example, [3,4,7,8,10,11,15-19]) in the following ways: (a) we introduce a new class of totally 
quasi-G-asymptotically nonexpansive mappings which contains the classes of the totally quasi- φ -asym- 
ptotically nonexpansive mappings and many non-expansive mappings; (b) we extend from a countable family of 
mappings to the totally quasi-G-asymptotically nonexpansive semigroup; (c) we modify the Halpern type hybrid 
projection algorithm by using the generalized f-projection operator for uniformly total quasi-G-asymptotically 
nonexpansive semigroup. For example, Corollary 3.2 extends the main result of Seawan et al. [11] from the 
modified Mann type iterative algorithm to modified Halpern iterative by the generalized f-projection method. 
Corollary 3.3 is the main result of Chang et al.[3]. 
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