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ABSTRACT 

The soil environment is linked to aboveground management including plant species composition, grazing intensity, lev-
els of soil disturbance, residue management, and the length of time of a living plant is growing. Soil samples were col-
lected under rangeland [native grass, rotational grazing (NGRG); tame grass, heavy grazing (TGRG); and tame grass, 
rotational grazing (TGHG)] and cropland [conventional till (CT); CT plus manure (CTM); and long term no till (NT)] 
systems. The rangeland systems were hypothesized to have higher glomalin content [measured as Bradford-reactive soil 
protein (BRSP)] and water stable aggregation (WSA) than the cropland systems. In addition, within both rangeland and 
cropland systems, BRSP and WSA were expected to decline with increased disturbance due to grazing or tillage and 
going from native to introduced plant species. Differences were detected for BRSP with NGRG and CTM having the 
highest values in range and cropland systems, respectively. However, the CTM system had higher BRSP values than 
one or both of the tame grass systems while the CT and NT systems had similar values. Correlation analysis showed 
strong relationships between all of the BRSP values and WSA. 
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1. Introduction 

The symbiotic relationship between arbuscular mycorr- 
hizal fungi (AMF) and about 90% of all vascular plants 
provides a direct linkage between above and below- 
ground activities [1,2]. Soil aggregation is a mechanism 
used to engineer the soil environment to maximize water 
and nutrient use efficiency [3]. Glomalin is a glycopro- 
tein produced by AMF which is strongly linked to ag- 
gregation [4-6]. The aggregation process and glomalin 
production are both a carbon cost to AMF and may be 
hindered by soil disturbance through tillage [4-11] or 
overgrazing [12-20]. Therefore, the level of mycorrhizal 
dependency [1] of the host plant as well as photosyn- 
thetic activity may impact glomalin content and water 
stable aggregation (WSA) [2]. 

In rangeland systems, Liebig et al. [21] found that sys-
tems under heavy grazing intensity had higher soil C 
values than systems under moderate intensity. However, 
Klumpp et al. [19] and Ingram et al. [20] found that in-
creases in grazing intensity decreased soil C. Unlike the 
Liebig et al. [21] study, these authors also examined mi-

crobial community and soil C dynamics under different 
grazing treatments and found that the rhizosphere envi-
ronment was the driver behind changes in soil C [19,20]. 
These results are worth noting because often soil C levels 
are related to soil aggregation and glomalin concentra-
tions [2, 22]. 

In cropland systems, no till (NT) treatments had higher 
soil organic C levels, glomalin concentrations, and more 
water stable aggregates than conventional till (CT) treat- 
ments [5-8,11]. These differences tended to increase with 
longer periods of time in NT [5,6]. Pikul et al. [4] found 
that particulate organic matter (POM) increased under 
NT while aggregate wettability decreased. Greater amounts 
of POM may support higher aggregate stability and water 
holding capacity while a decrease in aggregate wettabil-
ity may negatively impact water infiltration and water 
holding capacity. In addition to C and N levels and ag-
gregate stability, glomalin values also may be related to 
other AMF parameters such as spore counts, hyphal length 
or root colonization but these relationships are inconsistent 
[7,8,13,15,18,23]. 
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Bradford-reactive soil protein (BRSP) and water stable 
aggregation (WSA) were measured at six sites near Platte, 
SD, USA. These sites included three rangelands [native 
grass, rotational grazing (NGRG); tame grass, heavy 
grazing (TGRG); and tame grass, rotational grazing 
(TGHG)] and three croplands [conventional till (CT); CT 
plus manure (CTM); and long term no till (NT)] systems. 
We hypothesized that the rangeland systems would have 
higher BRSP and WSA values than the cropland systems 
and values would increase across these systems in the 
following order: CT < CTM < NT < TGHG < TGRG < 
NGRG.  

2. Materials and Methods 

2.1. Site Description 

Soil samples were collected on June 7, 2004 near Platte, 
SD, USA from under six management systems (NGRG, 
TGRG, TGHG, CT, CTM, and NT). The sites were se-
lected to show a wide range of management scenarios on 
the same soil type (an Eakin silty clay loam or fine-silty, 
mixed, superactive, mesic Typic Argiustolls) and under 
the same climatic conditions (i.e. all six sites within a 
10-km radius). The major grass species at the NGRG was 
big bluestem (Andropogon gerardii) with a small amount 
of switchgrass (Panicum virgatum L.). The grass species 
at the TGRG sites were predominantly bromegrass (Bro- 
mus inermus) and crested wheatgrass (Agropyron cris- 
tatum) with small amounts of intermediate wheatgrass 
(Thinopyrum intermedium). The grass species at the 
TGHG was Kentucky bluegrass (Poa pratensis) with 
some bromegrass. The cropping systems all had a corn- 
wheat rotation. Two samples were collected from each 
site at the 0 to 10 cm depth to create a bulk sample. A 
portion of the soil was sequentially passed through a se- 
ries of screens to collect 1 to 2 mm aggregates. 

2.2. Soil Analyses 

Six 2-g subsamples were removed from both bulk soil 
and 1 to 2 mm aggregate samples and extracted for glo-
malin-related soil protein (GRSP). Soil was extracted 
with 50 mM sodium citrate, pH 8.0, for 15 to 26 1-hr 
cycles at 121˚C [24] followed by extraction with 100 
mM sodium pyrophosphate, pH 9.0, for four to nine 1-hr 
cycles at 121˚C to remove a recalcitrant fraction of glo-
malin [2]. For both the citrate and the sodium pyrophos-
phate extractions, samples were centrifuged after each 
1-hr extraction cycle to pellet the soil and collect the su-
pernatant. All citrate or pyrophosphate extractions were 
combined, and the total volume measured.  

The Bradford total protein assay was used to measure 
GRSP as Bradford reactive soil protein (BRSP) [2]. For 
the samples extracted with pyrophosphate, an aliquot 
equal in volume to the aliquot used for the unknowns of 

100 mM pyrophosphate was added to the BSA standard 
to remove background cross-reactivity. Total protein 
values are calculated on a mg Bradford-reactive soil pro-
tein (BRSP) g−1 soil or 1 to 2 mm aggregates basis. Both 
the bulk soil and 1 to 2 mm aggregates were corrected for 
coarse material in the sample using forced water to pass 
the extracted soil or aggregates through a 1 mm screen 
leaving the coarse fraction on the screen. Water stable 
aggregation (WSA) was measured on four subsamples of 
the 1 to 2 mm aggregates using methodology modified 
from Kemper and Rosenau [25] and described by Nich-
ols and Wright [2]. 

2.3. Statistical Analysis 

Means and standard error of the mean (SEM) were cal-
culated for the BRSP and WSA. All means comparisons 
were made at the  ≤ 0.05 level using PROC MIXED 
(SAS software, ver. 9.1, SAS Institute, 2004) after the 
residuals met the assumptions for normality and homo-
geneity of variance. The correlations between BRSP, for 
both the citrate and pyrophosphate extractions and WSA 
were measured using PROC CORR after meeting the 
assumption for normal data distribution (SAS software, 
ver. 9.1, SAS Institute, 2004). 

3. Results and Discussion 

Concentrations of BRSP in both the bulk soil and 1 to 2 
mm aggregate samples were similar for each of the indi-
vidual management scenarios with the exception of the 
CT site which was lower in the bulk soil than in the 1 to 
2 mm aggregates (Table 1). The three grazing systems 
had the highest glomalin concentrations with the NGRG 
system having the significantly highest values. Because 
most studies have shown that as grazing intensity in- 
creases, soil carbon levels and microbial activities de- 
crease [19], it was unexpected that the TGRG site would 
have lower BRSP values than the TGHG system. How- 
ever, a study by Liebig et al. [21] showed that a heavily 
grazed treatment had higher soil carbon levels than a 
moderately grazed treatment at sites in North Dakota 
which were in the same semi-arid ecoregion as the sites 
in this study but were approximately 560 km apart. These 
studies did indicate that the results were probably de-
pendent upon if the plant species composition was do- 
minated by native or tame grasses which impacts the 
intensity of the mycorrhizal relationship [1,13] and im- 
pacts rooting depth and rhizosphere dynamics [19-21].  

In the crop production systems, the CTM site had the 
highest values while there was no difference between the 
CT and NT systems in the bulk soil but the CT site had 
significantly higher BRSP in the 1 to 2 mm aggregates. 
This was also unexpected since most studies have shown 
glomalin, or BRSP, increases with longer periods of NT 
[4-6]. The addition of manure has been shown to increase  
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Table 1. Valuesa for glomalin extracted with sodium citrate (cit) followed by sodium pyrophosphate (pyro) from either bulk 
soil or 1 to 2 mm aggregates (aggreg) and measured as Bradford reactive soil protein (BRSP) on a mg protein g−1 soil or ag-
gregate weight basis and for water stable aggregation (WSA) at a% of total aggregates. Values are meansb ± SEs for each 
management system: native grass, rotational grazing (NGRG); tame grass, heavy grazing (TGRG); tame grass, rotational 
grazing (TGHG); long term no till (NT); conventional till (CT); and CT plus manure (CTM). 

 NGRG TGRG TGHG NT CT CTM 

BRSP cit soil 9.555 ± 0.187A 6.226 ± 0.249B 6.895 ± 0.090B 4.618 ± 0.152D 4.354 ± 0.222D 5.447 ± 0.128C 

BRSP pyro soil 0.700 ± 0.028A 0.357 ± 0.014C 0.379 ± 0.010BC 0.252 ± 0.014D 0.266 ± 0.012D 0.439 ± 0.011B 

BRSP total soil 10.255 ± 0.166A 6.583 ± 0.246BC 7.274 ± 0.081B 4.869 ± 0.161D 4.619 ± 0.222D 5.887 ± 0.120C 

BRSP cit aggreg 9.291 ± 0.113A 6.423 ± 0.064C 7.165 ± 0.092B 5.093 ± 0.135E 5.664 ± 0.146D 6.128 ± 0.166CD 

BRSP pyro aggreg 0.575 ± 0.026A 0.455 ± 0.021B 0.301 ± 0.022C 0.276 ± 0.013C 0.325 ± 0.032C 0.502 ± 0.021AB 

BRSP total aggreg 9.865 ± 0.090A 6.878 ± 0.072C 7.466 ± 0.096B 5.369 ± 0.142E 5.989 ± 0.152D 6.630 ± 0.179C 

WSA 89.063 ± 1.028A 83.125 ± 0.633B 45.688 ± 0.806C 24.875 ± 0.415E 24.063 ± 0.544E 42.063 ± 1.082D 

aValues in a row which are followed by a different letter are significantly different at Prob <0.05. bN equals six for the BRSP values and four for the WSA. 

 
soil C, which may stimulate aggregation, and BRSP 
(Wright, personal communication). In addition, other 
organic compounds, such as humic substances and tan-
nins may be co-extracted with glomalin and measured 
with the Bradford assay [2,26,27]. This might explain the 
CTM treatment values, but it was unclear in this study 
why the long term NT system did not have higher BRSP 
values than the CT site. 

The authors speculate that the crops grown at the crop-
land sites might have impacted carbon allocation to AMF 
and AMF allocation to glomalin production and aggrega-
tion. 

Despite these unexpected results from BRSP and WSA 
values, the Pearson Correlation Coeffcients showed 
BRSP was strongly and significantly correlated WSA, r > 
0.7 in almost all cases (Table 2). This is similar to many 
other studies where BRSP and WSA are correlated. 

Native warm-season grasses, such as big bluestem and 
switchgrass, are all highly mycorrhizal while cool-season 
grasses are less dependent upon the mycorrhizal rela-
tionship [1,13]. Mycorrhizal fungi and glomalin produc-
tion are sensitive to carbon exudates from the plant and 
soil disturbance. Additionally, AMF and glomalin are 
important in forming and stabilizing aggregates which 
play significant roles in water infiltration and water re-
tention [5,6,14]. Finally, grazing pressure has been 
shown to decrease the amount of carbon fixed by photo-
synthesis and exuded from the roots [19,20]. For the 
most part, this did occur in this study but given the 
non-replicated design and the limited number of samples 
collected at each site, and the limited number of studies 
on glomalin and WSA in rangeland systems in the litera-
ture, more research is needed. Future studies will focus 
on the biological, chemical, and physical interactions 
occurring in the soil, particularly in the rhizosphere, 
which may be used to model above and belowground 
relationships. These models will help us understand the  

linkage between levels of soil disturbance and the types 
and amounts of photosynthetically-derived carbon going 
belowground, especially as it relates to the plant-my- 
corrhizal relationship. Ongoing research projects in the 
northern Great Plains are measuring GRSP and WSA in 
other range and cropland studies. The range studies in-
clude systems with long-term (over 60 years) continuous 
management different levels of grazing intensity from no 
grazing to heavy grazing while the cropland studies in-
corporate perennial and cover crops which may be used 
as forages. 

4. Conclusion 

Similar to many other studies, glomalin and aggregate 
stability were strongly correlated in this study. However, 
the BRSP and WSA values did not increase from CT < 
CTM < NT < TGHG < TGRG < NGRG as expected. 
This was noted in particular in the cropland sites where 
CTM had the highest values and CT and NT were similar. 
The complex relationship between AMF and host plant 
especially as it relates to carbon allocation needs more 
studies to understand glomalin production and how it 
relates to aggregation. 

5. Abbreviations and Acronyms 

BRSP, Bradford reactive soil protein; C, carbon; CT, 
conventional till; CTM, conventional till plus manure; 
GRSP, glomalin-related soil protein; IR, infiltration rate; 
NGRG, native grass rotational grazing; NT, long-term 
no-till; TGHG, tame grass heavy grazing; TGRG, tame 
grass rotational grazing; WHCs, water holding capacity; 
WSA, water stable aggregation.  
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Table 2. Correlation coefficientsa for glomalin extracted with sodium citrate (cit) followed by sodium pyrophosphate (pyro) 
from either bulk soil or 1 to 2 mm aggregates (aggreg) and measured as Bradford reactive soil protein (BRSP) on a mg pro-
tein g−1 soil or aggregate weight basis, for water stable aggregation (WSA) at a% of total aggregates, for the infiltration rate 
(IR) on a ml per hr basis for the first (1) and second (2) inches of water, and for the water holding capacity at saturation 
(WHCs) for the first two inches of water. 

 BRSP pyro soil BRSP total soil BRSP cit aggreg BRSP pyro aggreg BRSP total aggreg WSA 

BRSP cit soil 0.8684** 0.994*** ***0.9371  0.5894* 0.9350*** 0.7702** 

BRSP pyro soil 1.000 0.8855*** 0.8740*** 0.7811** 0.8895*** 0.7700** 

BRSP total soil 0.8855*** 1.0000 0.9409*** 0.6083* 0.9400*** 0.7700** 

BRSP cit aggreg 0.8740** 0.9409*** 1.0000 0.6362* 0.9983*** 0.7893** 

BRSP pyro aggreg 0.7811** 0.6083* 0.6362* 1.0000 0.6799* 0.7045* 

BRSP total aggreg 0.8895*** 0.9400*** 0.9983*** 0.6799* 1.0000 0.8032** 

aCorrelations are significant at the <0.05 (*), <0.01 (**), or <0.001 (***) levels. 
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