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Abstract 
 
In this paper, the problem of steady laminar two-dimensional boundary layer MHD flow and heat transfer of 
an incompressible viscous fluid with the presence of buoyancy force and viscous dissipation over an vertical 
nonlinear stretching sheet with partial slip is investigated numerically. Numerical solutions of the resulting 
nonlinear boundary value problem in the case when the sheet stretches with a velocity varying nonlinearly 
with the distance is carried out. The effects of for various values of suction parameter, magnetic parameter, 
Prandtl number, Eckert number, buoyancy parameter, nonlinear stretching parameter and slip parameter on 
flow and heat transfer characteristics is investigated. 
 
Keywords: MHD, Nonlinear Stretching Parameter, Joules Dissipation, Viscous Dissipation, Eckert Number, 
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1. Introduction 
 
The study of flow over a stretching sheet has generated 
much interest in recent years in view of its numerous 
industrial applications such as the aerodynamic extrusion 
of plastic sheets, the boundary layer along a liquid film, 
condensation process of metallic plate in a cooling bath 
and glass, and also in polymer industries. Since the pio-
neering work of Sakiadis [1] which studied the moving 
plate flow problem, wherein various aspects of the prob-
lem have been investigated by many authors such as 
Cortell [2], Xu and Liao [3], Hayat et al. [4] etc. 

The study of two-dimensional boundary layer flow, 
heat and mass transfer over a porous stretching surface is 
very important as it finds many practical applications in 
different areas. To be more specific, it may be pointed 
out that many metallurgical processes involve the cool-
ing of continuous strips or filaments by drawing them 
through a quiescent fluid and that in the process of 
drawing these strips, are sometimes stretched. Viscous 
dissipation changes the temperature distributions by 
playing a role like an energy source,which leads to affect 
heat transfer rates. The merit of the effect of viscous dis-

sipation depends on whether the sheet is being cooled or 
heated.  

Apart from the viscous dissipation, the Joules dissipa-
tion also acts as a volumetric heat source. Heat transfer 
analysis over porous surface is of much practical interest 
due to its abundant applications. To be more specific, 
heat-treated materials travelling between a feed roll and 
wind-uproll or materials manufactured by extrusion, 
glass-fiber and paper production, cooling of metallic 
sheets or electronic chips, crystal growing are a few 
practical applications of flow over a stretching sheet. In 
all these cases, the final product of desired characteristics 
depends on the rate of cooling and also the rate of of 
stretching. In view of all these aspects, the present work 
deals with the effect of viscous and Joules dissipation on 
MHD flow, heat and mass transfer over a porous sheet, 
with partial slip. Researches in these fields have been 
conducted by many investigators. For example, analyti-
cal results were carried out by Vajravelu and Hadjinico-
laou [5] who took into account the effects of viscous 
dissipation and internal heat generation. An analysis of 
thermal boundary layer in an electrically conducting flu-
id over a linearly stretching sheet in the presence of a 



M. S. ABEL  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                 ENG 

286 

constant transverse magnetic field with suction or blow-
ing at the sheet was carried out by Chaim [6]. 

Very recently, the viscous and joules dissipation and 
internal heat generation was taken into account in the 
energy equation. Sajid et al. [7] investigated the non- 
similar analytic solution for MHD flow and heat transfer 
in a third-order fluid over a stretching sheet. He found 
that the skin friction coefficient decreases as the magnet-
ic parameter or the third grade parameter increases. A 
mathematical analysis has been carried out on momen-
tum and heat transfer characteristics in an incompressible, 
electrically conducting viscoelastic boundary layer fluid 
flow over a linear stretching sheet by Abel et al. [8]. 

A numerical reinvestigation of MHD boundary layer 
flow over a heated stretching sheet with variable viscos-
ity has been analyzed by Pantokratoras [9].  

Ishak et al. [10] studied mixed convection boundary 
layers in the stagnation-point flow of an incompressible 
viscous fluid over a stretching vertical sheet. 

Hossain and Takhar [11] have investigated the radia-
tion effect on mixed convection boundary layer flow of 
an optically dense viscous incompressible fluid along a 
vertical plate with uniform surface temperature. 

The problem of non-linear stretching sheet for differ-
ent cases of fluid flow has also been analyzed by differ-
ent researchers. Vajravelu [12] examined fluid flow over 
a nonlinearly stretching sheet. Cortell [13] has worked on 
viscous flow and heat transfer over a non-linearly stret-
ching sheet. Cortell [14] further investigated on the ef-
fects of viscous dissipation and radiation on the thermal 
boundary layer, over a non-linearly stretching sheet. 
Raptis et al. [15] studied viscous flow over a non-linear 
stretching sheet in the presence of a chemical reaction 
and magnetic field. Abbas and Hayat [16] addressed the 
radiation effects on MHD flow due to a stretching sheet 
in porous space. Cortell [17] investigated the influence of 
similarity solution for flow and heat transfer of a quies-
cent fluid over a non-linear stretching surface. Awang 
and Kechil [18] obtained the series solution for flow over 
nonlinearly stretching sheet with chemical reaction and 
magnetic field. Cortell [19] investigated the influence of 
similarity solution for flow and heat transfer of a quies-
cent fluid over a non-linear stretching surface.  

The study of magnetohydrodynamics of a conducting 
fluid finds applications in a variety of astrophysical and 
geophysical problems. The effects of magnetic field on 
the natural convection heat transfer have been discussed 
by Romig [20], Elbashbeshy [21], considered heat trans-
fer over a stretching surface with a variable surface heat 
flux. The convective heat transfer in an electrically con-
ducting fluid at a stretching surface has been studied by 
Vajravelu and Hadjinicolaou [22]. Other studies dealing 
with hydromagnetic flows can be found in Grandet et al. 

[23] Takhar and Ram [24], and Duwairi and Damseh [25]. 
Hence the present study investigates the effect of 

viscous and Joules dissipation on MHD flow over a por-
ous nonlinear vertical stretching sheet with viscous and 
joules dissipation with partial slip. 
 
2. Mathematical Analysis 
 
Two-dimensional, nonlinear, steady, MHD laminar boun- 
dary layer flow with heat transfer of a viscous, incom-
pressible and electrically conducting fluid over a porous 
vertical stretching sheet embedded in the presence of 
transverse magnetic field including viscous and Joules 
dissipation is considered for investigation. An uniform 
transverse magnetic field of strength B is applied parallel 
to y-axis. Consider a stretching sheet that emerges out of 
a slit at x = 0, y = 0 and subsequently being stretched, as 
in a polymer extrusion process. Let us assume that the 
speed at a point on the plate is proportional to the power 
of its distance from the slit and the boundary layer ap-
proximations are applicable. In writing the following 
equations, it is assumed that the induced magnetic field, 
the external electric field and the electric field due to the 
polarization of charges are negligible.  

Consider a steady, two-dimensional free convection 
flow adjacent to a nonlinear stretching vertical sheet 
immersed in an incompressible electrically conducting 
viscous fluid of temperature T . The stretching velocity 

 wU x  and the surface temperature  wT x  are where 
a and b are constants with > 0a  and 0b  .  

The sheet is assumed to vary nonlinearly with the dis-
tance x from the leading edge, i.e.   = m

wU x ax  and 
  = s

wT x T bx  . Under these conditions, the governing 
boundary layer equations of momentum, energy with 
buoyancy, viscous and Joules dissipation, with partial 
slip are 
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where u and v are the velocity components along the x 
and y axes, respectively. Further, μ, ρ, α, β, T, and g are 
the dynamic viscosity, fluid density, thermal diffusivity, 
thermal expansion coefficient, fluid temperature in the 
boundary layer, and acceleration due to gravity, respec-
tively.  

A common feature of all these analyses is the assump-
tion that the flow field obeys the conventional no-slip 
condition at the sheet that is the velocity component  
 ,u x y  parallel with the sheet becomes equal to the 

sheet velocity max  at the sheet. In certain situations, 
however, the assumption of no-slip does no longer apply 
and should be replaced by a partial slip boundary condi-
tion which relates the fluid velocity u to the shear rate  

u

y




 at the boundary. Here L is the slip length, and y  

denotes the coordinate perpendicular to the surface. This 
slip-flow condition was first introduced by C-L. M. H. 
Navier more than a century ago and has more recently 
been used in studies of fluid flow past permeable walls, 
slotted plates, rough and coated surfaces, and gas and 
liquid flow in micro devices. The no-slip boundary con-
dition is known as the central tenets of the Navier-Stokes 
theory. But there are situations wherein such condition is 
not appropriate. Especially, no slip condition is inade-
quate for most non-Newtonian fluids. For example po-
lymer melts often exhibit macroscopic wall slip and that 
in general is governed by a non-linear and monotone 
relation between the slip velocity and traction. The fluids 
exhibiting boundary slip find applications in technology 
such as in the polishing of artificial heart valves and in-
ternal cavities. Navier suggested a slip boundary condi-
tion in terms of linear shear stress. 

The momentum, and energy Equations (2), (3), and (4) 
can be transformed into the corresponding nonlinear or-
dinary differential equations by the following similarity 
transformation: 
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where   s
wT x T bx  , b is dimensional constant and s 

is the index of power law variation of temperature. 
The transformed nonlinear ordinary differential equa-

tions are 
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Boundary conditions (4) becomes 
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3. Numerical Solution 
 
The nonlinear boundary value problem represented by 
Equations (7) to (9) is solved numerically using Fourth- 
order Runge Kutta shooting technique. 

The system of non-linear ordinary differential Equa-
tions (7) and (8) together with the boundary conditions 
Equation (9) are similar and are solved numerically by 
using the fourth order of Runge Kutta integration scheme 
accompanied with the Shooting scheme. Making an ini-
tial guess for the values of  0f   and  0   to in-
itiate the shooting process is very crucial in this process. 
The success of the procedure depends very much on how 
good this guess is. Numerical solutions are obtained for 
several values of the physical parameters i.e. magnetic 
parameter M, stretching parameter m, Prandtl number Pr, 
slip parameter   Buoyancy parameter  , Eckert 
number (Ec) and, suction/injection parameter wf . 

We have chosen a step size of 0.01   to satisfy 
the convergence criterion of 10–6 in all cases. The maxi-
mum value of   was found to each iteration loop by 
       The maximum value of   to each 
group of parameter is determined when the value of the 
unknown boundary conditions at 0   is not changed 
to successful loop with error less than 10–6. 
 
4. Results and Discussion 
 
In order to gain physical insight, the velocity, and tem-
perature profiles have been discussed by assigning nu-
merical values to the parameter, encountered in the 
problem i.e. numerical calculations were carried out for 
different values of suction parameter wf , magnetic pa-
rameter M, power law stretching parameter m, Prandtl 
number Pr, Eckert number Ec, buoyancy parameter λ, 
slip parameter γ, and their effects on flow and heat trans-
fer characteristics are analysed graphically. 
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The influences of the magnetic parameter M on the 
longitudinal velocity profile is depicted in Figure 1. It 
can be seen that increasing M is to reduce the velocity 
distribution in the boundary layer which results in thin-
ning of the boundary layer thickness, and hence induces 
an increase in the absolute value of the velocity gradient 
at the surface. 

The influence of suction parameter wf ( wf  < 0), over 
the non-dimensional longitudinal velocity profiles are 
shown in Figure 2. It is seen that the effect of suction 
parameter decelerates the longitudinal velocity.  

The influence of injection parameter wf ( wf  > 0), 
over the dimensionless longitudinal velocity profile is 
shown in Figure 3 and it is noticed that longitudinal ve-
locity increases with injection. It should be noted that in 
Figure 2, the boundary-layer assumptions do not permit 
a solution of the boundary-layer equation for large wf , 
because it will approach a constant value of 1, and the 
boundary layer is almost literally blown off the surface, 
similar to that of stationary plate with injection (Bur-
meister [26]; Kays and Crawford [27]). 

Figure 3 shows the effect of suction/injection on di-
mensionless temperature profile and it is observed that 
there is decrease in temperature in the thermal boundary 
layer resulting in thinning of thermal boundary layer thick- 
ness in the case of suction and the reverse trend is ob-
served for injection. Further it is clear that suction ( wf  < 
0) enhances the heat transfer coefficient much better than 
injection ( wf  > 0), and the thickness of the thermal 
boundary layer is reduced. Thus, suction can be used as a 
means for cooling the surface much faster than injection.  

Figures 4 and 5, describe respectively the behaviors of 
the longitudinal velocity profile and temperature profile 
for different values of power law stretching parameter m 
and it is noticed that increase in m results in decrease of 
longitudinal velocity profile which is more pronounced 
for small values of m, where as temperature profile in-
creases with the increase of stretching parameter m. It is 
observed that the variation of the sheet temperature has a 
substantial effect on the thermal boundary layer. This 
effect is more pronounced when sheet temperature varies 
in the direction of highest stretching rate. 

An increase in Prandtl number Pr is associated with a 
decrease in the temperature distribution which is dis-
played in Figure 6, which is consistent with the fact that 
thermal boundary layer thickness decreases with increase 
in the values of Prandtl number. The rate of heat transfer 
increases with the increasing values of Prandtl number. 
The boundary layer edge is reached faster as Pr increas-
es. 

Dimensionless velocity profile  f   is presented in 
Figure 7 for some different values of the slip parameter γ. 
It is readily seen that γ has a substantial effect on the  

 

Figure 1. Velocity profile f' versus similarity variable η for 
different values of magnetic parameter. 
 

 

Figure 2. Dimensionless velocity profile f' versus similarity 
variable η for different values of suction/injection parame-
ter. 
 

 

Figure 3. Temperature profile θ(η) vs similarity variable η 
for different values of suction/injection. 
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Figure 4. Dimensionless velocity profile f' vs similarity va-
riable η for different values of m. 

 

 

Figure 5. Dimensionless temperature profile θ(η) vs simi-
larity variable η for different values of m. 

 

 

Figure 6. Temperature profile θ(η) versus similarity varia-
ble η for different values of Pr. 

 

Figure 7. Dimensionless velocity profile f' versus similarity 
variable η for different values of slip parameter γ. 

 

 

Figure 8. Dimensionless velocity profile vs similarity varia-
ble η for different values of buoyancy parameter λ. 

 

 

Figure 9. temperature profile θ(η) versus similarity variable 
η for different values of Ec. 
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solutions. In fact, the amount of slip  1 0f   in-
creases monotonically with γ from the no-slip solution 
for 0   and towards full slip as γ tends to infinity. 
The latter limiting case implies that the frictional resis-
tance between the viscous fluid and the surface is elimi-
nated, and the stretching of the sheet does no longer im-
pose any motion of the fluid. 

In Figure 8, the effects of buoyancy parameter λ on 
dimensionless longitudinal velocity is shown graphically 
and the effects of buoyancy force is found to be more 
pronounced for a fluid with a small Pr. Thus, fluid with 
smaller Pr is more susceptible to buoyancy force effects.  

The influence of Eckert number Ec over dimensionless 
temperature profiles are shown in Figure 9. We observed 
from Figure 9, that an increase in Eckert number Ec en-
hances the temperature because the heat energy is stored 
in the liquid due to the frictional heating. 

The velocity and temperature profiles presented in 
Figures 1-9, show that the far field boundary conditions 
are satisfied asymptotically, which support the validity of 
the numerical results presented. 
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Nomenclature 
 
u, v: velocity component along the x, y directions 
g: acceleration due to gravity 
T: temperature of the fluid inside the thermal boundary 
layer 
Tw: Wall temperaturetemperature 
T∞: Temperature of the fluid at infinity 
cp: specific heat at constant pressure 
vw: velocity of suction 
Pr: Prandtl number 

xGr : Local Grashof Number 
Rex : Local Reynolds Number 

λ: buoyancy parameter 
f: dimensionless stream function 
m: nonlinear stretching parameter 
fw: dimensionless suction/injection parameter 
υ: kinematic viscosity 
: Slip Parameter 
s : Index of power law variation of temperature. 
: density of the fluid 
: coefficient of volume expansion 
 : Thermal diffusivity 
: thermal conductivity 
η: similarity variable 
θ: dimensionless temperature 

 


