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ABSTRACT 

The article relates to a decades-old problem of the mysterious coincidence between various large numbers of the mag-
nitude ranging from 1040 to 10120 which sometimes appears in cosmology and quantum physics. Using well known clas-
sical relations as well as the ideal Schwarzschild solution the exact relations of various large numbers, the fine structure 
constant   and π  were found. The new largest number law is claimed. The hypothetical approximations of the 
Hubble parameter—68.7457(82) km/s/Mpc, Hubble radius—14.2330(17) Gly, and some others were proposed. The 
exact formulae supporting P. Dirac’s large number hypothesis and H. Weyl’s proposition were found. It is shown that 
all major physical constants with the length dimension (from the Compton wave length of universe through the Planck 
and atomic scale up to the Hubble sphere radius) could be derived from each other, and the table of the specific conver-
sion rules has been developed. The model shows that the Eddington-Weinberg relation can be transformed to precise 
identity. It is shown that both Bekenstein universal entropy bound and Bekenstein-Hawking Black Hole entropy bound 
are proportional to the largest number doubled. 
 
Keywords: Large Numbers Hypothesis; Hubble Sphere; Eddington Number; Cosmological Constant 

1. Introduction 

The problem of Large Numbers dates back decades. The 
first problem statement and attempts at resolving it can 
be found in the studies by H. Weyl [1-3] and Sir A. 
Eddington [4,5], who drew attention to the incredibly 
large numbers of the dimensionless physical constants 
found in the cosmology, electrodynamics and quantum 
mechanics. The magnitude of these constants is so big 
 20 40 80 12010 , 10 , 10 , 10     as compared with the con- 
ventional mathematical constants, like π 3.14   and 
Euler’s constant e 2.71  , that boggles imagination as 
P. Davies [6] noted. 

The first of the two most popular dimensionless large 
numbers is the classical ratio between the gravitational 
force and the electromagnetic force in any given distance, 
called by H. Weyl [2] “even more mysterious than the 
fine structure constant  ”:  
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The second is the ratio of the universe radius to the 
classical electron radius:  
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where H  is Hubble’s constant, er —classical electron 
radius, R —Hubble sphere radius or radius of event 
horizon, gr —gravitational electron radius, ef —electros- 
tatic force between two electrons at a distance r, 0 — 
permittivity of vacuum, q —electron charge, gf — 
gravitational force between two electrons at a distance r, 
G —Newton gravitational constant, em —electron mass. 

The proximity of magnitude of er

R
 and g

e

r

r
 values  

led H. Weyl to the idea that the incredible weakness of 
gravitational interaction may be due to the ratio of the 
electron and the universe radiuses or to the total quantity 
of particles in the universe—the Eddington number [5]. *Yan Ryazantsev, Independent researcher.  
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We refer everybody interested in the history of stu- 
dying the problem of large numbers to the reviews by S. 
Ray, U. Mukhopadhyay, P. P. Ghosh [7] and K. A. 
Tomilin [8]. 

The hypothesis by P.A.M. Dirac is one of the best 
known hypotheses put forward to explain the problem of 
large numbers [9-11]. He supposed that the reason for 
appearance of great magnitudes of dimensionless values 
is their reliance on the equally large value, so-called 
“cosmological time”. This led P. Dirac to the hypothesis 
of dependence of the gravitational constant and the 
universe mass on time: 

1
G

T
                  (5) 

2M T                  (6) 

where M  is the mass of universe, T  is cosmological 
time. 

The idea of time-varying constants was developed, in 
particular, by E. A. Milne [12]. To establish the ratios 
and laws between modern values of the fundamental 
constants, we suggest studying values of large numbers 
at the current point of time, without taking into account 
their time derivative. P. Dirac’s assumption that New- 
ton’s gravitational constant and the mass of universe are 
not true constants but change over time gave rise to an 
array of scientific discussions, experimental and theore- 
tical studies devoted to verification of the fundamental 
constants in subsequent decades. No reliable proofs of 
variability of the physical constants were found yet. 

In this article, we will use the Hubble time, the 
parameter inverse to the Hubble constant, as approxi- 
mation of the cosmological time: 

1
T

H
                     (7) 

We referred to the simplest mathematics in narrating 
the article; however, the results we obtained provide 
quite good approximation to the most precise and 
generally accepted values of physical parameters, such as 

em  and er , taking into account their uncertainties. In 
particular, CODATA 2010 [13] as well as the measure- 
ments of Mission Planck 2013 [14] were used. 

2. Revealing the Large Numbers Ratios 

To discover the correlation between large numbers in our 
epoch, let’s begin with the well known vacuum solution 
to the Einstein’s equations for spherically symmetric and 
static universe. According to Schwarzschild’s solution, 
the universe’s radius R  that coincides with the Black 
Hole radius with the mass of M  is determined by a 
well-known formula (Schwarzschild radius): 

2

2GM
R

c
               (8) 

On the other hand, we know the formula for the 
electron gravitational radius that includes more or less 
precisely measured physical values: 

2
e

g

Gm
r

c
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Therefore, the formula for the classical electron radius 
that uses G  can be easily obtained from (8) and (9): 

2
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c
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We will not discuss now if the value of the classical 
electron radius has any real physical significance. It is 
enough that it is one of the energy status representations 
of an electron, a particle with the minimum self-energy 
among all charged particles. 

For transition to energy values, we will use a large 
mass number introduced by H.Weyl: 
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where 2
UE Mc —the universe self-energy, 2

e eE m c  

—the electron self-energy, U

h

Mc
  —Compton wave 

length of the universe, e

h

mc
  —Compton wave length  

of the electron. 
By dividing (8) by (10), one can get the following 

ratio: 
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Thus, we obtain the precise correlation among the 
three large numbers out of (4), (11) and (12): 

2 M DF DRN N N              (13) 

Besides the above large numbers, we will use a large 
energy number WN  representing the ratio of the 
universe’s self-energy UE  and “the minimum vacuum 
energy” WE  as proposed by J. Casado [15]: 
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where 
2W

hc
E H

R
   —quantum of energy with wave  

length 2πR , h —Planck’s constant; 
We will also need another large number equal to the 

cube of DRN  value: 
3

3
3U DR

e

R
N N

r
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Introduction of a new designation for a large number 

UN  is quite justified, because, as we will see below, this 
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number has a particular and substantial value. One of the 
simplest classical interpretations of this number: “the 
large number UN  represents the total number of, say, 
‘elementary clusters’ in the universe—the ratio between 
volume UV  of ball-like universe and the region eV  
folded by sphere of radius er ”. Taking into account that 
this number has the greatest magnitude as compared with 
other large numbers  12210 , we suggest calling it “the 
Largest number”. 

3. The Largest Number Law and Revealing 
of Dirac’s Proportionalities 

Now let us use well known physical parameters with 
their uncertainties (see Table 1). The parameters listed in 
Table 1 enable us to calculate large numbers values (see 
Table 2). To obtain DFN , we use (10):  

21 e
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             (16) 

We should pay an attention to the very close values of 

UN  and WN  of the magnitude 12110 . The ratio 
between this two large numbers is  

3.185(36)U
x

W

N
n

N
               (17) 

This is quite remarkable, taking into account the 
extremely large magnitudes of the numbers involved. 
Therefore, we can assume that this ratio is not just a 
coincidence but some specific physical law. In order to 
reveal the meaning of the ratio (17) one can rewrite it as 
follows:  
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By simply grouping the cosmological parameters in 
 

Table 1. Known physical parameters. 

Parameter Known value Units 

H   67.80 77  
km

s Mpc
 

H    182.197 25 10  1s  

c
R

H
    261.364 15 10  m  

   0.0072973525698 24  - 
3

2

c
M

GH
    529.188 10 10  kg  

er    152.8179403267 27 10 m  

1
T

H
    174.551 52 10  s  

T   14.43 16  Gyr  

G    116.67384 80 10  
2

2

N m

kg


 

Table 2. Calculated Large numbers values. 

Parameter Value 

DFN    424.16589 50 10  

DRN    404.842 55 10  

UN    1221.135 39 10  

MN    811.009 11 10  

WN    1213.564 81 10  

 
the left-hand side, and the quantum ones in the right- 
hand one the ratio (17) can be transformed into the 
following relation: 

2 2

universe electron

1 e
x

e

mM
n

R r


 

             (19) 

The question is—what kind of a phisical law the last 
equation represents? 

In order to find out the answer we would like to 
propose quite a simple classical model. We can apply the 
classical approach because we are dealing with constant 
macroscopic physical parameters and those ratios. Let us 
consider a really large number of non-interacting quanta. 
All quanta are moving in all directions with a speed of 
light, i.e. there are photons. Obviously, the set must be 
confined inside the Black Hole with a radius R  If the 
total energy of the whole quanta set is equal to UE . We 
have to conclude that absolutely every photon must be 
reflected by the sphere’s bound in certain time. In other 
words the inner side of the Hubble sphere plays a role of 
an ideal diffusely reflecting surface. In a period of time 
T R c  we will see that ultimately all quanta had 
experienced a reflection from the bound. It means that 
the inner side of the Hubble sphere looks like a Lam- 
bertian light emitter for an internal observer. Thus the 
constant radiant emittance from the inner side of our 
Black Hole can be expressed by the formula: 
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Now let us consider the observer-a spherical body in a 
vacuum with radius 0r R  placed at the center of the 
Hubble sphere. The observer will find out a constant 
isotropic quanta flow that is falling to an every surface 
area S  from a spatial hemisphere above the area. 

According to the Lambert’s cosine law a radiant energy 
flux in  through the area S  (i.e. irradiance) will 
be: 

   
π

2π
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0 0
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   


  
         (21) 

where   is the angle between the beam and a line 
normal to the surface area S . 

The total radiant flux in  related to the entire surface 
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of our spherical observer:  
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S

S
S


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           (22) 

 2
0 sinS r                  (23) 

where   and   are spherical coordinates of the area 
S  on observer’s surface. Thus: 

     
π

2π π 2π 22
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cos sin sinin UW r                

(24) 

The last integral (24) can be simplified as follows: 
2

2 2 0
0 2

4π π U
in U

E r
r W

T R
             (25) 

The total amount of energy totE  entered inward (or 
reflected by) the observer during the period of time T  
is: 

2
tot in totE T m c             (26) 

where totm  is a total mass which our observer should 
have at present time if he absorbs (or reflects) the 
incoming energy flux in  completely. Thus we can 
write down the following equation: 
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Now, making a comparison of the Equations (27) and 
(19) one would ultimately conclude that if the coefficient 

xn  in the (19) equals exactly to π  then 2
0totm r  must 

be equal to 2
e em r . Thus: 
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               (28) 

Using (4), (11) and (28), we immediately obtain a 
noteworthy ratio between Weyl-Eddington-Dirac large 
numbers : 

2 πDR MN N               (29) 

Hence, we can obtain the formula for the universe 
mass via the Hubble time: 
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The last one represents the proportional relation 
between M  and 2T  which was hypothesized by P. 
Dirac almost 80 years ago. 

As we see from (29), both fundamental constants   
and π  are deeply involved in large number relations 
and thus we can assume that it is an evidence that 
cosmological and quantum parameters of our model of 
the universe are closely connected through geometry. 

The above Equations (13) and (29) readily yield the 
correlation of the best known large Weyl-Eddington-Di- 
rac numbers, which include both the geometrical cons- 
tant π  and the fine structure constant  : 

π 2DF DRN N               (31) 

This correlation is very notable. It enables one to 
calculate the approximations for Hubble sphere radius 
and the Hubble parameter via the correlation of gra- 
vitational and electrostatic forces: 

1
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Now let us introduce the “big” angular momentum of 
the Hubble sphere measured along any given direction 

 : 

MRc              (34) 

Thus, multiplying both sides of the Equation (28) by 

UcN , we would propose the exact Largest number law in 
the following form:  

πUN                    (35) 

The total sum of UN  fundamental quanta of the 
angular momentum   in universe equals exactly to the 
angular momentum of the Hubble sphere multiplied by 
π . This is a direct consequence of geometrical Lambert’s 
cosine law and rotational symmetry of space (conser- 
vation of angular momentum). 

The following expression, as well as expressions (29) 
and (35), represent just another form of this law: 

πU M DRN N N                 (36) 

With the help of large numbers ratios and Largest 
number law, one can get various representations of the 
Newton constant of gravitation G  using initial expres- 
sion: 
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The most elegant cases, in our opinion, are: 
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and:  
2 2 22 3

3

π π

2 28π
e e

e ee

r c r ch
G

m R m Tm R

 
        (39) 

The last one represents the reverse proportional re- 
lation between G  and R , which was hypothesized by 
H.Weyl and between G  and T  which was hypo- 
thesized by P. Dirac. 
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By means of (39), one can get representation of the 
cosmological constant  : 

4 2 3 2 2 2

8π 6 π6 3

2
U M

DR

G NGM

c c R N R R

 
         (40) 

where U
U

U

E

V
  —energy density of the universe. 

The last one represents the de Sitter space—a va- 
cuum solution of Einstein’s equation with cosmological 
constant-for the 4-dimensional case. Hence, we can ob- 
tain the formula for the cosmological constant   via 
the fine structure constant  , Weyl-Eddington-Dirac 
large number DFN , classical radius of electron er  and 
π : 

 2

12

πDF eN r
             (41) 

4. Calculations 

The ratios between large numbers as described in Sec- 
tions 2 to 3 enable us to calculate many cosmological 
parameters in the proposed model. The calculations has 
been carried out (by using the constants , , , , ,πe er m c G ) 
as follows: , ,DF eh N E , then DRN , then 

, , , ,U MN N R H T , then , ,W WM N E  and then UE . 
The results of calculations of the constants based on 

referential data and information from the most recent 
measurements are shown in Table 3. 
 
Table 3. Proposed values based on the the Largest number 
law. 

Parameter Known value Proposed value 

H    km
67.80 77

s Mpc
   km

68.7457 82
s Mpc

H    18 12.197 25 10 s     18 12.22789 27 10 s 

T    174.551 52 10 s    174.48853 54 10 s

T   14.43 16 Gyr   14.2330 17 Gyr  

M    529.188 10 10 kg    529.0606 22 10 kg

R    261.364 15 10 m    261.345629 16 10 m

DFN    424.16589 50 10  - 

DRN    404.842 55 10    404.77522 57 10  

UN    1221.135 39 10    1221.08888 39 10  

MN    831.009 11 10    829.9465 24 10  

WN    1213.564 81 10    1213.4660 12 10  

U U UE V     10

3

J
7.65 26 10

m
    10

3

J
7.97879 95 10

m


2

UE Mc    698.257 94 10 J    698.1433 19 10 J  

WE    522.317 26 10 J    522.34947 28 10 J

    52

2

1
1.612 35 10

m
    52

2

1
1.656801 39 10

m


The ratios of large numbers described in the previous 
sections enable to link the Hubble volume radius and 
other constants with the length dimensions, including 
such parameters as the electron gravitational radius and 
the Planck’s length. All such constants can be calculated 
one from the other, via the fine structure constant  , 
Weyl-Eddington-Dirac large numbers DFN  or DRN  
and π . The Tables 4 and 5 show the mutual conversion 
ratios of the constants—from the Compton wave length 
of the universe to the Hubble sphere radius. To obtain the 
value of the top line parameter, one should multiply the 
initial parameter in the respective column by the formula 
in the cell at their crossing. 

In Table 5, one can find one more elegant expre- 
ssion-the ratio between largest and smallest distances in 
universe-radius of the Hubble sphere and the Compton 
wave length of the entire universe. It is proportional to 
the Largest number: 

2

1

2π U
U

R
N


            (42) 

5. Examples of Applying the Large Number 
Ratios 

The previous sections contain a rather simple derivation 
of the inter-dependence of all main large numbers. The 
Largest number law that links the Weyl-Eddington-Dirac 
numbers enable validation of whether the known hypo- 
thetic equations and inequations conform to the large 
numbers combination we proposed or not. Below are 
several examples. 

Example 1. J. Teller proposed [16] an interesting ratio 
between Planck’s values, the fine structure constant and 
Hubble’s cosmological parameter: 

1
8π expp p

p

H
m Hc t H

l
 


     
 

  (43) 

where 
4

8πG

c
  —Einstein constant, , ,p p pm l t —Planck 

units. 
Having very large magnitude 6010 , the left and 

right parts of the formula give us values which differ 
from each other by only 1.5%. It is really remarkable but 
it is about 70 times more uncertain than other values 
calculated by us earlier: 

 
1 1332 π

8π e e 0.98588 12p
U

t H
N

 
    (44) 

Teller’s formula cannot be recognized exact and 
expressing a fundamental physical law as it does not 
provide any strict derivation yet. A. Eddington’s contem- 
plative assumptions on the quantity of particles in the 
universe, which is supposedly equal to precisely 2562 ,   
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Table 4. Calculating parameters with a length dimension via DFN . 

 U  pl  gr  er  br  e  R  

U  1 
3 3

64
DFN
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8
DFN 

 
2 2

8
DFN

 
2

8
DFN

 
2 π

4
DFN 

 
3 3π

16
DFN

 

pl  
3 3

64

DFN
 1 

DFN
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DFN  
3

DFN


 

24π DFN


 

3 3π

2 DFN  

gr  2

8

DFN 
 DFN


 1 DFN  

2
DFN


 

2π DFN


 

2π

2
DFN

 

er  2 2

8

DFN
 1

DFN
 

1

DFN
 1 

2

1


 

2π


 

π

2
DFN

 

br  2

8

DFN
 

3

DFN


 

2

DFN


 2  1  2π  

3π

2
DFN

 

e  2

4

πDFN 
 

24π DFN


 

2π DFN


 

2π


 

1

2π
 1 

2

4
DFN

 

R  3 3

16

π DFN
 

3 2 3

4

π DFN
 2

2

π DFN
 

2

π DFN
 

3

2

π DFN
 

2

4

DFN
 1 

where lp—Planck length, rb—Bohr radius. 

 
Table 5. Calculating parameters with a length dimension via DRN . 

 U  pl  gr  er  br  e  R  

U  1 
3

38π
DRN

 
4π

DRN
 

2

22π
DRN

 
2

2 22 π
DRN


 

2

π
DRN


 

3

22π
DRN
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3

3

8π

DRN
 1 

2π

2 DRN


 

2

π DRN  
4

2

π DRN
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2

8π DRN


 32

π DRN  

gr  
4π

DRN
 

2

2

π
DRN


 1 

2

π
DRN
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3

2

π
DRN
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2

4 DRN


 

22

π
DRN
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er  
2

2

2π

DRN
 π

2 DRN
 

π

2 DRN


 1 

2

1


 

2π


 DRN  

br  
2 2

2

2 π

DRN


 

4π

2 DRN


 

3π

2 DRN


 2  1 2π  2

DRN  

e  2

π

DRN


 

2

8π DRN


 

2

4 DRN


 

2π


 

1

2π
 1 

2π
DRN

 

R  
2

3

2π

DRN
 

3

π

2 DRN
 2

π

2 DRN


 

1

DRN
 

2

1

DRN
 

2π

DRN
 1 

 
are even further from the reality. 

Example 2. There is known Eddington-Weinberg 
approximate relation [17]: 

2 3
pH Gcm                 (45) 

where   271.672621777 17 10 kgpm   —proton mass 
(CODATA 2010). 

Using the approximation of H  calculated above 
(Table 3) one can get the ratio, which is quite far from 

expected 1.0 : 

 
2

3
0.000264629 45 1

p

H

Gcm
 


    (46) 

Thus we can conclude that Eddington-Weinberg 
approximate identity is not confirmed in our model. But, 
we should say that Eddington-Weinberg formula does 
have physical meaning in a nutshell. One can get the 
exact identity by replacing pm  by em  and applying 
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the large number ratios to this hypothetical formula: 
2

3 3

2

πe

H

Gcm 



           (47) 

Example 3. 
J. Bekenstein proposed [18] universal entropy bound 

for a complete physical system whose total mass-energy 
(in our case) is UE , and which fits inside a sphere of 
radius R . Applying the large numbers ratios, we can get 
the universal entropy bound value: 

2π
2π 2π 2U U

B W U
W

kE R E
S k kN kN

c E
   


   (48) 

Where k  is Boltzmann constant. 
On the other hand, the Bekenstein-Hawking entropy 

bound for the Black Hole with radius R  is: 
3 2π

BH

kc R
S

G



             (49) 

By dividing (48) by (49) and using (8) one can get: 

4 2

2 2
1UB

BH

E GS MG

S c R c R
              (50) 

The last one says that both Bekenstein universal 
entropy bound and Bekenstein-Hawking Black Hole 
entropy bound have the same value in our model and 
equal exactly to 2 UkN : 

   122 99 J
2.17776 78 10 3.0067 11 10

KBS k      (51) 

Using the large number ratios it is also easy to express 
the Hawking radiation HE  of our Black Hole with 
energy UE  via Largest number UN  or Hubble 
parameter: 

3

8π 4 4π 4π
U W

H H
U

E Ec H
E T k

GM N
    

 
 (52) 

where HT  is Hawking radiation temperature. 

6. Discussion and Conclusions 

The two currently prevailing physical theories, i.e. quan- 
tum mechanics and the general relativity, describe the 
reality very precisely, each in its range of energy and 
spatial scale. It is presumed that sometimes in the future, 
the value of DFN  will be obtained in theory directly as 
a direct result of consolidation of gravitation with other 
known interactions, strong and electroweak. 

The fruitless attempts at explaining the proximity of 

DFN  and DRN  resulted in a broad application of the 
term of “coincidence” that somehow highlights the 
randomness of the event. As shown in previous sections 
it is not random. 

As we see, the large number ratios proposed in the 

article provide the powerful means for finding relations 
among various information and physical parameters of 
our model universe. However, it does not help answer the 
main question: where do these enormous numbers come 
from in physics? Hopefully, the law and hypotheses 
proposed in this article will let find the correct answer in 
the foreseeable future. 

The ratios we suggested impose rather many stringent 
limitations on the way physical constants may change 
over time. We must note that the sharply tuned combi- 
nation of large numbers, including the mentioned appro- 
ximations for Hubble time T , mass of the universe M  
and Hubble limit R  correspond to the values of the 
very precisely measured physical constants of quantum 
scale. Looking at (39) and (40), it is obvious that the 
gravity is closely connected with the Hubble radius, 
Hubble time and the properties of electron. However, 
there are rather reliable measurements that establish a 
very low limit for the Newton constant change rate in the 
long-term  < 1% . Thus, if Hubble parameters ,T R  
varies with time then the corresponding variation of   
or/and electron energy 2

em c  should preserve the cons- 
tancy of G . 

If the entire universe energy UE  comprises (or once 
comprised) quantums of the minimum energy WE , we 
should make the conclusion that number (14) is a natural 
number. The same is true about (15). Hence, we can 
establish the hypothesis that all large numbers in the real 
(not infinite) universe should be naturals or rationals. 
However, the denominator and the numerator in these 
fractional numbers are so great that one can confidently 
presume the real large numbers approximate some per- 
fect limit of fundamental importance infinitely closely. 
Taking into account the transcendentalism of (29), (31) 
and (35), we dare to express one more hypothesis: all 
Large numbers are infinitely approaching their limits 
and these very limits are transcendent mathematical 
constants. 

The Schwarzschild solution is one of the well known 
models of our universe, representing a Black Hole. 
Avoiding creation of new essences, we just consider the 
interaction between internal radiation and a small sphe- 
rical observer. It appears that such a simple model re- 
veals a lot of interesting identities and conservation laws. 
For example, the value of 2

0totm r  should be conserved 
for a sphere with a radius 0r . Furthermore we found that 
identity tot em m   is valid for a sphere with classical 
electron radius er . 

The last derivation allowed us to propose a list of 
exact ratios between well known Eddington-Weyl-Dirac 
large numbers which are listed in Table 2. The ratios (30) 
and (39) reveals the exact formulae supporting P. Dirac’s 
hypothesis and propositions which were announced many 
years ago and never were written in a clear mathematical 



Y. RYAZANTSEV 

Open Access                                                                                            JMP 

1654 

form. 
Using these large numbers ratios we have claimed the 

new Largest number law (35) which is based on Lam- 
bert’s cosine law and the rotational symmetry of space. It 
is quite important that this law precisely unites the major 
cosmological and quantum parameters of our universe. It 
could be interpreted as follows: our universe comprises 
of the mathematically determined number of elementary 
spatial clusters which can be matched up to energy quan- 
ta and angular momentum quanta. We should note that 
basic parameters of our model universe have been ob- 
tained form the properties of electron, speed of light and 
fine structure constant. 

If Equations (13), (28) and (31) are valid inside the 
Hubble sphere, which is very probable, we should make 
a conclusion that all cosmological parameters are fully 
and unambiguously determined by quantum and mathe- 
matical constants. Simply put, all of us are very likely to 
live in an extremely precisely self-tuned quantized uni- 
verse. 
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