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Abstract 
 
This research aims at improving the methods of prediction of shear wave velocity in underground layers. We 
propose and showcase our methodology using a case study on the Mashhad plain in north eastern part of Iran. 
Geotechnical investigations had previously reported nine measurements of the SASW (Spectral Analysis of 
Surface Waves) method over this field and above wells which have DHT (Down Hole Test) result. Since 
SASW utilizes an analytical formula (which suffers from some simplicities and noise) for evaluating shear 
wave velocity, we use the results of SASW in a trained artificial neural network (ANN) to estimate the un- 
known nonlinear relationships between SASW results and those obtained by the method of DHT (treated 
here as real values). Our results show that an appropriately trained neural network can reliably predict the 
shear wave velocity between wells accurately. 
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1. Introduction 
 
Shear wave velocity estimation is an important task due 
to its application in evaluating sub surface response to 
earthquakes, soil improvement, and the strength of the 
surface structures’ foundation. Two common methods 
for determining shear wave velocity profile in sub sur- 
face layers are Down Hole Test (DHT) and Cross Hole 
Test (CHT). As a weak point, in these methods we need 
to drill bore holes. Bore hole drilling is a destructive, 
expensive and time consuming task. Therefore a proper 
non-destructive alternative for these methods is needed. 
Spectral analysis of surface waves (SASW) method is a 
non destructive procedure which gives shear wave velo- 
city using seismic surface waves [1]. 

Instead compressional body waves (P) and shear waves 
(S), there is the other wave which propagates on the sur-
face of the medium. This wave called Rayleigh Wave. Its 
velocity is less than shear wave. This wave can be pro-
duced by hammer or weighted drop. In 1984 a non de-
structive method was developed which called Spectral 
Analysis of Surface Waves (SASW) [2]. 

The first step in SASW method is data acquisition. By 
vertical impact to the surface of the ground, Rayleigh 
waves will propagate. These waves have a special fre- 

quency range and are recorded by two geophones lied on 
the line through the surface. The distance between geo- 
phones should be increased symmetrically with respect 
to the mid point of the geophones. Then it is possible to 
obtain the dispersion curve (phase velocity as a function 
of propagated wave frequency) in the next step. Common 
array of source and geophones is shown in Figure 1. 

The second step is data processing. In this step, the 
phase difference between two signals recorded with 
geophones (x(t) and y(t)) is obtained. This phase differ- 
ence is a function of Rayleigh wave frequency which 
propagates the distance between two geophones. To cal- 
culate the phase difference, signals from time domain 
should transfer to the frequency domain using Discrete 
Fourier Transform. After that X(f ) and Y(f ) are obtained. 
Therefore Cross Power Spectrum Function (GYX) and the 
phase are calculated using Equations (1) and (2). 
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Here X*(f ) is a Complex Conjugate of X(f ). 
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Figure 1. Array of source and geophones [3]. 
 

Calculated phase from Equation (2) is a phase differ- 
ence between X(f ) and Y(f ). 

Using Equation (3), we can calculate the dispersion 
curve. 

2
RV f d







                (3) 

In step 3 we should determine shear wave velocity 
profile (VS versus depth). Considering that shear wave 
velocity is approximately equal to 1.1 VR, so VS can be 
obtained. Also the effective penetration depth of Rayleigh  

waves is equal to 
1

3 R , so D (depth) can be obtained too  

[3]. 
 
2. Methodology 
 
2.1. Seismic Data Acquisition 
 
The proposed methodology is explained using a realistic 
example. Nine SASW measurements performed over the 
Mashhad Plain in north eastern part of Iran [4]. All of the 
measurements performed above bore holes which had 
DHT results. Figure 2 shows the geological map of the 
Mashhah Plain. In this figure, BH means bore hole and 
black dots illustrate the position of nine bore holes. 

SASW measurements are VS (Shear Wave Velocity), 
  (Unwrap Phase Differences), f (Frequency), d (Dis- 

tance between Geophones), and D (Depth of Evaluation). 
These parameters are reported for bore hole 19 (BH19) 
in Table 1. 

In Table 1, values of the fifth column are shear wave 
velocities from DHT method, which are treated as the 
real values. 

 

 

Figure 2. Geological map of the Mashhad Plain [5]. 
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Table 1. Data obtained from SASW and DHT from depth 1.0353 m to 2.2726 m in BH19. 

d (m) f (Hz)   (Rad) D (m) Vs-Real (m/s) Vs-SASW (m/s) 

2 50.505 4.0461 1.0353 383.5949 156.7788 

2 46.465 3.9769 1.0533 383.4837 146.7476 

8 78.788 15.743 1.0643 383.4156 251.433 

4 16.162 7.7975 1.0744 383.3529 52.06662 

8 76.768 14.532 1.153 382.8618 265.4022 

2 44.444 3.5286 1.1871 382.6471 158.1978 

8 74.747 13.778 1.2161 382.4641 272.5569 

8 72.727 13.024 1.2864 382.0189 280.544 

4 14.141 6.2622 1.3378 381.6928 56.72478 

4 12.121 6.1577 1.3605 381.5488 49.44696 

8 70.707 12.191 1.3744 381.4607 291.3887 

8 68.687 11.058 1.5152 380.5723 312.0668 

4 10.101 5.4516 1.5367 380.4378 46.54361 

4 8.0808 4.8529 1.7263 379.2734 41.82853 

8 66.667 9.2222 1.8168 378.7366 363.1834 

8 54.545 8.0433 2.0831 377.2604 340.6986 

8 64.646 8.0059 2.0928 377.2101 405.6777 

8 52.525 7.7724 2.1557 376.8909 339.5162 

20 52.525 18.933 2.2124 376.6139 348.4466 

20 50.505 18.432 2.2726 376.3315 344.153 

 
2.2. Problem Statement and Solution Strategy 
 
As mentioned in Table 1, shear wave velocity values 
measured with both SASW and DHT methods for all 9 
bore holes. Figure 3 illustrates the comparison of these 
values for various depths in each bore hole. If we assume 
the values of shear wave velocity from DHT method as 
the real values, it will obvious that SASW have a rela- 
tively good estimation when the prediction depth is shal- 
low. By increasing in depth values, the accuracy of 
SASW estimations will fall in doubt. These differences 
in shear wave velocity estimation can be because of the 
existence of noise and unknown non linear relationships 
between SASW results and real values of shear wave 
velocity. Recognizing the computational power of artifi- 
cial neural networks in rule generation and function ap- 
proximation and their robustness particularly in the area 
of data classification, we embarked on development and 
training of a back-propagating artificial neural network 
(BP) for the purpose of classification of shear wave ve- 
locity considered in this study. 

2.3. Back-Propagating Artificial Neural  
Networks (BANN) 

 
Artificial neural networks (ANNs) are computational 
models based on human’s understanding of cortical 
structure of the brain and cognition. Algorithmically, 
ANNs are parallel adaptive systems and therefore require 
training. Back-propagation is a powerful method of su- 
pervised learning that is developed after the seminal 
work by Paul Werbos and David E. Rumelhart in seven- 
ties and eighties [6]. Details of various methods of ANN 
design and training are beyond the scope of this paper 
and are explained elsewhere (see [7] and [8] for exam- 
ple); nevertheless a brief description of the terminology 
is provided here.  

The structure of a neural network, in general, consists 
of an interconnected group of artificial neurons (simple 
processors that are connected to many other neurons). 
These processing units receive the information, apply 
some simple processing on them and pass them to other 
neurons. The flow of information creates a computational     
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Figure 3. Small circle symbols illustrate the real values of shear wave velocity for each bore hole from DHT method while the 
triangles are the shear wave velocity values obtained from the SASW method. 
 
model for information processing. Each neuron is as- 
signed a weight that is changed adaptively to improve the 
performance of the network based on pairs of external 
and internal signals (training information, input-output 
mapping). Practically, neural networks may be used in 
nonlinear statistical data modeling, system identification, 
extraction of complex relationships between inputs and 
outputs of a system, and for pattern recognition. 

The structure of a simple neural network is shown in 
Figure 4. 

In addition to weight, each node (neuron) in the net- 
work is equipped with an activation function (or transfer 
function) that is part of the information processing unit 
of the neuron. The flow of information could be imag- 
ined from left to right, such that each neuron performs  

 

Figure 4. A simple neural network consisting of input, hid- 
den, and output layers (with 3, 4, and 2 nodes, respectively) 
[9]. 
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the processing on the data in parallel with other neurons 
in the layer. The response of the network is compared at 
the terminating layer with a set of desired outputs and the 
weights of the neurons are thusly corrected following a 
training algorithm to minimize the output error. Issues 
with regards to the number of nodes per layer, number of 
layers, and the type of activation function that could be 
used are dealt with in the design of the architecture of the 
network. This is explained later on in this paper. 

There are numerous methods of training of a neural 
network. Categorically these methods are grouped into 
three main classes: supervised learning, unsupervised 
learning, and reinforcement learning. In a supervised 
learning scheme, the network is provided with a set of 
examples in the input-output space:  , , ,x y x X y Y   
and the goal of the training process is to find function f in 
a set of valid functions that could match the input/output 
pairs reliably. By doing so, the network becomes capable 
of making inferences in mapping that is implied by the 
training data. This procedure involves minimizing a cost 
function. The cost function is often defined as the mis- 
match between the network’s mapping and the actual 
data. 

A commonly used cost function is the mean-squared 
error between the average of network’s output, f(x), and 
the target value y over all example pairs presented to the 
network. Minimizing this cost function in a gradient de- 
scent algorithm for a class of neural networks called 
Multi-Layer Perceptrons constitutes the basis of back- 
propagation algorithm [6].  

In this study, we successfully developed and imple- 
mented a network with two hidden layers of 5 and 7 
nodes respectively. 
 
3. Results and Discussion 
 
The minimum dataset is 142 data points for BH17 and 
maximum dataset is 269 data points for BH9. Table 2  
 

Table 2. Values of data points for each bore hole. 

BH3 180 

BH8 177 

BH9 269 

BH10 179 

BH11 147 

BH14 238 

BH17 142 

BH18 187 

BH19 176 

shows the values of data points for each bore hole. 
For each bore hole, we used it’s dataset to train and 

test the neural network. 70% of the total data points were 
selected randomly for the network training and the re-
maining 30% of the data was used for testing the net-
work. Each data point is a vector of four input values, 
namely, d, f,  , and D as described earlier. The de-
sired network output is real shear wave velocity value 
obtained from the DHT method (shown by small circles 
in Figure 3). The input layer of the network receives 
input data at four nodes and the network generates an 
output at the final layer. We used the Levenberg Mar-
quardt (LM) algorithm for training method because it 
generally results in faster and more reliable convergence 
for our application. Average error values of 50 iterations 
for training and testing of the network for each bore hole 
data points are presented in Table 3. In Table 3, Etrain is 
the absolute error after network convergence, Etest is the 
error obtained from testing the network, RMStrain is the 
root-mean-square of the training error, and RMStest is the 
root-mean-square of error during testing of the network. 
Results shown in Table 3 appear to be very reasonable 
for practical applications. 

The absolute training error Etrain is calculated in the 
following manner: 

1 1 1 2 2 2, , , n n nE r p E r p E r p          (4) 
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In Equation (4), r is the real shear wave velocity value, 
p is the predicted shear wave velocity value from the 
network, and n is the number of training data. Etest is as  
 
Table 3. Average error values for the training and testing 
the network in each bore hole. 

 Etrain Etest RMStrain RMStest 

BH3 0.0012 0.0013 0.0014 0.0016 

BH8 0.0003 0.0003 0.0005 0.0006 

BH9 0.0004 0.0004 0.0005 0.0006 

BH10 0.0011 0.0019 0.0025 0.0031 

BH11 0.0009 0.0010 0.0012 0.0012 

BH14 0.0015 0.0016 0.0021 0.0025 

BH17 0.0001 0.0001 0.0001 0.0001 

BH18 0.0014 0.0015 0.0018 0.0026 

BH19 0.0017 0.0018 0.0029 0.0031 
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the same as Etrain but is calculated from the test data. 
RMStrain is the mean square error of the training data and 
is obtained from Equation (6): 

2 2 2
1 2 n

train

E E E
RMS

n
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


         (6) 

RMStest is calculated as RMStrain but for the test data. 
From Table 3, the average RMS of the error for train 

and test results in each bore hole is near zero. The reduc-
tion in the network error will increase the reliability of 
network’s predictions. Other training algorithms such as 
Scaled Conjugate Gradient, One-Step Secant, and Fle- 
tcher-Powell Conjugate Gradient were also used but 
were discarded due to higher tolerance for the test errors 
and lower reliability in our application [4,6]. With a 
network of only one hidden layer, overtraining was often 
observed. Overtraining happens when the network is 
highly trained but its predictions appear erroneous for the 
test data. This can be the consequence of the complexity 
of problem investigated here and modeled in our neural 
network. 

The results of the training for BH8 are presented in 
Figure 5. 

In Figure 5, R is the correlation coefficient between 
the real and the predicted shear wave velocity values; A 
being the predicated and T being the real value. The cor-
relation coefficient is 1.0, implying a very good network 
performance.  

We used the abovementioned neural network for the 
task of classifying the test data. The results are shown in 
Figure 6. 

During testing, a correlation coefficient of 1.0 was 
generally obtained (as exhibited in Figure 6). This shows 
that the Shear wave velocity values in the test data were 
practically well-correlated with the network predictions. 
The problem with SASW method was its poor perfor-
mance in estimating shear wave velocities in Mashhad 
Plain, therefore it deemed appropriate to be exceedingly 
meticulous with reliability of the computational tool that 
was developed as a part of this study to perform the task 
of classification. This is evident in Figure 7 with the 
superior performance of the trained network in BH8 (as 
opposed to the data Figure 3) remarkably demonstrated. 

The real values of shear wave velocity, shown by 
small circles in Figure 7 could not be easily predicted by 
the SASW method but the back-propagating neural net-
work, shown in Figure 7 by inverted triangles, quite 
consistently detected all shear wave velocities precisely.  

The train and test results for other bore holes have 
been illustrated in Figures 8 and 9, respectively. From 
these figures it is obvious that the network has a very 
good performance in predicting shear wave velocities in 
another bore holes. 

 

Figure 5. Correlation coefficient for train data in BH8. 
 

 

Figure 6. Correlation coefficient for the test data in BH8. 
 

 

Figure 7. Predicted results for the test data in BH8.  
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Figure 8. Train results for the other 8 bore holes. 
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Figure 9. Test results for the other 8 bore holes.  
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4. Application of the Proposed Methodology 

to a Case Which Has Not Contributed in 
Training Procedure 

 
Drilling holes is an expensive and time consuming task, 
so it is impossible to drill as many as holes that we need 
to obtain the detailed profile of shear wave velocity. Also 
in urban regions drilling is usually limited, therefore 
performing DHT method and getting real values of shear 
wave velocity for every desired point is not possible. 
Since in geostatistics it is possible to estimate an un-
known point having its surrounding known points with 
the respect to their range of influence and their weights, 
it inspired us to estimate the shear wave velocities in a 
hole which has not contributed in the training procedure. 
Generalized Regression Neural Networks (GRNNs) are 
capable to do this. In these networks, each known point 
has its individual weight according to the assumed range 
of influence. Details of these networks are explained 
elsewhere (see [7] for example). 

We selected five bore holes which were BH8, BH9, 
BH10, BH11, and BH14 respectively. According to 
Figure 2, BH9 is in the middle of the other four bore 
holes, so we considered it as the unknown hole. The 
network’s range of influence was 0.2 and the input data 
were the same as the back propagating neural network 
used for individual holes previously. We trained the 
network using the data of bore holes 8, 10, 11, and 14 
and tested the trained network for bore hole 9. Figure 10 
shows the shear wave velocity values from the SASW, 
DHT and those obtained from GRNN for the BH9. 

In Figure 10, the trained neural network predicts low-
er shear wave velocity values (which SASW predicts 

them 100 m/s) perfectly. Interestingly in the middle part 
of this figure that SASW results are scatter, the GRNN 
can predict the values of shear wave velocity precisely. 
For higher depths the neural network predicts the lower 
values for shear wave velocities; but its estimation is still 
very better than SASW. We attribute this to the depth of 
investigation which impacts the seismic wave and re-
duces the ratio of signal to noise (S/N). Figure 10 illu-
strates that using SASW and GRNNs can predict the real 
values of shear wave velocity in the places in which it is 
impossible to drill holes. 
 
5. Concluding Remarks 
 
Measurement noise and nonlinear relationship between 
wave parameters and shear wave velocity quantities exert 
difficulties in performing seismic wave interpretation 
reliably. The SASW method, as a seismic-based nonde-
structive method, has been in use for some time and is 
susceptible to problems of predicting the shear wave 
velocities in underground layers. Consequently, other 
viable methods of prediction, such as the one proposed in 
this paper, may be deemed necessary in realistic cases. 
We successfully implemented and tested an artificially 
intelligent computational agent to consider the unknown 
nonlinear relationships between system variables in our 
prediction problem (foreseeing the shear wave velocities 
in underground layers). Our approach uses unwrap phase 
differences, frequency, distance between geophones, and 
depth of evaluation as input system variables. The net-
work seeks the relationship between these input variables 
adaptively and strives to a desirable output which is, in 
our case, the real shear wave velocity values obtained 

 

 

Figure 10. The shear wave velocity values from the SASW, DHT and those obtained from GRNN for the BH9.  
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from the down hole test method (DHT). 

We considered two kinds of neural networks in our 
methodology. Back propagating artificial neural network 
used to predict the shear wave velocity values for each 
hole individually. The network could train itself very 
well with practically complete correlation between real 
shear wave velocity values and the predicted ones (cor-
relation coefficient R of one). The network also exhibited 
a superior capability in estimating the unknown zones. 

Applying the generalized regression neural network to 
predict the shear wave velocity values in a hole which 
had not contributed in the training procedure indicated 
that the network could perfectly predict the shear wave 
velocity values of lower and medium depths. Increasing 
the depth values, the network precision had a few de-
crease, but still it could give a very better results than 
SASW. We speculate the impact of decreasing in signal 
to noise ratio (S/N) as possible reason for this peculiari-
ty. 

Finally we could illustrate that it is possible to predict 
the values of shear wave velocity in places where it is 
impossible to drill holes. This can be achieved by drilling 
few wells in surrounding parts of the region, determining 
the real values of shear wave velocity (using DHT me-
thod), training a proper network (using SASW and DHT 
results), and applying the trained network in all over the 
region. 
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