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Abstract 
 
This paper is devoted to the study of disturbances due to impact and continuous strip thermal sources, tem- 
perature or temperature gradient input acting on the rigidly fixed and charge free (open circuit) surface of a 
homogeneous, transversely isotropic, thermally conducting, generalized piezothermoelastic half-space. The 
Laplace and Fourier transforms technique have been employed to solve the model consisting of partial dif- 
ferential equations and boundary conditions in the transformed domain. In order to obtain the results in the 
physical domain the quadratic complex polynomial characteristic equation corresponding to the associated 
system of coupled ordinary differential equations has been solved by using DesCartes’ algorithm with the 
help of irreducible Cardano’s method. The inverse transform integrals are evaluated by using numerical 
technique consisting of Fourier series approximation and Romberg integration. The temperature change, 
stresses and electric potential so obtained in the physical domain are computed numerically and presented 
graphically for cadmium selenide (CdSe) material. The study may find applications in smart structures, pie- 
zoelectric filters, resonators, transducers, sensing devices and vibration control. 
 
Keywords: Thermal Sources, Integral Transforms, Romberg Integration, Relaxation Time, DesCartes’  

Algorithm 

1. Introduction 
 
Application of different types of loads on the surface of 
piezoelectric materials is an active research subject for 
engineers and scientists. Smart and intelligent structures 
are developed to enhance the performance of the struc- 
tural components. In some cases, the load bearing sub- 
strates of these smart structures are made of composite 
materials. Ashida et al. [1] provides an overview of the 
use of piezoelectric materials in intelligent structures for 
aerospace applications. The mechanical and fracture 
properties of piezoelectric ceramics under thermal load- 
ing conditions have gained much attention [2,3]. There 
are some factors such as economical, less fuel consump- 
tion, higher speed achievement, ability to adapt to vari- 
ous applied loads and environment, which increases the 
interest to enhance the performance (e.g. load carrying 
capacity, crash or buckling behaviors) of the structural 
components in aerospace, ground vehicles, hydrospace, 
nuclear engineering, navigation, civil, mechanical engi- 
neering and ship manufacturing industries etc. 

The theory of coupling of thermal and strain fields 

gives rise to coupled thermoelasticity and was formu- 
lated by Duhamel [4], which predicts the infinite speed 
of heat transportation. Lord and Schulman [5] and Green 
and Lindsay [6] have formulated non-classical (general- 
ized) theories of thermoelasticity which eliminate the 
paradox of infinite velocity of heat propagation inherited 
in classical theory of thermoelasticity. According to these 
theories, heat propagation should be viewed as a wave 
phenomenon rather than diffusion one. A wave-like 
thermal disturbance is referred to as “second sound” by 
Chandrasekharaiah [7]. Ackerman et al. [8] and Acker- 
man and Overtone [9] proved experimentally for solid 
Helium that thermal waves (second sound) propagating 
with a finite, though quite large speed also exit. Guyer 
and Krumhansl [10] studied the second sound effect in 
solid Helium analytically. The recent and relevant theo- 
retical development on this subject are due to Green and 
Nagdhi [11-13], which provide sufficient basic modifica- 
tion in the constitutive equations that permit treatment of 
a much wider class of heat flow problem. 

Harinath [14,15] considered the problem of surface 
point and line source over a homogeneous isotropic gen- 
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eralized thermoelastic halfspace. Majhi [16] introduced a 
potential function and applied the LS theory to study the 
transient thermal response of a semi-infinite piezoelectric 
rod subjected to a local heat source along the length di- 
rection. The physical laws for the thermo-piezoelectric 
materials have been explored by Nowacki [17,18]. 
Chandrasekhariah [19,20] developed the generalized 
theory of thermo-piezoelectricity by taking in account 
the finite speed of propagation of thermal disturbances. 
Honig and Dhaliwal [21], solved a boundary value prob- 
lem of an isotropic elastic halfspace with its plane boun-
dary either rigidly fixed or stress free and subjected to 
sudden temperature increase. Nirula and Noda [22,23] 
treated the problems of crack breaking at the surface of 
piezothermoelastic semi-infinite body and a strip under 
steady thermal load. Sharma and Kumar [24] investi- 
gated the plane strain problems of transversely isotropic 
thermoelastic medium by employing an eigenvalue ap- 
proach after applying the technique of Laplace and Fou- 
rier transform. Sharma et al. [25] studied the distur- 
bances in the piezothermoelastic halfspace due to peri- 
odic strip thermal sources acting on its surface. The 
model of two dimensional equations of generalized 
magneto-thermoelasticity in a perfectly conducting me- 
dium has been established by Aouadi [26]. 

The present paper deals with the distribution of tem- 
perature change, stresses and electric potential in a gen- 
eralized piezo-thermoelastic (6 mm class) material half- 
space due to impact and continuous strip thermal sources 
acting on its surface. A combination of the Laplace and 
Fourier integral transforms has been used to solve the 
problem in the transform domain. The results in the 
physical domain are attained with the help of a numerical 
technique for inverting the integral transforms [27]. The 
computer simulated results in respect of stresses; tem- 
perature change and electric potential have been pre- 
sented graphically for cadmium selenide (6 mm class) 
material. A comprehensive analysis and comparison of 
results in various theories has been presented. 
 
2. Formulation of the Problem 
 
We consider a homogeneous, transversely isotropic, 
thermally conducting generalized piezothermoelastic 
halfspace which is initially at uniform temperature 0T . 
We take z  axis along the poling direction and also as 
sume that the medium is transversely isotropic in the 
sense that the planes of isotropy are perpendicular to the 
z  axis. We take origin of the co-ordinate system 
 , ,x y z  at any point on the plane surface and z  axis 
pointing vertically downward into the halfspace, which is 
thus represented by 0z  . It is assumed that an im- 
pact/continuous strip thermal source is acting at the rig- 

idly fixed surface  0z   of the medium as shown in 
the Figure 1. From the symmetry consideration all the 
field quantities are independent of y  coordinate. We 
further assume that the field quantities vanish as  

 
1

2 2 2x z  . Let    , , ,0,u x z t u w


  , ,T x z t   

and  , ,x z t  respectively, denote displacement vector, 
temperature change and electric potential in the consid- 
ered solid. The non-dimensional basic governing field 
equations and constitutive relations for a homogeneous, 
transversely isotropic piezothermoelastic solid halfspace; 
in the absence of charge density, heat sources and body 
forces, are given by Sharma and Walia [28]. 
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   (4) 

     3 2 1 2 1 2, , ,x x x z x ku c c w e e T t T           (5) 

   3 2 1 1 1, , ,zz x z z kc c u c w T t T             (6) 

 2 2, , ,xz z x xc u w e               (7) 

   1 2 3 1 1 1, , ,z x z z kD e e u w p T t T            (8) 

zD  and  are the electrical displacement and electric 
potential, respectively. The superposed dot denotes time  

 

 

Figure 1. Geometry of the problem. 
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derivatives and coma notation is used for spatial deriva- 
tives.  

Where we have defined and used the quantities 
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 (9) 

The primes have been suppressed for convenience. 
Here 1 , 3  and 11K , 33K  are respectively, the co- 
efficients of linear thermal expansion and thermal con- 
ductivity, in the direction orthogonal to the axis of sym- 
metry and along the axis of symmetry;   and eC  are 
the mass density and specific heat at constant strain, re- 
spectively;   is the thermoelastic coupling constant; 

*  is the characteristic frequency of the medium; p  
is piezothermoelastic coupling constant; ijc  are elastic 
parameters; ije  are piezoelectric constants; 11 , 33  
are the electric permittivities perpendicular and along the 
axis of symmetry; 3p  is pyroelectric constant in 
z  direction;  ,ij ij zz xx   and zD  are respectively 
denote stresses and electrical displacement; 0t , 1t  are 
the thermal relaxation time parameters and pv  is the 
longitudinal wave velocity in the medium. The symbol 

ik   1,2i   is Kronecker’s delta in which 1k   cor- 
responds to the Lord-Shulman (LS) and 2k   refers to 
the Green-Lindsay (GL) theories of thermoelasticity. The 
thermal relaxation time parameters 0t  and 1t  satisfy 
the inequalities 

0 1 0t t                  (10) 

in case of GL theory only. However, it has been proved 
by Strunin [29] that the Inequalities (10) are not neces- 
sary to be satisfied.  
 
3. Initial, Regularity and Boundary 

Conditions 
 
The following initial and regularity conditions are as- 

sumed to be satisfied: 

 
1

2 2 2

0 , 0 , 0 ,

for 0, ,

0, 0, 0, 0,

for 0 and

u u w w T T

t z o x

u w T
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

     

   
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   
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      (11) 

In addition to above boundary conditions, the surface 
 0z   of the piezothermoelastic solid is subjected to 
time dependant strip thermal sources (impact or con- 
tinuous) in the region x a  and assumed to be rigidly 
fixed and charge free (open circuit). Therefore, the cor- 
responding boundary conditions are given as 

Rigidly fixed and open circuit: 

     ,0, 0 ,0, , ,0, 0

for all and .
zu x t w x t D x t

x t

  
    (12.1) 

Temperature input (TI): 

   
0

,
,0,

0,

f t for x a
T x t

for x a
     

      (12.2) 

Temperature gradient (TG): 

   
0

,
, ,0,

0,z

f t for x a
T x t

for x a

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     (12.3) 

where 
p

a a
v

 
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 
, 0

0
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    and 0

0
0T

 


 

  , the prime  

has been suppressed. Here the function  f t  is a well 
behaved function of time and is defined as 

   
 

,

,

t for impact load
f t

H t for continuous load

 


 

where  H t  is a Heaviside unit step function,  t  
denotes the Dirac delta function.  
 
4. Solution of the Problem 
 
In order to solve the problem we apply Laplace trans- 
form with respect to time ‘t’ and Fourier transform with 
respect to x defined by Churchill [30] 

   
0

, , , , ptf x z p f x z t e dt


          (13) 

   ˆ , , , , iqxf q z p f x z p e dx






         (14) 

Upon operating Transformations (13) and (14) on the 
system of Equations (1) to (4), we obtain 
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 2 2 2
2 3 1 1

ˆ ˆˆ ˆ 0q c D p u iqc Dw i e qD iqp T        (15) 
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where  1
0 0p t   ,  1

1 1 2kp t   ,  1
0 1 0kp t    , 

d
D

dz
  

The above coupled system of ordinary differential 
Equations (15-18) upon retaining that part of the solu- 
tion which satisfies the radiation condition  Re 0jr   
(j = 1, 2, 3, 4) leads to the following formal transformed 
solution 

     
4
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ˆˆˆ ˆ, , , 1, , , expj j j j j
j

u w T V W S B r z


     (19) 

where jV , jW  and  1,2,3,4jS j   are the amplitude 
ratios, obtained as  
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and the characteristic roots  2 1, 2,3,4jr j   are given 
by the relations 
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Here the quantities F,  , 1, 2,3i ia A i   and  jM r , 
  1, 2,3; 1,2,3, 4i jM r i j   are defined in the Ap- 

pendix. Upon using Solution (19) in the Equations (5-8), 
the transformed stresses ˆ ˆ ˆ, ,zz xz xx    and electric dis-
placement  ˆ

ZD  are obtained as 

     
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where 
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  (23) 

Upon applying integral transforms (13) and (14) to the 
boundary conditions (12) and using the Solution (22), we 
obtain a nonhomogeneous system of linear algebraic 
equations in the unknowns  1, 2,3,4jB j   for each 
set of conditions, TI or TG. 

After solving the above system of equations we obtain 

   

0

1
,ˆ2 1 sin

1
,
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j
j
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f p qa

B
q
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
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
 

    (24) 

where  
1 ,

ˆ 1
,

impact load

f p
continuous load

p




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   
 
       
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      

  

        

(25) 

and 2 3 4, ,    can be written from 1  by replacing 
the permutation of suffixes (2, 3, 4) in jV  and 4 jD  
with (1, 3, 4), (1, 2, 4) and (1, 2, 3) respectively.  

Thus the transformed solutions of various field func- 
tions such as displacements, temperature change, stresses, 
electric potential and electric displacement can be ob- 
tained from Equations (19) and (22) upon solving the 
values of  1, 2,3,4jB j   from Equation (24) in case 
of thermal loads (TI/TG) under the considered electrical 
and mechanical conditions prevailing at the surface of 
the halfspace. 
 
5. Inversion of the Transforms 
 
Due to the existence of damping term in Equations (1-4) 
the dependence of characteristic roots jr  1,2,3, 4j   
on the integral transform parameters p  and q  is 
complicated. Hence analytically inversion of integral 
transform is difficult and cumbersome because the isola- 
tion of p  and q is not easily possible. This difficulty, 
however, can be overcome if we use some approximate 
or numerical methods. Therefore, in order to obtain the 
solution of the instant problem in the physical domain, 
we invert the integral transforms in Equations (19) and 
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(22) by using a numerical technique [27] outlined below. 
The expressions for various transformed field func- 

tions can formally be expressed as a function of z , p  
and q  of the form  ˆ , ,f q z p . Upon inverting the 
Fourier transform, we get 

     

    0
0

1 ˆ, , , , exp
2
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 




  (26) 

where ˆ
ef  and ˆ

of  respectively, denote the even and 
odd parts of the function  ˆ , ,f q z p  with respect to q . 
For fixed values of q , x  and z , the function inside 
the braces in Equation (26) can be considered as a Lap-
lace transform  h p  of some function  h t . Us- ing 
the inversion formula for Laplace transform [31] pro-
vides 
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i
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i
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

 

 

        (27) 

where   is an arbitrary real number greater than the 
real parts of the singularities of  h p . Taking 
p iy  , the above Integral (27) takes the form 
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Expanding the function      expg t h t t   in Fou- 
rier series in the interval  0, 2l , the approximate For- 
mula (28) becomes 

  0

1

, 0 2
2 k d

k

F
h t F E t l





            (29) 

where  
 exp

Re expk

t ik ik t
F h

l l l

           
    

   (30) 

dE  is the discretisation error which can be made arbi- 
trarily small by choosing   large enough. Since the 
infinite series in Equation (29) can be summed up to a 
finite number (N) of terms, the approximate value of h (t) 
becomes 

  0

1

, 0 2
2

N

N k
k

F
h t F t l



            (31) 

While using Formula (31) to evaluate  h t , we also 
introduce a truncation error TE  that must be added to 
the discretisation error to produce the total approxima- 
tion error. In order to accelerate the process of conver- 
gence of the solution, the “Korrecktur” method is used to 
reduce the discretisation error and the   algorithm is 
employed to reduce the truncation error. The Korrecktur 
formula provides us 

       2 exp 2 dh t h t h l t l E        

where d dE E   and   0

02 k
k

F
h t F






  . Thus, the  

approximate value of  h t  becomes 

       2 exp 2
kN N Nh t h t h l t l       (32) 

where N   is an integer such that N N  . We shall 
now describe the   algorithm that is used to accelerate 
the convergence of the series in Equation (31). Let N be  

an odd natural number and let 
1

m

m k
k

S F


   be the se-  

quence of partial sums of Equation (31). We define the 
  sequence by 

0, 0m  , 1,m mS  , 1, 1, 1
, 1 ,

1
n m n m

n m n m

 
   



 


; 

, 1, 2,3,n m    

It can be shown that the sequence 1,1 3,1 5,1 ,1, , , n      

converges to   0

2d

F
h t E   faster than the sequence of  

partial sums mS  (m = 1, 2, 3, ). The actual procedure 
used to invert the Laplace transforms consists of using 
Equation (29) together with the  -algorithm. The values 
of   and l  are chosen according to the criteria out- 
lined by Honig and Hirdes [32]. 

The last step in the inversion process is to evaluate the 
Integral (26). According to Bradie [33], the various qua-
drature formulae such as Newton-Cotes, Romberg and 
Gaussian quadrature etc. can be used to approximate the 
value of an improper integral, provided the integral exists. 
However, some change of variable generally must be 
made to achieve theoretical order of convergence, if re-
quired. Here the evaluation of Integral (26) has been 
done by using Romberg integration with adaptive step 
size, which uses the results from successive refinements 
of the extended trapezoidal rule followed by extrapola- 
tion of the results to the limit when the step size tends to 
zero. The details can be found in Press et al. [34]. 
 
6. Numerical Results and Discussion 
 
In order to illustrate and compare the theoretical results 
obtained in the previous sections, in the context of LS, 
GL and CT theories of thermoelasticity, we now present 
some numerical results. The material for the purpose of 
numerical calculations is taken as cadmium selenide 
(CdSe) having hexagonal symmetry (6 mm class) and 
belongs to the class of transversely isotropic material. 
The physical data for a single crystal of CdSe material is 
given below [28]. 
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10 2
11 7.41 10c Nm  , 10 2

12 4.52 10c Nm  , 
10 2

13 3.93 10c Nm  , 10 2
33 8.36 10c Nm  , 

10 2
44 1.32 10c Nm  , 6 1 2

1 0.621 10 NK m    , 
6 1 2

3 0.551 10 NK m    , 2
13 0.160e Cm  , 

2
33 0.347e Cm , 2

51 0.138e Cm  , 
11 2 1 2

11 8.26 10 C N m     , 11 2 1 2
33 9.03 10 C N m     , 

1 1260eC J kg K  , 6 1 2
3 2.94 10p CK m     , 

10 24.48 10rY Nm  , 6 14.4 10r K    , 
12 1

1 3.92 10 CN    , 1 1
1 3 9K K Wm K   , 

0 298T K , 35504 Kg m  , 0 0.5t  , 1 0.3t  , 

1a  , 1 0.3t   

The value of thermal relaxation time parameter  0t  

has been estimated from the relation 0 2
11

3

e

K
t

C c
 , see  

Chandrasekharaiah [7]. We have taken 0 1    for 
computation purpose. The computations are carried out 
for single value of time  0.25t   at 0.5z  . The 
complex characteristic equation formed by the Relations 
(21), being, in general of the form  , , 0G r p q  , can 
be solved for ‘r’ with the help of DesCartes procedure 
[27] along with irreducible case of Cardano’s method for 
fixed values of p and q. These are used to obtain tem- 
perature change (T), normal stress  zz , shear stress 
 xz  and electric potential    in the relevant rela- 
tions. The numerical technique outlined in the section 5 
has been used to invert the Laplace and Fourier trans- 
forms. A FORTRAN code is developed and executed to 
compute various considered field functions due to two 
different types of strip thermal loads namely, tempera- 
ture input (TI) and temperature gradient (TG) acting at 
the rigidly fixed, open circuit (OC) boundary of the pie- 
zothermoelastic halfspace. These computer simulated 
quantities are plotted in the Figures 2 to 9. The curves 
without ball, with solid ball and hollow ball correspond 
to LS, GL and CT theories of thermoelasticity, respect- 
tively. The variations of temperature change (T), normal 
stress  zz , shear stress  xz , and electric potential 
   with respect to epicentral distance ( )x  due to strip 
of impact or continuous temperature input (TI) has been 
presented in the Figures 2 to 5 and due to temperature 
gradient (TG) in the Figures 6 to 9 on linear scales in the 
context of LS, CT and GL theories of thermoelasticity. 

Figure 2 reveals that the profiles of temperature 
change  T  due to continuous or impact temperature 
input (TI) have maximum value in the vicinity of the 
load. The temperature change start decreasing with in- 
creasing epicentral distance and ultimately die out at 
certain values of epicentral distance  x , which ascertain  

 

Figure 2. Variation of temperature change with epicentral 
distance due to continuous and impact temperature input. 
 

 

Figure 3. Variation of normal stress with epicentral dis- 
tance due to continuous and impact temperature input. 
 

 

Figure 4. Variation of shear stress with epicentral distance 
due to continuous and impact temperature input. 
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Figure 5. Variation of electric potential with epicentral dis- 
tance due to continuous and impact temperature input. 
 

 

Figure 6. Variation of temperature change with epicentral 
distance due to continuous and impact temperature gradient. 
 

 

Figure 7. Variation of normal stress with epicentral dis- 
tance due to continuous and impact temperature gradient. 

 

Figure 8. Variation of shear stress with epicentral distance 
due to continuous and impact temperature gradient. 
 

 

Figure 9. Variation of electrical potential with epicentral 
distance due to continuous and impact temperature gradient. 
 
the existence of wave-front and finite speed of heat 
propagation. It is also revealed that the magnitude of 
temperature change  T  due to impact TI is signify- 
cantly large as compared to that for continuous one. The 
various curves are quite distinguishable due to significant 
effect of thermal relaxation time. It is also observed that 
temperature change has a non-zero value only in a par- 
ticular region of the halfspace and outside that region its 
values almost vanish identically which means that no 
thermal disturbance can be felt outside that particular 
region. On comparing the results of temperature change 
for three different theories of thermo- elasticity, it is ob- 
served that CT LS GLT T T   for both impact and con- 
tinuous load. 

It is observed from Figure 3 that magnitude of normal 
stress  zz  increases initially, attains maximum value 
and then decreases slowly to ultimately become asymp- 
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totically close to zero for 4.0x  , which again con- 
forms the existence of wave fronts. This phenomenon is 
attributed to compression and expansion of the molecules 
of the solid due to application of the load. Initially, the 
internal friction due to application of temperature input 
at OC boundary increases which results in increase in the 
magnitude of normal stress followed by a rapid decay in 
the magnitude of normal stress due to decrease of inter- 
nal friction. It is also observed that profiles of normal 
stress  zz  are clearly distinguishable due to signify- 
cant effect of thermal relaxation times. The normal stress 
for three different theories of thermo- elasticity follows 
the trend  GL CT LS

zz zz zz     for both impact and con- 
tinuous load. 

Figure 4 shows the variation of shear stress  xz  
with epicentral distance  x  in the context of GL, LS 
and CT theories of thermoelasticity. It is observed that 
shear stress  xz  devolvement due to continuous TI is 
comparatively small to that of impact temperature input 
(TI). The amplitude of vibrations gets suppressed due to 
increase in the internal friction among the molecules of 
the solid as we move away from vicinity of the load. 
Shear stress  xz  dies out in an oscillating fashion as 
we move away from vicinity of the load. However, the 
shear stress devolvement is very small as compared to 
the vertical stress  zz  which is consistent with the 
boundary conditions. Shear stress shows the trend 
 GL CT LS

xz xz xz     for 0 1.5x   in case of con- 
tinuous load. 

Figure 5 represents the variations of electric potential 
   with epicentral distance  x  due continuous or 
impact temperature input (TI) acting on the OC boundary 
of the halfspace. Its magnitude is noticed to be signify- 
cantly large near the source and decreases as we move 
away from the vicinity of the source. The magnitude of 
electric potential    is significantly small for con- 
tinuous TI as compared to that produced by the action of 
impact TI on the surface of the considered solid. The 
effect of thermal relaxation time is quite significant as 
the profiles are distinguishable with each other. And the 
magnitude of electric potential follows the trend 
 CT LS GL     in case of continuous load. 

Figure 6 shows the variation of absolute temperature 
change  T  in the context of GL, LS and CT theories 
of thermoelasticity shows that GL LS CTT T T  due to the 
application of continuous/impact TG load applied at the 
boundary. Behavior of the profiles is noticed to be al- 
most similar as that in Figure 3 with the exception that 
its magnitude is quite small in case of TG loading. The 
magnitude of temperature change  T  decreases with 
epicentral distance and observes oscillating behavior to 
vanish at certain value of epicentral distance  4.0x  . 
Oscillating behavior of the temperature change is attrib- 

uted to compression and expansion of the molecules of 
the solid due to application of the TG load. The effect of 
thermal relaxation time is also significant and it results in 
the decreasing magnitude of temperature change. Figure 
7 shows that the profiles of normal stress  zz  in the 
context of GL, LS and CT theories of thermoelasticity 
are quite distinguishable due to the effect of thermal re- 
laxation time and follow the trend  CT LS GL

zz zz zz     
for continuous load. Initially, the magnitude of normal 
stress increases in the domain 0 1.0x   to achieve 
maximum value at 1.0x   because of less internal fric- 
tion among the molecules of the solid in this range. After 
that it starts decreasing due to increase in the internal 
friction of the molecules of the solid and finally dies out 
oscillating behavior to die out at certain value of epicene- 
tral distance  4.0x   due to compression and expan- 
sion of the molecules. 

Figure 8 shows that shear stress  xz  follows the 
oscillatory behavior with varying amplitude in the con- 
text of GL, LS and CT theories of thermoelasticity due to 
continuous/impact temperature gradient (TG) applied on 
rigidly fixed and OC boundary. Shear stress shows the 
trend  CT LS GL

xz xz xz     for 0 1.0x   and 
 GL LS CT

xz xz xz     for 1.0 2.0x   in case of con- 
tinuous load. The effect of thermal relaxation time is also 
quite pertinent on the shear stress. The shear stress has 
maximum magnitude near the vicinity of the load which 
decreases and ultimately dies out in an oscillating fash- 
ion with increasing epicentral distance  x . The shear 
stress development is very small as compared to the 
normal stress. It means that most of the thermal energy is 
carried in the form of vertical stress waves and meager 
amount propagate in the form of shear stress, which is 
consistent with the boundary conditions. Figure 9 shows 
that plots the variation of electric potential    with 
epicentral distance  x  in context of GL, LS and CT 
theories of thermoelasticity due to strip continuous tem- 
perature gradient (TG) follows the trend  GL CT LS     
for 0 1.5x   and  LS CT GL     for 1.5 2.5x  . 
It is also observed that electric potential    develop- 
ment in case of TG input is less as compared to that of TI 
on the same surface. The effect of thermal relaxation 
time is significantly large because the various profiles of 
electric potential    are clearly distinguishable. 

The comparison of Figures 2-9 reveals that the mag- 
nitude of temperature change and electric potential inter- 
lace according as      , , ,

CT LS GL
T T T     in case 

of TI load and these trends get reversed for TG load with 
the exception that the variation of electric potential fol- 
lows the trend periodically in the latter case. The varia- 
tions of vertical and shear stresses follow the inequalities 
     , , ,zz xz zz xz zz xzGL CT LS
        for TI load and 
     , , ,zz xz zz xz zz xzCT LS GL
        for TG load 
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except that the inequalities get reversed for shear stress 
in the latter case. 
 
7. Concluding Remarks 
 
The present analysis and the used values of parameters 
lead to following conclusions: 

1) All the considered field parameters are noticed to be 
quite large near the vicinity of thermal sources and de- 
crease with increasing epicentral distance to ultimately 
vanish at certain value of epicentral distance under both 
types of impact or continuous thermal loads (TI/TG). 
This ascertained the existence of wave fronts and hence 
finite speed of heat propagation.  

2) The profiles of temperature change with epicentral 
distance show that this quantity has a non-zero value in 
certain region of the halfspace and almost identically 
zero outside that region. This means that no thermal dis- 
turbance is felt outside this particular region. Similar 
behavior is also noticed from the profiles of the other 
considered functions viz. stresses and electric displace- 
ment.  

3) Significant effect of thermal relaxation times has 
been observed on the profiles of various considered 
functions in the CdSe material because all the profiles of 
considered functions are quite distinguishable. Hence the 
results for all the considered field parameters show the 
difference between the three different theories of thermo- 
elasticity namely CT, LS and GL. 

4) It is also observed that the magnitude of all the field 
functions due to impact thermal loads are quite large as 
compared to that in case of continuous one almost at a 
particular epicentral distance. 

5) The shear stress development is very small as com- 
pared to the vertical stress for both types of thermal loads. 
It means that in addition to thermal wave, vertical stress 
wave carries the major portion of energy and meager 
amount propagate in the form of shear stress wave, 
which is consistent with the boundary conditions. 

6) The temperature change and electric potential in- 
terlace according to the inequalities  
     , , ,

CT LS GL
T T T     for TI load and these 

trends get reversed for TG load with periodic variations 
in case of electric potential in the latter case.  

7) The magnitudes of vertical and shear stresses obey 
the inequalities      , , ,zz xz zz xz zz xzGL CT LS

        
for TI load and      , , ,zz xz zz xz zz xzCT LS GL

        
for TG load with some variations in the magnitude of 
shear stress in the latter case. 
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Appendix 
 

The coefficients ia ,  1, 2,3iA i   in Equation (20) 
and  jM r ,  i jM r   1, 2,3; 1, 2,3, 4i j   in equa- 
tion (21) are obtained as 

 

 2 2 2 2
3 1 2 1 1 2 2 3 1

1
1

1 2 2l c c q c e c e c e q p
a

l

         

(A.1) 

 

   2 2 2 4 2 2 2
3 2 4 2 1 2 2 3 1 2 2 2 1

2
1

2 2l q l l c e c e c e e q q e l e p
a

l

                            (A.2) 

 2 2 2
2 4 2

3
1

q l l e q
a

l

 
                                  (A.3) 

   2 2 2 2 2 2
1 3 1 2 2 2 3 1 1 1

1
1

2 2E L C C q EC e C E e e C E q E p
A

L

                           (A.4) 

    2 2 2 4 2 2 2
3 1 2 4 1 2 2 2 3 1 2 2 2 1

2
1

2 2q L E L L e C e C C e e q Ee L e p q
A

L

                       (A.5) 

2 2 2
2 2 4

3
1

q L e q L
A

L

                                     (A.6) 

 
  

 

2
3 4 1 5 2 3 1 24 2

3 1 1 2 3 2
1 1 31
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                 
 
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Nomenclature 
 
  = Mass density   

eC  = Specific heat at constant strain 
  = Thermoelastic coupling constant 

*  = Characteristic frequency 

p  = Piezothermoelastic coupling constant 

11K  = Thermal conductivity along orthogonal to the axis 
of symmetry 

33K  = Thermal conductivity along the axis of symmetry 

ijc  = Elastic parameters 

ije  = Piezoelectric constants  

11  = Electric permittivity perpendicular to the axis of 

symmetry 

33  = Electric permittivity along the axis of symmetry 

3p  = Pyroelectric constant  
,zz xx   = Stresses  

zD  = Electrical displacement 
 , ,x z t  = Electric potential 
 , ,T x z t  = Temperature change  

i k  = Kronecker’s delta 

11
p

c
v


 , Longitudinal wave velocity in the medium  

   , , ,0,u x z t u w


, Displacement vector 

 


