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ABSTRACT 

Multicollinearity constitutes shared variation among predictors that inflates standard errors of regression coefficients. 
Several years ago, it was proven that the common practice of mean centering in moderated regression cannot alleviate 
multicollinearity among variables comprising an interaction, but merely masks it. Residual centering (orthogonalizing) 
is unacceptable because it biases parameters for predictors from which the interaction derives, thus precluding interpre- 
tation of moderator effects. I propose and validate residual centering in sequential re-estimations of a moderated regres- 
sion—sequential residual centering (SRC)—by revealing unbiased multicollinearity conditioning across the interaction 
and its related terms. Across simulations, SRC reduces variance inflation factors (VIF) regardless of distribution shape 
or pattern of regression coefficients across predictors. For any predictor, the reduced VIF is used to derive a lower 
standard error of its regression coefficient. A cancer sample illustrates SRC, which allows unbiased interpretations of 
symptom clusters. SRC can be applied efficiently to alleviate multicollinearity after data collection and shows promise 
for advancing synergistic frontiers of research. 
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1. Introduction 

Low sensitivity in quadratic and moderated multiple re- 
gression (QMMR) analysis has challenged researchers 
ever since computer software to conduct regression be- 
came available in the 1960s. A major cause is multicol- 
linearity, or shared variation among predictors that in- 
flates standard errors of regression coefficients. Progress 
in overcoming this predicament suffered a setback sev- 
eral years ago when it was proven that the common prac- 
tice of mean centering in moderated regression cannot 
alleviate multicollinearity among variables comprising an 
interaction, but merely masks it. Residual centering (or- 
thogonalizing) is unacceptable because it biases coeffi- 
cients for predictors from which the interaction(s) derives, 
despite the non-biased coefficient for the highest-order 
polynomial interaction, thus precluding interpretation of 
moderator effects [1,2].  

In this article, I propose, derive, and validate the ap- 
plication of residual centering in sequential re-estima-  
tions of a moderated regression—sequential residual 
centering (SRC)—in order to obtain unbiased condition- 
ing of multicollinearity across the highest-order interact- 
tion and related terms. Across simulations (n = 250 and 
1000), SRC reduces variance inflation factors (VIF) re- 
gardless whether all random variables are normal, non- 
normal, or have similar- or different-shaped non-normal 
distributions, and regardless of the pattern of regression 
coefficients across the set of predictors. For any predic- 
tor, the reduced VIF is used to derive a lower standard 
error of its regression slope parameter. 

A sample of cancer symptoms (n = 268) illustrates 
SRC, which allows unbiased interpretations (direct and 
post hoc) of symptom clusters. SRC facilitates unbiased 
interpretations of 1) the nature (magnifier and/or buffer- 
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ing) of moderator effects; and 2) total net moderator ef- 
fects from an interaction term and its related lower-order 
polynomial terms using the standardized regression. In 
addition, the simulation and cancer sample demonstrate 
extensions to SRC that lower standard errors even further 
by conditioning predictors to be uncorrelated with quad- 
ratic terms or control/secondary variables—predictors 
from which the interaction term(s) are not strictly deriva- 
tive. SRC can be applied efficiently to alleviate multicol- 
linearity after data collection and allows unbiased detec- 
tion and interpretation of moderator effects. This innova- 
tion could advance synergistic frontiers of research and 
evaluation in biomarker and symptom cluster investiga- 
tions, other areas of medicine, and more broadly, across 
the sciences and social sciences. 

2. Background 

When original scores of uncentered variables are used in 
QMMR, estimates of slope coefficients for the one-way 
predictors of simple effects may appear inflated to the 
extent that these terms are correlated with higher-order 
predictors. Indeed, when these one-way predictors are 
normally distributed, mean centering (i.e., subtracting the 
mean value from each score) typically yields lower val- 
ues for parameter estimates of simple effects. For many 
years, mean centering was recommended to alleviate 
multicollinearity from the use of arbitrary ordinal meas- 
urement scales—referred to as “inessential ill-condi- 
tioning”—in order to prevent biased and inflated para- 
meter estimates, as long as the one-way terms that serve 
as components of higher-order terms are normally dis- 
tributed [3-5]. 

However, in the past decade, Echambadi and Hess [2] 
proved that mean centering cannot alleviate multicollin- 
earity in QMMR; the procedure merely masks the pres- 
ence of underlying multicollinearity, although as they 
point out, more than twenty-five years ago Belsley [6] 
revealed that mean centering is ineffective in alleviating 
multicollinearity in additive models. Deflated parameter 
estimates for simple effects occur because mean center- 
ing changes the actual specified model that is tested— 
parameter estimates shift from controlling remaining 
predictors when they are at the value of zero to when 
they are at their mean values. 

Common multicollinearity diagnostic tools such as 
bivariate correlations and variance inflation factor (VIF) 
values assess each predictor separately (and not the glo- 
bal set of predictors simultaneously). Therefore, when 
used alone, each tool cannot be taken to be fully sensitive 
to detect problematic multicollinearity in different con- 
texts [7]. Specificity is not an issue, however, since high 
VIF values always reveal situations of high multicollin- 
earity, even as other situations of high multicollinearity 
can occur without inflated VIF values [8]. When one- 

way predictors are normally distributed, mean-centered 
data usually mask the full extent of multicollinearity [6]. 
Therefore, the use of multiple diagnostic tools is recom- 
mended to assess multicollinearity in uncentered—and 
not mean-centered—data when one-way predictors are 
normally distributed, although this practice does not usu- 
ally resolve the serious dilemma about how to remedy 
problematic multicollinearity after the data have been 
collected [2]. 

2.1. Residual Centering (Orthogonalization) 

In contrast to mean centering, residual centering (i.e., 
orthogonalization) does alleviate multicollinearity, al- 
though as we shall see, only partially and by biasing es- 
timates of the slopes of lower-order predictors. Further- 
more, residual centering alleviates multicollinearity that 
stems from normal, non-normal, or asymmetric predictor 
distributions. Therefore, the quadratic or interaction term 
is fully independent from the one-way terms on which 
they are based [9].  

Lance [9] advanced the original procedure to estimate 
a QMMR by residually centering—orthogonalizing—the 
highest-order term(s). Here I specify a third-order poly- 
nomial regression testing the three-way interaction (wxz): 
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z
     (1) 

where b0 is the intercept and e is the residual. 
Then regression without a constant term is used to par- 

tial all one- and two-way terms from the three-way term, 
xwz: 

 1 2 3 7 8 9c c c c c c dxwz x w z xw xz wz xwz        (2) 

where d[xwz] is the residual. Equation (2) can be re-ex- 
pressed as: 

   1 2 3 7 8 9d c c c c c cxwz xwz x w z xw xz wz       (3) 

Substituting d[xwz] for xwz in Equation (1), I re-es- 
timate this raw regression as a residual centered regres- 
sion, factoring out the variance in xwz that is shared with 
one- and two-way predictors: 

 
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Finally, substituting Equation (3) into Equation (4), 
this residual centered regression is equivalent to: 
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z
      (5) 

Thus, the term in bold, b10xwz, is unchanged (i.e., non- 
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biased). Its standard error does not change either, as I 
show later, although its variance inflation factor (VIF) 
falls because inessential multicollinearity is alleviated. In 
contrast, the changes in all one- and two-way terms (such 
as the one-way simple effects in a QMMR testing a two- 
way interaction) represent systematic biases [1], which 
Lance [9] did not recognize in recommending the proce- 
dure. Instead, he attributed the changes in parameters of 
lower-order polynomial terms to improved estimation 
from reduced multicollinearity [2,9]. 

2.2. Biased Interpretations from Residual  
Centering 

In residual centering, only parameters for the highest- 
order polynomial term(s) are unbiased—lower-order 
polynomial terms (simple effects and any quadratic terms 
and interactions) now become biased. This situation pre- 
cludes post hoc assessment of the nature and strength of 
quadratic and moderator effects across the range of x 
since unbiased estimates for all of these terms are neces- 
sary in different approaches [3,5,10-13]. Similarly, direct 
interpretations (without these post hoc assessments) in 
residual centering are also biased.   

A common procedure provides a basis for comparing 
two types of direct interpretations. In the case of the sim- 
plest moderated regression equation specifying only a 
two-way interaction, some researchers directly interpret 
the degree to which the residually centered interaction 
term moderates the primary x-y relationship, based on the 
signed coefficient rule—a comparison of the signs of the 
coefficients for the x term and the interaction term ([9]; 
for applications, see [14-17]). For instance, a decreasing 
primary x-y relationship that is lowered further reveals a 
magnifier effect, but if the primary relationship were 
increasing, lowering it would instead represent a buffer- 
ing effect. This direct interpretation is possible because 
the residually centered two-way interaction term is fully 
independent of the one-way terms from which it derives 
[9]. The rule may be used in unstandardized or standard- 
ized regression. Unfortunately, the signed coefficient rule 
is not always reliable to yield correct interpretations of 
the moderator effect, depending on the coding scheme 
for the moderator variable. This dilemma occurs when 
different participant subgroups revealed by the interac- 
tion term are correlated with the y variable but in the op- 
posite direction, as Aguinis [18] demonstrated using a 
binary moderator variable coded as 0 and 1.  

The direct interpretation using the signed coefficient 
rule reveals the unique net moderator effect contributed 
by the interaction term, which should not be confused 
with the total net moderator effect, a summation of stan- 
dardized predictors based on the interaction term and all 
lower-order polynomial terms (interactions and one-way 
terms). Indeed, as the current study will show, it is possi- 

ble for the unique and total net moderator effects to have 
different signs—a situation which could signal a similar 
type of unreliability in the signed coefficient rule for in- 
terpreting the unique net moderator effect when the low- 
est score of ordinal moderator variable(s) is coded as 0. 
In any event, the total net moderator effect, which does 
not suffer from this dilemma, is based on the interaction 
term and—except for the x term—all lower-order poly- 
nomial terms (interactions and one-way terms). For this 
type of direct interpretation to be commensurate with 
post hoc procedures for interpreting moderator effects, 
which necessarily involve the highest-order interaction 
term and all lower-order polynomial terms (interactions 
and one-way terms), the sign of the standardized coeffi- 
cient for the x term needs to be compared to the sign of 
the total net moderator effect, which is the sign from the 
sum of the standardized coefficients for the interaction 
and all derivative terms (except x). This reliable adapta- 
tion to the signed coefficient rule will be used in the cur- 
rent study, which will validate an innovative approach to 
residual centering that avoids bias. 

Standardized predictors may facilitate direct interpret- 
tation. Lance [9] illustrates a two-way interaction model 
in which the one-way predictors that serve as compo- 
nents of the two-way interaction are standardized. Lance 
used these standardizations to create a correlation ma- 
trix of predictors with near-zero cross-correlations show- 
ing that residual centering results in complete orthogo- 
nalization (which is necessarily the case even when these 
same predictors are unstandardized). Thus, a product or 
powered term and its zero-order component terms are 
fully independent and yield separate, non-overlapping 
estimates for interaction, quadratic, and main effects. 
(Standardization, it should be noted, transforms one-way 
variables to become mean-centered, such that simple ef- 
fects become main effects.) Standardization allows pre- 
dictors to be compared to identify those with stronger 
effects1, although when non-arbitrary scaling metrics are 
used, only unstandardized estimates should be conducted, 
as Lance [9] recommends.  

1When predictors are arbitrarily scaled, Lance [9] recommended re-
standardizing the residually centered interaction, prior to its use in the 
final QMMR so that it will have a mean of zero and standard deviation 
of one, as do the related one-way standardized terms on which the 
interaction is based. However, as discussed later in the main text, the 
standardized interaction term is based on the product of the standard-
ized one-way variable components from which it derives; other re-
searchers do not recommend re-standardization [11,19]. Despite that 
the standardized interaction term does not typically have a mean of 
zero and standard deviation of one, it remains standardized in terms of 
its one-way components. As such, its standard slope coefficient may be 
compared to the remaining standard slope coefficients in order to iden-
tify the strongest predictors, or as discussed later in the main text, it 
may be added to related standard slope coefficients of lower-order 
polynomial terms to assess total direct effects using the signed coeffi-
cient rule. Therefore, I do not recommend re-standardizing the residu-
ally centered interaction since it would yield a biased estimate for the 
standard slope coefficient of the interaction. 
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Unfortunately, advantages afforded by standardization 
are insufficient—despite orthogonalization, residual cen- 
tering introduces systematic bias into the parameter esti- 
mate, which may lead to an incorrect direct interpreta- 
tion. Systematic bias in the x coefficient from a two-way 
model can change its sign or whether it is statistically 
significant, prompting wrong conclusions about the na- 
ture of the moderator effect. Moreover, distinctions be- 
tween full moderation (i.e., both x and the interaction 
term are statistically significant) and partial moderation 
(i.e., only the interaction term is significant) [20] may be 
noted incorrectly in two- and three-way models. 

3. Methods 

Improvements to the method of residual centering will be 
developed to eliminate various biases, including biases in 
regression parameters of lower-order polynomial terms, 
introduced when the original residual centering proce- 
dure [9] is applied. The subsequent sections explain the 
improved procedure as well as the simulations and clini- 
cal data to validate and demonstrate it. 

3.1. Sequential Residual Centering (SRC) 

I developed the sequential application of residual center- 
ing, or sequential residual centering (SRC), to remove 
systematic biases in regression parameters of lower-order 
polynomial terms during a study of cancer symptom 
clusters [21]. A QMMR equation with a three-way term 
is estimated using residual centering, as described earlier. 
The QMMR is then re-estimated by residually centering 
only the two-way terms. In a subsequent re-estimation, 
only the one-way (simple effect) terms are residually 
centered. In each re-estimation, the residual centered 
terms partial out not only the lower-order polynomial 
terms, but also all derivative higher-order polynomial 
term(s), in order to be consistent with terms that were 
factored from the original raw regression and any prior 
re-estimations.   

For instance, non-biased estimates of the two-way 
terms from (1) are derived in residualizing regressions: 

2
1f d 2x x x                     (6) 

2
1g dw w w2                    (7) 

2
1h dz z z2                     (8) 

 1 2 3i i i dxw x w xwz xw              (9) 

 1 2 3j j j dxz x z xwz xz             (10) 

 1 2 3k k k dwz w z xwz wz             (11) 

Although Equations (9)-(11) residually center the two- 
way interaction terms, it may not be clear why the three- 
way interaction term, xwz, is also a predictor in each of 

these equations. These specifications partial out the ines- 
sential multicollinearity this three-way interaction term 
shares with each two-way interaction term that is being 
residually centered. Otherwise, inessential multicollin- 
earity within the overall SRC regression (to be derived 
next) would remain between each residual centered two- 
way interaction term and this three-way interaction term. 
Thus, the specification of this three-way interaction in 
Equations (9)-(11) will result in non-biased regression 
slopes (b) for all residual centered, two-way interaction 
terms within the overall SRC regression—which also 
includes xwz—represented by Equations (12) and (13) 
below. 

As before, Equations (6) through (11) can be re-ex- 
pressed to derive d[x2], d[w2], d[z2], d[xw], d[xz], and 
d[wz], which substitute in Equation (1). I re-estimate this 
raw regression as an SRC regression, factoring out the 
variance in these two-way terms that are shared with the 
remaining terms: 
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(12) 

Finally, substituting Equations (6) through (11) into 
(12), this QMMR with residually centered first-order 
(two-way) terms is equivalent to: 
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(13) 

Again, all six two-way terms (in bold) are unchanged 
(i.e., non-biased). This result is expected because multi- 
collinearity does not bias estimates of regression slope 
parameters (unless it is extremely high) even as it inflates 
standard errors [22]. Therefore, SRC is expected to yield 
b estimates that are identical to those derived from the 
raw regression in Equation (1). A similar set of deriva- 
tions results in unchanged (i.e., non-biased) estimates for 
all three one-way terms (i.e., x, w, z). 

If the three-way interaction term was not also specified 
in Equations (9)-(11), the regression slope parameter 
estimates in Equations (12) and (13) for the two-way 
interaction terms—i.e., b7, b8, and b9—would shift as a 
result of this specification bias. As before, the standard 
errors for these regression slope parameters also do not 
change, and their VIF values fall because inessential 
multicollinearity is alleviated. Towards the end of this 
section, I will use these reduced VIF values to derive the 
“essential” portion of each standard error estimate that 
is not inflated by “inessential” multicollinearity. The low- 
er values of these essential standard errors (ESE) will be 
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used in place of the corresponding inflated standard errors. 
SRC conditions out the inessential multicollinearity 

among the highest-order interaction and each of the suc- 
cessively lower-order polynomial terms—for instance, in 
Equations (5) and (13). This multicollinearity should be 
expected and constitutes “inessential ill-conditioning” 
due to the inclusion of overlapping terms that tap overall 
effects and derivative subgroup effects. In the absence of 
SRC—for instance, in the raw regression [Equation 
(1)]—inessential ill-conditioning results in inflated vari- 
ance inflation factors (VIF). 

The remaining multicollinearity in SRC regressions, 
such as Equations (5) and (13), occur among predictor 
terms either of the same polynomial order (e.g., among 
the two-way terms) or across orders (across the one-, 
two-, and three-way terms) that do not involve one-way 
terms for the component variables of the interaction(s) or 
their derivative higher-order term(s). This multicollinear- 
ity constitutes “essential ill-conditioning” due to predic- 
tor terms that overlap not as a result of the modeling ar- 
tifact of including necessarily related terms of different 
orders, but that overlap across altogether different vari- 
ables within the same polynomial order, or across orders, 
of predictor terms. For instance, the quadratic terms (x2, 
w2, and z2) are not derivative terms of any of the two- or 
three-way interactions involving x, w, and/or z as com- 
ponents. If control or secondary predictors were specified, 
multicollinearity related to these terms would also con- 
stitute essential ill-conditioning. Thus, this remaining 
“essential” multicollinearity within the VIF—the VIF from 
Essential Ill-Conditioning, or Essential VIF (EVIF)—is 
real and not a modeling artifact. Compared to the VIF, 
EVIF provides a better and more reliable indication as to 
whether the remaining essential ill-conditioning consti- 
tutes a level of multicollinearity that may undermine the 
validity of parameter and standard error estimates.   

Each one-way term, quadratic term, and interaction 
term includes variation that is: 1) shared with lower- and 
higher-order polynomial terms based on the same com- 
ponent variables [inessential ill-conditioning—Equations 
(2) and (6) through (11), for instance, partial it out]; 2) 
shared with non-derivative quadratic terms and any re- 
maining predictors that involve different variables [es- 
sential ill-conditioning]; and 3) unique only to that term. 
Since a derivative term, by definition, incorporates 
shared variation with lower-order terms upon which it is 
based, and with higher-order terms to which it contrib- 
utes as a component, this shared portion of overall vari- 
ance (i.e., inessential ill-conditioning) should not be in- 
cluded in estimating the standard error of the b parameter 
for this derivative term. Even if an interaction term or 
other predictor shares most of its variation with its re- 
lated lower- and/or higher-order terms, the contribution  

of the unique variation from this term in estimating the 
standard error of its b parameter should not be distorted 
by data reflecting its shared variation with related terms. 

In the final step, I return to the raw regression to con- 
dition away inessential ill-conditioning from each pre- 
dictor or interaction term—that is, the portion of shared 
variation with related terms that serves to inflate the 
standard error. The EVIF values from the series of SRC 
regressions, including Equations (5) and (13), are applied 
within the raw regression [Equation (1)] to determine the 
essential standard error (ESE) for each b parameter—i.e., 
the estimated standard error in the raw regression which 
is influenced by essential ill-conditioning but not by in- 
essential ill-conditioning. For any predictor or interaction 
term (e.g., xw), the variance of the b parameter estimate 
is related to the VIF as shown by Shieh [23]: 

   
   

2 2

2 2

V b VIF S

S VIF c VIF ,

xw xw

xw

xw

xw x

    
       w

   (14) 

where σ2 is the variance of the regression residual term 
and 2Sxw  is the sum of the squared mean-centered values 
for xw. In place of software output for σ2 and 2Sxw , the 
value for c can be calculated directly using the raw re- 
gression output for V(bxw) and VIF(xw), as follows: c = 
V(bxw)/VIF(xw). 

Then, replacing VIF(xw) in (14) with the EVIF value 
for bxw from the SRC regression (13), while retaining the 
value for c, yields the Essential V(bxw): Essential V(bxw) 
= c  EVIF(xw). 

Taking the square root of the Essential V(bxw) yields 
the Essential Standard Error (ESE) of the bxw parameter. 
Finally, when testing the statistical significance of bxw, 
replacing the standard error (SE) from the raw regression 
with ESE yields a larger z-statistic (in absolute value).  

In summary, for each predictor, although the raw re- 
gression results in the same standard error obtained by 
the corresponding SRC regression for the residual-cen- 
tered specification of that term, the SRC regression 
yields a lower VIF value, which is equivalent to the 
EVIF. The EVIF captures the extent of essential ill-con- 
ditioning within the standard error of a given b parameter. 
It permits us to calculate a lower standard error for the 
corresponding b parameter in the raw regression (i.e., the 
ESE) based only on the portion of the data constituting 
the original raw predictor variable that does not con- 
tribute to inessential ill-conditioning in the raw regres- 
sion. Thus, in SRC, the QMMR is re-estimated sequen- 
tially to derive valid parameter estimates for each order 
of terms. Each re-estimation partials away the portion of 
inessential multicollinearity that would otherwise bias 
parameter (and standard error) estimates for a given or- 
der of terms. Finally, it should be noted that while I illus- 

Open Access                                                                                             OJS 



R. B. FRANCOEUR 29

trated SRC using the three-way specification testing wxz 
in (1), a specification testing one or more third-order 
curvilinear interactions, such as wx2, would provide a 
similar derivation. 

3.1.1. SRC with Standardized Scores to Assess Total  
Net Moderator Effects 

The lack of systematic bias in parameter estimates from 
SRC, in contrast to the original residual centering [9], 
means that SRC can be used with standardized scores of 
arbitrarily scaled predictors to assess total net moderator 
effects across predictors based on the sum of their stan- 
dardized slope parameters. The independence of these 
standardized predictors, which permits their sums, is 
supported when SRC reduces their correlations to low 
levels. An adaptation of the signed coefficient rule is 
used to compare the coefficient signs from this sum and 
the primary predictor to determine the total net modera- 
tor effect (net magnifier or net buffering). 

A caveat is in order. When conducting an unstandard- 
ized raw QMMR, the automatically generated standard- 
ized regression output is incorrect because the statistical 
software does not properly standardize the higher-order 
terms. As Friedrich [19] clarified, the correct standard- 
ized values for a quadratic or interaction term is based on 
the product of the standardized zero-order (one-way) 
component variables for that term (and not on the auto- 
matic standardization of the higher-order term). The stan- 
dard errors for these correct standardized values still re- 
main incorrect, however. Therefore, statistical signifi- 
cance should be based on the correct t-statistics for these 
terms from the unstandardized raw QMMR. 

3.1.2. SRC Extensions to Condition for Additional  
Multicollinearity 

The two- and three-way interactions in residualizing re- 
gression Equations (6) through (11) are not derivative 
terms of the set of quadratic predictors in (1) [i.e., x2, w2, 
and z2]. However, the quadratic and interaction terms are 
indirectly related to each other since they are based on 
the same one-way derivative terms [i.e., x, w, and z]. This 
overlapping variation appears to be an additional—al- 
though indirect—source of inessential multicollinearity 
affecting quadratic and interaction terms despite their 
non-derivative relationship. If this is correct, using SRC 
with Quadratic Terms (SRC-Q) to further condition this 
inessential multicollinearity should provide even lower 
EVIF estimates than SRC, along with equivalent esti- 
mates for the regression slopes and standard errors.   

In order to expand SRC into SRC-Q, I will add: 1) the 
three quadratic terms to each of the residualizing regres- 
sions of the four interaction terms; and 2) the remaining 
quadratic terms to each of the residualizing regressions 

of the three one-way terms. Furthermore, to condition 
this same additional essential multicollinearity from the  
quadratic terms, I will add the four interaction terms and 
the remaining one-way terms to each of the residualizing 
regressions for the quadratic terms. Stated differently, all 
quadratic terms will be partialed from each of the resi- 
dualizing regressions for the one-way and interaction 
terms, and all one-way and interaction terms will be par- 
tialed from each of the residualizing regressions for the 
quadratic terms (For further discussion regarding the ra- 
tionale, refer to Section 4.1, third paragraph). 

SRC may be used to condition residualizing regression 
Equations (6) through (11) not only for inessential mul- 
ticollinearity but in addition, may reduce essential mul- 
ticollinearity from non-derivative control and secondary 
variables, which I denote as SRC with Control and Sec- 
ondary Variables (SRC-CS). This further conditioning, 
recommended in residual centering of the highest-order 
term [9,24], will be demonstrated across the orders of 
predictors. In contrast to conditioning inessential multi- 
collinearity, not only is this conditioning of essential 
multicollinearity expected to shift estimates of standard 
errors—but regression slopes as well—in SRC-CS com- 
pared to the raw regression. 

3.2. Monte Carlo Simulations 

Monte Carlo simulated data are necessary to replicate 
empirically the mathematically derived conclusions from 
the last section when all random variables are generated 
to be normal, non-normal, or to have similar- or differ- 
ent-shaped non-normal distributions. A second compari- 
son is between specifications with slope (b) parameters 
that 1) are positive and increase progressively across the 
set of predictors; and 2) include negative values and have 
no consistent pattern of magnitude. To validate and show 
the utility of SRC, QMMR estimated with these simu- 
lated data must show: 1) unchanged standard error (SE) 
estimates in raw and SRC regressions; and 2) lower es- 
sential VIF (EVIF), compared to the corresponding VIF, 
in order to yield reduced essential standard errors (ESE). 
Across the simulations, SRC is expected to reduce vari- 
ance inflation factors (VIF) regardless whether all ran- 
dom variables are normal, non-normal, or have similar- 
or different-shaped distributions, and regardless whether 
regression slopes are consistently positive and increasing 
across the set of predictors. The same simulations are 
used to demonstrate SRC-Q. I will compare parallel find- 
ings from SRC and SRC-Q. 

I conducted four simulations based on generated sam- 
ple sizes of 250 and 1000 in which the outcome y is pre- 
dicted by the highest-order polynomial interaction (xwz), 
and by all lower-order polynomial interactions, quadratic 
(squared) terms, and one-way terms for each of the ran- 
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dom variables. Random variable distributions are squared 
to avoid negative data values.  

In the first and fourth simulations, the random vari- 
ables (x, w, and z) are generated as normally distributed 
with a mean of zero and a standard deviation of one; 
these results in Table 1 are reported in Panel A, regres- 
sion 1 and in Panel B, regressions 1 and 2. In the second 
simulation (unreported), the random variables (x, w, and 
z) are generated as non-normally-distributed with identi- 
cal levels of skewness and kurtosis, in which all three 
random variables are generated as a chi-square distribu- 
tion with 1 degree of freedom. In the third simulation, the 
random variables (x, w, and z) are initially generated as 
non-normally distributed but with different levels of 

skewness and kurtosis. Specifically, x is generated as a 
chi-square distribution with 5 degrees of freedom, w is 
generated as a chi-square distribution with 1 degree of 
freedom, and z is generated as a chi-square distribution 
with 3 degrees of freedom; these results in Table 1 are 
reported in Panel A, regression 2. 

In Panel A of Table 1, the slope (b) parameters in- 
crease progressively in value across the order in which 
predictors are specified.  

The consistent pattern of findings in Panel A must be 
replicated when negative slope parameters are included 
and when there is no pattern in the selected values of 
slope parameters across the order of specification. The 
parameters of this second type of specification could  

 
Table 1. Monte Carlo simulations and moderated regressions of intercorrelated predictors based on normal or non-normal 
random variables (RVs). 

Panel A: Positive Regression Slopes Increase Across Predictors (n = 1000) 

 
Unstandardized b (Estimated) 

(SE) (ESE: SE from Essential Ill-Conditioning, if VIF > 10) 
[VIF] [EVIF from Essential Ill-Conditioning, if VIF > 10] 

Predictor 
Unstandardized b (Specified) 

in Simulations 
with Normal or Non-Normal RVs 

1 
Moderated Regression 

with Normal RVsa 

2 
Moderated Regression 
with Non-Normal RVsa 

Constant 1 
0.516 

(1.393) 
–0.597 
(0.624) 

x 5 
5.291 

(0.713)* (ESE: 0.221) 
[VIF: 22.043] [EVIF: 2.122] 

5.066 
(0.038)* (ESE: 0.011) 

[VIF: 44.469] [EVIF: 4.143] 

w 6 
6.108 

(0.624)* (ESE: 0.217) 
[VIF: 28.916] [EVIF: 3.489] 

5.975 
(0.082)* (ESE: 0.027) 

[VIF: 40.913] [EVIF: 4.648] 

z 7 
6.867 

(0.387)* (ESE: 0.140) 
[VIF: 31.339] [EVIF: 4.149] 

7.007 
(0.029)* (ESE: 0.010) 

[VIF: 14.188] [EVIF: 1.981] 

x2 11 
10.945 

(0.102)* (ESE: 0.048) 
[VIF: 37.290] [EVIF: 8.388] 

11.000 
(0.0003)* (ESE: 0.0001) 

[VIF: 342.670] [EVIF: 97.328]c 

w2 12 
11.953 

(0.089)* (ESE: 0.040) 
[VIF: 82.514] [EVIF: 17.058]b 

12.002 
(0.0012)* (ESE: 0.0006) 

[VIF: 191.092] [EVIF: 51.921]c 

z2 
 

13 

13.019 
(0.034)* (ESE: 0.016) 

[VIF: 109.736] [EVIF: 25.448]b 

13.000 
(0.00017)* (ESE: 0.00008) 

[VIF: 19.218] [EVIF: 4.537] 

xw 14 
14.246 

(0.186)* (ESE: 0.029) 

[VIF: 144.932] [EVIF: 3.584] 

14.000 
(0.0009)* (ESE: 0.0001) 

[VIF: 539.521] [EVIF: 10.049]c 

xz 15 
14.945 

(0.108)* (ESE: 0.017) 
[VIF: 161.269] [EVIF: 3.973] 

15.001 
(0.00063)* (ESE: 0.00009) 

[VIF: 478.976] [EVIF: 11.067]c 

wz 16 
15.981 

(0.117)* (ESE: 0.027) 
[VIF: 370.352] [EVIF: 20.978]b 

15.998 
(0.0013)* (ESE: 0.0002) 

[VIF: 371.204] [EVIF: 11.368]c 

xwz 17 
16.996 

(0.007)* (ESE: 0.001) 
[VIF: 77.085] [EVIF: 2.024] 

17.000 
(0.000001)* (ESE: 0.0000001) 
[VIF: 36.465] [EVIF: 1.196] 
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Continued 

Panel B: Random Pattern of Positive and Negative Regression Slopes Across Predictors (n = 250 versus 1000) 

 
Unstandardized b (Estimated) 

(SE) (ESE: SE from Essential Ill-Conditioning, if VIF > 10) 
[VIF] [EVIF from Essential Ill-Conditioning, if VIF > 10] 

Predictor 
Unstandardized b (Specified) 

in Simulations 
with Normal RVs 

1 
Moderated Regression 

with Normal RVs 
(n = 250)d 

2 
Moderated Regression 

with Normal RVs 
(n = 1000)d 

Constant 1 
0.624 

(0.492) 
0.885 

(0.223)* 

x 2 
2.350 

(0.596)* (ESE: 0.148) 
[VIF: 20.917] [EVIF: 1.293] 

2.619 
(0.251)* (ESE: 0.084) 

[VIF: 14.453] [EVIF: 1.642] 

w 5 
5.233 

(0.417)* (ESE: 0.170) 
[VIF: 11.233] [EVIF: 1.605] 

5.209 
(0.157)* (ESE: 0.067) 

[VIF: 8.662] [EVIF: 1.597] 

z –3 
–2.945 

(0.426)* (ESE: 0.171) 
[VIF: 10.927] [EVIF: 1.765] 

–3.031 
(0.154)* (ESE: 0.077) 

[VIF: 7.466] [EVIF: 1.897] 

x2 –6 
–6.050 

(0.062)* (ESE: 0.030) 
[VIF: 13.146] [EVIF: 3.107] 

–6.006 
(0.025)* (ESE: 0.012) 

[VIF: 8.052] [EVIF: 2.095] 

w2 4 
4.018 

(0.066)* (ESE: 0.029) 
[VIF: 14.279 [EVIF: 2.852] 

4.001 
(0.018)* (ESE: 0.005) 

[VIF: 9.097] [EVIF: 2.527] 

z2 2 
1.975 

(0.060)* (ESE: 0.027) 
[VIF: 9.371] [EVIF: 1.962] 

2.007 
(0.019)* (ESE: 0.010) 

[VIF: 8.441] [EVIF: 2.554] 

xw –5 
–5.121 

(0.284)* (ESE: 0.062) 

[VIF: 41.382] [EVIF: 2.015] 

–5.246 
(0.123)* (ESE: 0.031) 

[VIF: 37.387] [EVIF: 2.528] 

xz 3 
2.958 

(0.190)* (ESE: 0.056) 
[VIF: 36.207] [EVIF: 3.220] 

2.840 
(0.081)* (ESE: 0.026) 

[VIF: 21.661] [EVIF: 2.265] 

wz –6 
–6.034 

(0.148)* (ESE: 0.055) 
[VIF: 20.921] [EVIF: 2.902] 

–6.035 
(0.047)* (ESE: 0.024) 

[VIF: 22.869] [EVIF: 6.251] 

xwz 2 
2.031 

(0.073)* (ESE: 0.011) 
[VIF: 57.010] [EVIF: 1.341] 

2.058 
(0.029)* (ESE: 0.004) 

[VIF: 42.579] [EVIF: 1.235] 

*p < 0.001 (all tests are two-tailed), SE = Standard Error; ESE = Essential SE from Essential Ill-Conditioning Only; VIF = Variance Inflation Factor; EVIF = 
Essential EVIF from Essential Ill-Conditioning Only. 
a. In regression 1, R2 = 1, F = 99162523.48 (significant at p < 0.001). In regression 2, R2 = 1, F = 1.188 × 1015 (significant at p < 0.001). 
b. In the model with normal RVs, SRC-Q results in identical b and SE estimates, while reducing all EVIF values below the cutoff score of 10. The inflated 
EVIF values in the SRC model for w2, z2, and wz fall to 1.589, 1.381, and 1.411, respectively, in the SRC-Q model. These deflated EVIF can be used to derive 
lower ESE values for these terms. 
c. In the model with non-normal RVs, SRC-Q results in identical b and SE estimates, while reducing all EVIF values below the cutoff score of 10. The inflated 
EVIF values in the SRC model for x2, w2, xw, xz, and wz fall to 1.010, 1.013, 1.032, 3.544, and 3.577, respectively, in the SRC-Q model. These deflated EVIF 
can be used to derive lower ESE values for these terms. 
d. In regression 1, R2 = 0.996, F = 6650.847 (significant at p < 0.001). In regression 2, R2 = 0.997, F = 36977.963 (significant at p < 0.001). I also report the 
simulation in Panel B as Table 1 in [21]. 

 
potentially be more difficult to replicate in the moderated 
regression, especially at smaller sample sizes, which 
should be detected through simulation. Therefore, I in- 
vestigated this possibility through the fourth simulation 
based on normally distributed random variables and gen- 
erated sample sizes of 250 and 1000. Results are reported 

in Panel B of Table 1. In addition to the reported find- 
ings in Panel B, in which the residual term is generated 
with a standard deviation of 3, the analyses for n = 1000 
in this panel were also replicated across a series of in- 
creasing standard deviations of the residual term (i.e. at 
10, 20, 30, 40, and 50).  
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In each simulation, an additional term equal to 0.4x is 
added to the initial distribution for w to create a final w 
distribution with inessential multicollinearity (i.e., w be- 
comes correlated with x and with higher-order terms 
containing x as a component). Similarly, an additional 
term equal to 0.3x + 0.6w is added to the initial distribu- 
tion for z to create a final z distribution with inessential 
multicollinearity (i.e., z becomes intercorrelated with x 
and w and with higher-order terms containing x and/or w 
as components).  

The residual term is generated as a normally distrib- 
uted random variable with mean = 0 and either standard 
deviation = 10 (Table 1, Panel A) or standard deviation 
= 3 (Table 1, Panel B). For each of the two simulations 
reported in each panel, the same fixed values for the b 
parameters from the predictor terms are used (their val- 
ues are listed in the first column of each panel in Table 
1). I use each simulation equation to derive y based on 
the generated values comprising the random variables for 
x, w, z, all higher-order terms, and the residual term.  

All simulations were conducted using IBM SPSS Sta- 
tistics, version 19 (2010). 

3.3. Cancer Symptoms Data and Models 

These data for the secondary analyses of this study, col- 
lected as part of a primary study funded by the National 
Cancer Institute (Hospice Program Grant, CA48635), 
involve a sample of 268 individuals with recurrent cancer 
initiating outpatient palliative radiation to reduce bone 
pain. Medical team providers referred participants from 
five hospitals in a northeastern US city. Participants were 
at least age 30, assessed by their oncologists to be be- 
yond cure, although not deemed terminally ill, and had a 
prognosis of a year or more; they likely differed in diag- 
nosis/treatment stage. Men and women are almost equal- 
ly represented; ages range from 30 to 90, with half age 
65 or older [25]. 

Participants provided written informed consent; the 
Internal Review Board approved the protocol. Structured 
interviews of these participants were conducted in their 
homes, and at four and eight months later; Schulz et al. 
[25] provide additional details about the survey. I have 
access to a version of the initial (baseline) wave of data, 
which were de-identified of descriptors and variables that 
could lead to identification of individual participants. 
The Adelphi University Internal Review Board exempted 
these data for secondary analysis from review.  

The survey included items for participant perceptions 
of the degree of difficulty in controlling each of several 
physical symptoms (each as a single item) during the 
past month (the Likert-scaled categories are complete; a 
lot; some; a little; none). Thus, all symptoms, including 
the sign of Fever, are patient-reported outcomes; object- 
ive measures were not also collected. The single-item 
measures of physical symptoms were initially reported to 

be common measures derived from previous studies [25]. 
More recently, a review by Francoeur [26] revealed dif- 
ferent lines of converging evidence in the literature that 
collectively support the reliability and validity of self- 
reported, ordinal, single-item measures of the degree of 
control across several physical symptoms.   

The survey also included all twenty items from the 
Center for Epidemiologic Studies-Depression (CES-D) 
inventory (the four ordinal categories are rarely; some of 
the time; much of the time; most of the time). In the cur- 
rent study, the dependent variable of Depressive Affect, 
reflecting sickness malaise during the past week, is an 
index of five CES-D items of negative affect (i.e., sad, 
blue, crying, depressed, lonely), three CES-D items of 
negative affect within interpersonal and situational con- 
texts (i.e., bothered, fearful, failure), and three reverse- 
coded CES-D items of positive affect (i.e., hopeful, 
happy, enjoyed life). CES-D somatic items were ex- 
cluded because they may constitute symptoms of cancer 
instead of depression. The internal consistency for the 
eleven items in these data is very good (α = 0.83), which 
compares favorably to α = 0.85 in the entire CES-D [26].  

The data afford an opportunity to test whether pain- 
related interactions with fatigue and sleep problems are 
further co-moderated by fever in predicting depressive 
affect, a proxy for sickness malaise. All statistical analy- 
ses were conducted using IBM SPSS Statistics, version 
19 (2010). 

The sample of cancer symptoms provides three illus- 
trations of SRC, reported as QMMR models 1A, 2A, and 
3A in Table 2, in which physical symptom interactions 
that comprise symptom clusters predict Depressive Af- 
fect, a proxy for sickness malaise. In these models, the 
raw regression provides some of the reported statistics 
(i.e., b, SE, VIF) while the remaining statistics are either 
provided by the counterpart SRC regressions (i.e., b, 
EVIF) or derived from calculations based on statistics 
from the raw and SRC regressions (i.e., ESE). I report 
these and other unstandardized models in [21]. 

The unstandardized slope parameters from regressions 
1A and 2A are used in a post hoc patient profile analysis 
[21] based on the Extended Zero Slopes Comparison 
procedure [12]. This post hoc analysis interprets the na- 
ture (magnifier and/or buffering) of co-moderating vari- 
ables on the pain-sickness malaise relationship. 

Also reported within regressions 1A and 2A in Table 
2 are the parameters from standardized regressions, 
which are specified and estimated separately from the 
counterpart unstandardized runs. The standardized slopes 
provide unbiased direct interpretations of net moderator 
effects from interaction terms, individually and in com- 
bination (i.e., summed values). The residualized vari- 
ables are estimated from the residualizing regression of 
the standardized predictors. To assure the independence  
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Table 2. Depressive affect predicted by physical symptoms and symptom interactionsa,b,c. 

Unstandardized b; Standardized b in 1A and 2A 
(SE) 

(ESE: SE from Essential Ill-Conditioning Only, if VIF > 10) 
[VIF > 10] 

[EVIF: VIF from Essential Ill-Conditioning Only, if VIF > 10] Independent 
Variables 

1A 
Pain x Sleep  

Problems x Fever
SRC 

1B 
Pain x Sleep  

Problems x Fever
SRC-CS 

2A 

Pain x Fever x 
Fatigue/weakness

SRC 

2B 
Pain x Fever x 

Fatigue/weakness
SRC-CS 

3A 

All Four 3-Way 
Interactions 

SRC 

3B 

All Four 3-Way 
Interactions 

SRC-CS 

Pain 
0.474; 0.678 

(0.360) 
0.386 

(0.368) 
0.125; 0.207 

(0.359) 
0.084 

(0.375) 
–0.295 
(0.478) 

–0.159 
(0.463) 

Shortness of 
breath/ 

difficulty  
breathing 

–0.130; –0.166 
(0.245) 

 
–0.200; –0.255

(0.245) 
 

–0.287 
(0.248) 

–0.301 
(0.244) 

Sleep problems 
0.102; 0.163 

(0.360) 
0.111 

(0.370) 
0.506; 0.842 

(0.195)*** 
 

0.558 
(0.463) 

0.513 
(0.453) 

Nausea/vomiting 
0.735; 1.037 

(0.231)*** 
 

0.732; 1.033 
(0.225)*** 

 
0.831 

(0.234)**** 
0.844 

(0.216)**** 

Fever 

0.414; 0.361 
(1.445)  

(ESE: 0.348) 
[VIF: 18.255] 
[EVIF: 1.059] 

0.478 
(1.471)  

(ESE: 0.351) 
[VIF: 18.255] 
[EVIF: 1.039] 

0.203; 0.166 
(1.430)  

(ESE: 0.343) 
[VIF: 18.235] 
[EVIF: 1.051] 

0.280 
(1.496)  

(ESE: 0.353) 
[VIF: 18.235] 
[EVIF: 1.013] 

–0.746 
(1.623) 

(ESE: 0.445)@ 
[VIF: 15.891] 
[EVIF: 1.195] 

–0.401 
(1.648) 

(ESE: 0.431)@ 
[VIF: 15.891] 
[EVIF: 1.088] 

Fatigue/weakness 
0.270; 0.401 

(0.232) 
 

0.212; 0.322 
(0.267) 

0.213 
(0.279) 

0.123 
(0.320) 

0.164 
(0.328) 

Pain2 0.192; 0.404 
(0.196) 

0.189 
(0.201) 

0.271; 0.569 
(0.194) 

0.239 
(0.198) 

0.186 
(0.203) 

0.369 
(0.219) 

Sleep problems2 
0.421; 1.165 

(0.226) 
0.431 

(0.232) 
  

0.524 
(0.238)* 

0.674 
(0.262)** 

Fever2 

–0.344; –0.244 
(0.506) 

(ESE: 0.125)** 

[VIF: 24.160] 
[EVIF: 1.468] 

–0.420 
(0.519) 

(ESE: 0.127)** 
[VIF: 24.160] 
[EVIF: 1.444] 

0.010; 0.007 
(0.484) 

(ESE: 0.119) 
[VIF: 22.506] 
[EVIF: 1.367] 

0.024 
(0.495) 

(ESE: 0.120) 
[VIF: 22.506] 
[EVIF: 1.333] 

0.587 
(0.731) 

(ESE: 0.210)** 
[VIF: 33.132] 
[EVIF: 2.741] 

0.663 
(0.777) 

(ESE: 0.232)** 
[VIF: 33.132] 
[EVIF: 2.951] 

Fatigue/ 
weakness2 

  
0.115; 0.254 

(0.182) 
0.114 

(0.187) 
0.052 

(0.187) 
0.226 

(0.193) 

Pain x 
Sleep problems 

–0.228; –0.537 
(0.128) 

–0.234 
(0.132) 

  
–0.073 
(0.162) 

–0.073 
(0.162) 

Pain x Fever 
0.445; 0.541 

(0.422) 
0.510 

(0.433) 
–1.190; –1.450

(0.477)* 
–1.125 
(0.488)* 

–3.448 
(1.404)* 

(ESE: 0.377)**** 
[VIF: 58.853] 
[EVIF: 4.242] 

–3.448 
(1.404)* 

(ESE: 0.373)**** 
[VIF: 58.853] 
[EVIF: 4.147] 

Pain x 
Fatigue/weakness 

  
–0.220; –0.494

(0.137) 
–0.226 
(0.140) 

0.193 
(0.239) 

0.193 
(0.239) 

Fever x 
Sleep problems 

0.455; 0.635 
(0.354) 

0.487 
(0.363) 

  

2.919 
(1.308)* 

(ESE: 0.388)**** 
[VIF: 53.274] 
[EVIF: 4.684] 

2.919 
(1.308)* 

(ESE: 0.383)**** 
[VIF: 53.274] 
[EVIF: 4.562] 

Sleep problems x 
Fatigue/weakness 

    
–0.508 
(0.234)* 

–0.508 
(0.234)* 

 
Fever x 

Fatigue/weakness 
  

–0.325; –0.403
(0.391) 

–0.303 
(0.402) 

–0.658 
(0.749) 

(ESE: 0.302)* 
[VIF: 10.336] 
[EVIF: 1.676] 

–0.658 
(0.749) 

(ESE: 0.300)* 
[VIF: 10.336] 
[EVIF: 1.660] 
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Pain x 
Sleep problems x 

Fevere 

–0.361; –0.732 
(0.173)* 

–0.377 
(0.176)* 

  

–0.325 
(0.327) 

(ESE: 0.077)**** 
[VIF: 20.574] 
[EVIF: 1.153] 

–0.325 
(0.327) 

(ESE: 0.077)**** 
[VIF: 20.574] 
[EVIF: 1.146] 

Pain x 
Sleep problems x 
Fatigue/weakness 

    
–0.001 
(0.076) 

–0.001 
(0.076) 

Pain x 
Fever x 
Fatigue/ 

weaknessd 

  
0.660; 1.199 

(0.243)** 
0.672 

(0.249)** 

2.105 
(0.801)*** 

(ESE: 0.294)**** 
[VIF: 60.049] 
[EVIF: 8.067] 

2.105 
(0.801)*** 

(ESE: 0.292)**** 
[VIF: 60.049] 
[EVIF: 7.989] 

Fever x 
Fatigue/weakness 
x Sleep problems 

    

–1.528 
(0.837)@ 

(ESE: 0.277)**** 
[VIF: 71.800] 
[EVIF: 7.819] 

–1.528 
(0.837)@ 

(ESE: 0.275)**** 
[VIF: 71.800] 
[EVIF: 7.730] 

R2, F value 0.194, 4.663**** 0.154, 4.648**** 0.210, 5.153**** 0.160, 4.863**** 0.237, 3.711**** 0.237, 3.711**** 

n =268; @p < 0.10, *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001 (all tests are two-tailed). SE = Standard Error; ESE = Essential SE from Essential 
Ill-Conditioning Only; VIF = Variance Inflation Factor;  EVIF = Essential EVIF from Essential Ill-Conditioning Only. I also report 1A, 2A, and 3A in Table 3 
of [21]. 
a. As a general rule, the VIF should not exceed 10 [27]. Cell entries in bold show dramatic reductions in inessential multicollinearity (compare VIF and EVIF) 
and statistically significant b parameters. Entries for a predictor are in bold when statistically non-significant b parameters in the raw regression (using SE) 
become significant in the SRC run (i.e., using ESE) at p < 0.05 or below, or when significant b parameters in the raw regression meet the threshold for statistical 
significance at a lower p value in the SRC run. 
b. Separate regressions to test Fever x Fatigue/weakness x Sleep problems and Pain x Fever x Fatigue/weakness x Sleep problems (not shown) did not reveal 
these interactions to be statistically significant. Using SRC-Q, the coefficient of the four-way interaction switches sign (from positive to negative) and becomes 
significant only after excluding thirteen influential outliers; the moderate sample size may contribute to its lack of significance in the full sample. Thus, only up 
to three-way (second-order) regression model specifications can be taken to be valid for use with these data. 
c. Influential observations with Cook’s D values greater than 4/n, or 0.140, were dropped. Two observations were dropped in 1A and 1B, one dropped in 2A 
and 2B, and seven dropped in 3A and 3B. 
d. In 3A, in the regression specification before the last interaction is added (i.e., Fever x Fatigue/weakness x Sleep problems), the parameters for Pain x Fever x 
Fatigue/weakness are statistically significant (b = 0.750, ESE = 0.111****, EVIF = 1.146). As Table 2 reveals, the inclusion of this last interaction term in the 
regression serves to dramatically increase the b parameter value for Pain x Fever x Fatigue/weakness (b = 2.105, ESE = 0.294****, EVIF = 8.067). Thus, Pain x 
Fever x Fatigue/weakness is based, in part, on a “suppressor effect”. When 3A is run with all observations (i.e., including the influential cases), the suppressor 
effect remains as well [i.e., compare the runs: (1) with Fever x Fatigue/weakness x Sleep problems: b = 7.250, ESE = 7.562 (non-significant), EVIF = 60.049; 
and (2) without Fever x Fatigue/weakness x Sleep problems: b = 2.582, ESE = 1.128*, EVIF = 8.529]. The highly inflated EVIF value of 60.049 in (1) happens 
to be identical to the VIF value for the same term in the raw regression that includes only non-influential observations (i.e., see regression 3A). Thus, adding the 
influential observations simply adds back the inessential multicollinearity removed by SRC; however, this multicollinearity now occurs within the same obser- 
vations (not just between the two interaction terms) and thus is now essential multicollinearity. 
e. In 3A, the inclusion of Fever x Fatigue/weakness x Sleep problems creates a less dramatic suppressor effect on Pain x Sleep problems x Fever than the one on 
Pain x Fever x Fatigue/weakness described in footnote d. When outliers are excluded, we can compare the runs: (1) with Fever x Fatigue/weakness x Sleep 
problems: b = –0.325, ESE = 0.077****, EVIF = 1.153; and (2) without Fever x Fatigue/weakness x Sleep problems: b = –0.199, ESE = 0.076***, EVIF = 1.101. 
When outliers are included, we can compare the runs: (3) with Fever x Fatigue/weakness x Sleep problems: b = –0.325, ESE = 0.137**, EVIF = 1.153; and (4) 
without Fever x Fatigue/weakness x Sleep problems: b = –0.199, ESE = 0.167 (non-significant), EVIF = 1.101. Comparing (1) with (3) and (2) with (4), the 
respective b parameters and EVIF values do not change; however, the ESE values do change, such that Pain x Fever x Sleep problems ends up becoming 
non-significant when outliers are included. This lack of statistical significance occurs in the context of the highly inflated EVIF value of 60.049 for Pain x Fever 
x Fatigue/weakness, which also became non-significant (refer to footnote d). These findings reflect overlapping variation across all three third-order interac- 
tions that is contributed by the set of influential observations and constitutes essential multicollinearity. 

 
of these predictors, which is a necessary condition for 
direct interpretations of individual parameters based on 
the signed coefficient rule, the residualized variables 
from each sequence of the SRC are examined for low 
inter-correlations with the remaining predictors from the 
same residualizing regression.  

Finally, all three QMMR models (1A, 2A, and 3A) are 
re-estimated to demonstrate an extension of SRC—Se- 
quential Residual Centering with Control and Secondary 
Variables (SRC-CS)—in which predictors are also con- 
ditioned to be uncorrelated with control and/or secondary 
variables. In Table 2, the resulting SRC-CS models (1B, 

2B, and 3B) condition essential multicollinearity related 
to two secondary variables, Shortness of breath/difficulty 
breathing and Nausea/vomiting, from the initial, residu- 
alizing regression. These two secondary variables are 
added to these SRC-CS models because in previous 
analyses with these data, these common symptoms were 
revealed to be components of symptom interactions also 
involving Pain or Fatigue/weakness [26], which could 
overlap those in the current study. With this essential 
multicollinearity removed, it is optional whether to retain 
these secondary variables in the subsequent QMMR 
models that test each three-way interaction separately, 
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and both variables are dropped from 1B and 2B. How- 
ever, they must be retained in 3B since for any of the 
four three-way interactions there are additional non-re- 
lated lower-order polynomial terms which also serve as 
related terms for the other three-way interaction(s). 

4. Results 

4.1. Monte Carlo Simulations 

This article validates a novel approach of applying re- 
sidual centering to regression equations that are re-esti- 
mated sequentially in order to condition for multicollin- 
earity across all derivative terms. This sequential resid- 
ual centering (SRC) yields non-biased regression slope 
parameters identical to those from uncentered regression 
for each order of predictor terms, as revealed in Tables 1 
and 2. In simulations (n = 1000) reported in Table 1, 
SRC reduces variance inflation factors (VIF) dramati- 
cally, resulting in much lower values for the essential 
variance inflation factors (EVIF), regardless whether all 
predictors are normal or non-normal, or have similar- or 
different-shaped distributions. This consistent pattern 
holds, regardless whether slope parameters are positive 
and increase progressively across the set of predictors, 
or have no consistent pattern (based on sign and magni- 
tude), even when the simulation is based on a small sam- 
ple of 250. For any predictor, the EVIF is used to derive 
a lower standard error of its regression slope, the essen- 
tial standard error (ESE). In each simulation, the dra- 
matic reductions in VIF occur along with improved con- 
dition matrices.   

However, EVIF values for the interaction wz in the 
normal- and non-normal RV estimated regressions (1B 
and 2B in Panel A) exceed the cutoff score of 10, as does 
the EVIF value for the interaction xz in the non-normal 
RV (2B). (EVIF values of the quadratic terms are also 
inflated, although these might be ignored since they are 
not components or derivative terms of the interaction 
terms of interest; the quadratic terms are specified only to 
prevent spurious interaction effects when interaction and 
quadratic terms are highly correlated.) These results sug- 
gest that while multicollinearity is considerably reduced, 
some residual level may still exert some influence in both 
models. Even so, this remaining multicollinearity has 
minimal effects on findings since the regression slopes 
are all highly significant and very similar in value to the 
corresponding generated slopes of the simulation. 

SRC-Q conditions away much of the remaining ines- 
sential multicollinearity in the normal- and non-normal 
estimated regressions (see Table 1, footnotes b and c). 
The regression slopes and standard errors from SRC are 
replicated, while EVIF values across all predictors now 
fall below the cutoff score of 10. Recall that in SRC-Q, 
different terms are added to the residualizing regressions 
for the quadratic terms, compared to the residualizing 

regressions for the one-way and interaction terms. This 
non-uniform residualization necessitates that the residu- 
alized values of the two-way quadratic terms not be 
specified within the same sequence of SRC-Q as the two-  
way interactions that contribute to the same polynomial 
order (i.e., second order) of terms. Thus, I specified the 
residualized values for the quadratic terms and the two- 
way interactions in separate sequences of SRC-Q. 

These replicated findings mean that SRC and SRC-Q 
foster non-biased post hoc patient profile assessments for 
interpreting the nature (magnifier and/or buffering) of 
moderator effects at specific levels of the co-moderating 
variables. Indeed, biased standard errors from raw re- 
gression may lead a truly statistically significant slope 
parameter to be considered insignificant (i.e., Type II 
error), preventing follow-up interpretations of moderator 
effects where they should be made. It follows that SRC 
and SRC-Q also avoid Type II error in conducting non- 
biased direct sample-wide assessments (i.e., not requiring 
a separate post hoc procedure) to interpret the overall na- 
ture of moderator effects across the levels of co-moder- 
ating variables, based on the contributions of interaction 
terms, individually (based on the regression slope for a 
given interaction term) or in combination (based on the 
net sum of the regression slopes for multiple interaction 
terms and lower-order polynomial terms from which they 
derive), from the standardized regression.   

The overall variance explained also influences the sta- 
tistical power for the interaction term (e.g., [11]). To test 
for the effect of reducing the overall variance explained, 
I replicate analysis 2 (n = 1000) in Table 1 panel B 
across a series of increasing standard deviations of the 
residual term (i.e. at 10, 20, 30, 40, and 50). The R- 
square value deteriorated steadily from 0.996 when the 
standard deviation is 3 to 0.586 when the standard devia- 
tion is 50. As the residual term standard deviation in- 
creases, the extent to which the regression accurately 
captures the slope parameters specified in the simulation 
deteriorated for some of the predictors (i.e., slopes be- 
come biased downward for x, w, xw, and xz, although 
they do not change sign). However, in each case, SRC 
yields the same slope value as the corresponding raw 
regression, and when VIF exceeds 10, ESE falls appre- 
ciably below SE.   

Next, using the small cancer sample (n = 268), I repli- 
cate the finding that SRC yields much lower VIF values 
than the raw regression, interpret direct and post hoc as- 
sessments in a more meaningful context with real data, 
and illustrate SRC-CS. 

4.2. Cancer Symptom Interactions and  
Depressive Affect 

Frequencies in the cancer sample of physical symptoms, 
symptom interactions specified in the regressions, and 
Depressive Affect are reported in Table 3. Distributions  
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Table 3. Extent of symptom control, n = 268a. 

Complete A Lot Some Little None
Symptom 

n (%) n (%) n (%) n (%) n (%)

Change in  
bowel habits 

158 (58.9) 48 (17.9) 19 (7.1) 8 (3.0) 35 (13.1)

Fatigue-weakness 77 (28.7) 79 (29.5) 35 (13.1) 23 (8.6) 54 (20.1)

Fever 240 (89.5) 13 (4.9) 1 (0.4) 3 (1.1) 11 (4.1)

Nausea-vomiting 179 (66.8) 34 (12.7) 14 (5.2) 5 (1.9) 36 (13.4)

Pain 126 (47.0) 55 (20.5) 36 (13.4) 10 (3.7) 41 (15.3)

Poor appetite 148 (55.2) 19 (7.1) 36 (13.4) 18 (6.7) 47 (17.5)

Shortness of 
breath-difficulty 

breathing 
191 (71.3) 33 (12.3) 12 (4.5) 4 (1.5) 28 (10.4)

Sleep problems 155 (57.8) 23 (8.6) 16 (6.0) 17 (6.3) 57 (21.3)

Weight loss 157 (58.6) 25 (9.3) 15 (5.6) 17 (6.3) 54 (20.1)

Depressive affect 11 12 - 14 15 - 17 18 - 38  

Possible range:  
11 - 44 

68 (25.5) 79 (29.6) 50 (18.7) 70 (26.2)  

a. Frequencies and percentages of participants experiencing symptom inter- 
actions when there is incomplete control (A Lot = 1 to None = 4) of each 
component are: Pain x Fatigue/weakness 110 (41.0); Pain x Fever 22 (8.2); 
Pain x Sleep Problems 141 (52.8); Fatigue/weakness x Fever 24 (9.0); Fa- 
tigue/weakness x Sleep Problems 190 (71.2); Fever x Sleep problems 27 
(10.1); Pain x Fever x Fatigue/weakness 20 (7.5); and Pain x Fever x Sleep 
problems 22 (8.2). I originally reported this table as Table 2 in [26]. 
 

of all physical symptoms are highly skewed, with most 
participants reporting complete control of each symptom. 

4.2.1. SRC with Unstandardized Predictors 
Linear effects of common symptoms, quadratic effects of 
symptoms that are components of symptom interactions, 
and specific symptom interactions together predict De- 
pressive Affect in the regressions of Table 2. As ex- 
pected, the unstandardized slope parameter estimates are 
identical in the raw and SRC regressions; inflated VIF 
values in the raw regression fall dramatically to EVIF 
values less than 10 in the SRC regressions [27]. (In Ta- 
ble 2, cell entries appear in bold when VIF values fall 
dramatically after SRC and the unstandardized b pa- 
rameter becomes newly statistically significant). Fur- 
thermore, condition matrices from the SPSS output re- 
veal dramatic reductions in multicollinearity between the 
raw and SRC regressions. Thus, none of the predictors in 
the SRC runs are identified to be associated with prob- 
lematic multicollinearity.   

In addition to meeting the common standard that all 
variance inflation factors (here, EVIF values) be less than 
10, the EVIF in regressions 1A through 3B all meet the 
more conservative rule that the mean of all variance in- 
flation factors (here, EVIF values) from each regression 
must not be considerably larger than one [28]. The mean 

value of 2.6 in the exhaustive three-way model tested in 
regression 3A suggests that while multicollinearity is 
dramatically reduced, remaining multicollinearity due to 
essential ill-conditioning could still have limited influ- 
ence. However, the mean value remains very similar in 
SRC-CS regression 3B despite additional conditioning 
for essential multicollinearity from secondary predictors 
and additional non-derivative terms based on specifica- 
tion of the remaining three-way interactions. In all SRC- 
CS regressions (1B, 2B, and 3B), the mean value remains 
very similar to the mean value in the corresponding SRC 
regression (1A, 2A, and 3A). Compared to SRC, SRC- 
CS yields small additional reductions in EVIF that occur 
only within certain lower-order predictors. 

Collectively, SRC results in newly significant effects, 
or significance with reduced standard errors and lower p 
values, based on ESE parameters, than the raw regres- 
sion in Table 2 (even as the relevant b and SE parame- 
ters remain unchanged). Pain x Fever, Pain x Fever x 
Sleep, and Pain x Fever x Fatigue/weakness—significant 
at p < 0.05 or 0.01 in separate three-way (second-order) 
explanatory models (regressions 1A, 1B, 2A, and 2B)— 
along with the remaining three-way term (Fever x Fa- 
tigue x Sleep)—all become very highly significant (p < 
0.001) when all interactions are tested simultaneously 
(regression 3A and 3B). SRC and SRC-CS findings are 
similar.  

The nature of the symptom interaction effects in re- 
gressions 1A and 2A are probed in post-hoc patient pro- 
file analyses described in [21]. The interpretations, re- 
ported in Table 4, reveal that Fever magnifies the Pain- 
Depressive Affect relationship when there is a little or no 
control over Sleep Problems or less than full control over 
Fatigue/weakness (i.e., a lot of control, a little control, no 
control). Furthermore, when Fever occurs, a specific 
range of the other co-occurring symptom (Sleep Prob- 
lems or Fatigue/weakness) also magnifies the Pain-De- 
pressive Affect relationship. Considering both magni- 
fier effects together, there is a mutually synergistic and 
compounded magnifier effect on the Pain-Depressive 
Affect relationship when Fever presents within specific 
ranges of either Sleep Problems (a little or no control) or 
Fatigue/weakness (a lot of control, a little control, no 
control). The relationship is buffered in the lower ranges 
of these two symptoms where they are better controlled. 

4.2.2. SRC with Standardized Predictors 
Parallel SRC models for regressions 1A and 2A are esti- 
mated to derive standardized slope parameters (b). These 
standardized slope parameters are listed in italics after 
the unstandardized slope parameters in Table 2. In each 
of these parallel SRC models, the standardized slope pa- 
rameters (b) remain identical to those obtained from the 
raw regression based on the standardized scores.  
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Table 4. Interpretations of Co-moderator Effects Detected by Table 2 Regressions. 

Regression 1A: Testing Pain x Sleep Problems x Fever 

A. Co-moderation by Fever 

1) When there is a little or no control over Sleep Problems (w = 3 or 4), Fever magnifies the Pain-Depressive Affect  
relationship over the full range of Fever, from complete to no control (i.e., z = 0 to 4; n = 74). 

B. Co-moderation by Sleep Problems 

1) When there is some to no control of Fever (z = 2, 3, or 4), Sleep Problems magnify the Pain-Depressive Affect  
relationship over the full range of Sleep Problems, from complete to no control (i.e., w = 0 to 4; n = 15). 

2) When there is complete control of Fever (z = 0), Sleep Problems magnify the Pain-Depressive Affect relationship  
over the range of Sleep Problems from complete to some control (i.e., w = 0 to 2; n = 182) and buffer the  

relationship over the range of Sleep Problems from a little to no control (i.e., w = 3 and 4; n = 58). 
 

 When there is a lot of control of Fever (z = 1), Sleep Problems magnify the Pain-Depressive Affect relationship at  
complete control of Sleep Problems (i.e., w = 0; n = 3) and buffer the relationship over the range of Sleep  
Problems from a lot to no control (i.e., w = 1 to 4; n = 9). 

Regression 2A: Testing Pain x Fever x Fatigue/weakness 

A. Co-moderation by Fever 

1) When there is a little or no control of Fatigue/weakness (w = 3 or 4), Fever magnifies the Pain-Depressive Affect relationship  
over the range of Fever, from a lot of control to no control (i.e., z = 1, 2, 3, 4; n = 14). 

 
 When there is a lot of control of Fatigue/weakness (w = 1), Fever magnifies the Pain-Depressive Affect relationship  

over the full range of Fever, from complete to no control (i.e., z = 0 to 4; n =7).  

B. Co-moderation by Fatigue/weakness 

1) At both extremes, when there is either complete or no control of Fever (z = 0 or 4), Fatigue/weakness buffers the Pain-Depressive  
Affect relationship at complete to a lot of control of Fatigue/weakness (wlow = 0 and 1; n = 149) and magnifies the relationship at  

some to no control of Fatigue/weakness (w = 2 to 4; n = 102). 
 

 When there is a lot to a little control of Fever (z = 1, 2, or 3), Fatigue/weakness buffers the Pain-Depressive Affect relationship at 
complete to some control of Fatigue/weakness (wlow = 0, 1, and 2; n = 9) and magnifies the relationship at a little to no control of  
Fatigue/weakness (w = 3, 4; n = 7). 

I also report this table as Table 4 in [21]. 

 
For each regression, in order to determine which terms 

predict the most variance in the overall interaction effect, 
we can compare predictors based on the absolute values, 
or relative magnitudes, of the standardized slope pa- 
rameter estimates. In regression 1A (Pain x Sleep Prob- 
lems x Fever) from Table 2, the standardized slope of the 
three-way interaction is about the same order of magni- 
tude as the two-way interactions from which they derive, 
as well as with the main effect of Pain. In regression 2A 
(Pain x Fever x Fatigue/weakness) from Table 2, the 
three-way interaction is one to three times larger than the 
two-way interactions from which they derive, and six 
times larger than the main effect of Pain. These results 
reveal that a mixture of effects involving Pain x Sleep 
Problems x Fever, its related two-way interaction terms, 
and the main effect of Pain contribute to the first post hoc 
patient profile analysis summarized in Table 4. In con- 
trast, Pain x Fever x Fatigue/weakness and one of its 
two-way interaction terms (Pain x Fever) provide out- 
sized contributions to the moderator effects in the second 
post hoc profile analysis.  

We can also base interpretations on the actual values 
and magnitudes of standardized parameter estimates. In 
Table 4, note that the moderator effect of Sleep Prob- 

lems switches from magnifying to buffering as control 
over Sleep Problems lessens, even as Fever continues to 
display a magnifier effect across its range. Here I apply 
the adaptation of the signed coefficient rule, described 
earlier, so that direct comparisons will be commensurate 
with those from the post hoc analyses to interpret the 
nature of the moderator effects (conducted with the ex- 
tended ZSC procedure). Based on this adapted signed 
coefficient rule, if Pain is considered the primary symp- 
tom, the net sum of the standardized b values from Table 
2 (regression 1A) for Pain x Sleep Problems x Fever and 
its lower-order polynomial terms (except Pain) is 0.617. 
Since the standardized b for Pain is also positive, net 
magnifier effects are revealed—the overall magnifier 
effects are larger in magnitude than the overall buffering 
effects. If Sleep Problems is considered the primary 
symptom (where the net sum is now based on Pain x 
Sleep Problems x Fever and all lower-order polynomial 
terms except Sleep Problems), the net sum almost dou- 
bles (1.132). Since the standardized b for Sleep Problems 
is also positive, stronger net magnifier effects are re- 
vealed than when Pain is considered the primary symptom.  

Similarly, in Table 4, note that the moderator effect of 
Fatigue/weakness switches from buffering to magnifying  
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as control over Fatigue/weakness lessens, even as Fever 
again continues to display a magnifier effect across its 
range. Again, the adaptation of the signed coefficient rule 
is applied, and the net sum of the standardized b values 
from Table 2 (regression 2A) for Pain x Fever x Fa- 
tigue/weakness and its lower-order polynomial terms 
(except the primary symptom of Pain) is negative 
(–0.660). Since the standardized b for Pain is positive, 
net buffering effects are revealed. This direct effect pro- 
vides new information to interpret the findings from the 
post hoc assessment—the buffering effects when there is 
greater control over Fatigue/weakness appear stronger 
than the magnifier effects as control over Fatigue/weak- 
ness lessens.    

In each of these parallel SRC models of standardized b 
values, correlations among the highest-order and deriva- 
tive terms are typically much lower than when these 
standardized scores are used in the raw regression (i.e., 
without SRC) despite identical standardized slope pa- 
rameters (b). These lowered correlations fall below what 
may be considered the “moderate” range2. 

5. Discussion 

SRC, SRC-Q, and SRC-CS provide valid estimates from 
the QMMR for 1) simple effects (first-order parameters), 
or mean effects (first-order parameters in the case of data 
that are also mean-centered), as well as partial correla- 
tions among the first-order parameters; 2) direct assess- 
ments of the nature and strength of overall moderator 
effects by one or multiple interaction terms; and 3) post 
hoc assessment of the nature and strength of quadratic or 
moderator effects. SRC and its extensions may avoid the 
need to inspect multiple diagnostic tools to diagnose 
multicollinearity problems in estimating moderator and 
quadratic effects. 

5.1. SRC Properties Confirmed by Simulations  
and Clinical Data 

Little, Bovaird, and Widaman [29] noted that residual 
centering did not change the estimates of the regression 
slope and the standard error for the two-way interaction 
term. In Lance’s [9] original illustration as well, residual 
centering did not change the regression slope (and pre- 
sumably, standard error) for the two-way interaction term. 
However, the ESE—derived using Equation (14) in the 
current study—is likely to be lower. SRC can be applied 
efficiently after the highest-order interaction term(s) from 
traditional (non-sequential) residual centering is found to 
be statistically significant. Only when a highest-order 
interaction term is statistically significant will SRC of the 
lower-order terms be warranted (also see [21]).  

The Lance [9] and Little et al. [29] studies suggest that 
efficient application of SRC with unstandardized vari- 
ables does not depend upon the shapes of the distribu- 
tions for the first-order components of the highest-order 
interaction term. The first-order components of the tested 
interaction in Lance’s [9] original illustration (n = 207) 
are a randomly assigned dummy variable (Memory De- 
mand) with a uniform distribution and a summative scale 
moderator variable (Bieri’s Role Construct Repertory 
Grid measure of Cognitive Complexity) that is likely to 
be at least reasonably normal. Although the sample size 
or variable distributions for the first-order components of 
the interaction tested by Little and his colleagues [29] 
were not reported, we can assume that the distributions 
of the first-order components (Agency and Causes) are 
reasonably normal (or perhaps uniform) since parallel 
regression findings based on mean centering are also 
reported and compared. [Recall the widely held assump- 
tion among social researchers, recently disproven by 
Echambadi et al. (2007), that each first-order component 
should approach a normal distribution in order for mean 
centering to be effective in conditioning for multicollin- 
earity.] Analyses conducted with the highly skewed 
symptom data (n = 268) in the current article also support 
the efficient application of SRC. 

2To ensure the validity of direct interpretations in SRC, I compared 
standardized predictor correlations in SRC versus raw regression. In 
regression 1A (Pain x Sleep Problems x Fever) of Table 2, the highest 
correlation is 0.363, followed by the second-highest value of 0.156, 
while correlations of standardized predictors in the raw regression are 
much higher and range as high as 0.972 (correlations of the three-way 
interaction range from 0.223 to 0.797). In regression 2A (Pain x Fever 
x Fatigue/weakness), all standardized predictor correlations are below 
0.001, while correlations of standardized predictors in the raw regres-
sion are much higher and range as high as 0.972 (correlations of the 
three-way interaction ranged from 0.200 to 0.866).  

It is also instructive to contrast correlations among unstandardized
predictors in a residualized model to those obtained from raw regres-
sion. The exhaustive SRC-CS model for regression 3B (all four three-
way interactions) is estimated to derive unstandardized slope parame-
ters (b). The initial residualizing regressions for the SRC-CS procedure 
partial out the correlated variation not only from secondary predictors 
(Shortness of breath/difficulty breathing and Nausea/vomiting) but also 
from non-derivative predictors that correspond to the remaining three-
way interactions. All correlations are below 0.001 while correlations in 
the raw regression are as high as 0.971 (correlations of the four three-
way interactions range from 0.189 to 0.864). 

However, only the simulated data reported in the cur- 
rent study provide a sufficient basis for confirming 
whether SRC has stable properties that manifest under a 
range of conditions. The simulated data (n = 250 and 
1000) were generated to have first-order components (i.e., 
x, w, and z) that are: normally distributed, highly skewed 
and asymmetrical with a similar shape (based on chi- 
square with 1 degree of freedom), and skewed and asym- 
metrical but with different shapes (i.e., based on chi- 
square with 5, 3, and 1 degrees of freedom, respectively). 
In all simulations, SRC produced identical parameter and 
standard error estimates for each order of predictor terms 
but with dramatic reductions in the corresponding VIF 
statistics. SRC was effective both in models with pro- 
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gressive increases in regression slopes across the set of 
predictors, and with positive and negative regression 
slopes occurring in a random pattern. As the overall va- 
riance explained was reduced, SRC did not introduce 
additional problems beyond those that occur in the raw 
regression. 

SRC is also critical for valid interpretations of the 
symptom clusters within the cancer data. In Table 2, 
regression 3A, in particular, shows that compared to 
mean centering alone, SRC can be effective in overcom- 
ing problematic multicollinearity, as evidenced by dra- 
matic reductions in VIF values (compare VIF and EVIF). 
The inflated VIF values for three of the four three-way 
interactions, and for three of the six two-way interactions, 
all fall in the SRC regression to EVIF values less than 10 
that no longer reveal problematic multicollinearity. The 
mean EVIF in regression 3A is approximately 2.6; it is 
ambiguous whether this finding meets the stricter, if 
rather vague, criterion that the mean EVIF across pre- 
dictors is not considerably larger than one [28], although 
any biasing influence from remaining essential multicol- 
linearity is limited and further reduced after SRC-Q. The 
exhaustive and simultaneous specification in regression 
3A provides a strict test that confirms the three-way in- 
teractions in Table 2 that were tested separately within 
more traditional explanatory models.  

Thus, it would appear that in contrast to mean center- 
ing alone, SRC is reliable for specifying, in the same 
regression, more than one interaction term of the highest 
order while considerably reducing problematic multicol- 
linearity (but not necessarily conditioning the full range 
of multicollinearity on account of remaining impacts 
from essential ill-conditioning). 

5.2. SRC with Quadratic Terms (SRC-Q) 

Hidden bias due to additional inessential ill-conditioning 
from indirectly related quadratic terms—based on the 
same one-way components for the interaction terms— 
can be removed by also specifying these non-derivative 
predictors within the initial residualizing regressions that 
yield the residualized predictors for SRC-Q. In the simu- 
lations, VIF values for the quadratic and interaction 
terms that remained inflated after SRC were no longer 
inflated after SRC-Q. The SRC-Q simulations with the 
quadratic terms added to the initial residualizing regres- 
sions supports the disproportionate influence of the un- 
conditioned quadratic terms. While correlations between 
any of the terms from the same order contribute to EVIF 
values in SRC, inflated EVIF values of quadratic and 
interaction terms may be related especially to the re- 
maining unconditioned correlations among quadratic 
terms and between quadratic terms and interaction terms 
of any order. Indeed, it is important to recognize that 

quadratic terms are the only terms that were not condi- 
tioned from the initial residualizing regressions that pro- 
vide residualized terms for the interactions.   

The inflated EVIFs in the original SRC simulations, 
and the marginal inflation of the mean EVIF in the can- 
cer illustration, confirm that the quadratic terms must be 
specified in moderated regression to prevent spurious 
interaction effects that are really due to curvilinear ef- 
fects from the interaction components.  

Unless the EVIF values remain inflated, SRC-Q is not 
necessary to remove this residual multicollinearity since 
it is limited only to the data that distinguishes the interac- 
tion terms from the quadratic terms—and not from the 
data that distinguishes the interaction terms from the 
one-way terms that contribute to the interaction and/or 
quadratic effects. In the cancer illustration, all EVIF val- 
ues were below 10 and only marginal inflation occurred 
in the mean EVIF, and so the SRC-CS that conditions 
essential multicollinearity from two secondary symptoms 
is not extended further by incorporating the quadratic 
terms within the initial residualizing regressions. In situa- 
tions where the mean EVIF across all parameters remains 
considerably greater than one, despite the use of SRC-Q, 
the strategy of interpreting overall net moderation for 
individual terms and for combinations of terms may be 
useful, based on standardized slope parameters and their 
sums. 

5.3. SRC with Control and Secondary Variables  
(SRC-CS) 

Hidden bias due to essential ill-conditioning can be re- 
duced by also specifying control and secondary variables 
within the initial residualizing regressions that yield the 
residualized predictors for SRC-CS. There are two dis- 
tinct approaches [9,24].  

In the first approach, because residual centering results 
in the independence of predictor terms, the control vari- 
ables (and secondary predictors) can also be added to the 
initial residualizing regression, and in my extension, to 
each of the sequential residualizing regressions, in order 
to condition away essential multicollinearity. These con- 
trol (and secondary) variables can then be dropped from 
the subsequent SRC-CS regression. Thus, the regression 
slopes can be assured to be uncorrelated with and inde- 
pendent from remaining control and secondary variables. 
An advantage of this approach concerns the capacity to 
accommodate a greater number of control variables than 
traditional moderated regression, since in the latter, con- 
cerns regarding essential multicollinearity and statistical 
power in the detection of interactions limit the number of 
control variables that can be specified. These issues do 
not affect the initial residualizing equations in SRC re- 
gression since the purpose of these equations is simply to 
generate the residualized variable of interest. In Table 2, 
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regressions 1B and 2B eliminate the secondary symptom 
variables (i.e., they are partialized from the residualizing 
regression but are not specified in the full, final regres- 
sion).   

In contrast, the second approach is used in regression 
3B. Here the residually centered predictor resulting from 
SRC-CS is used in the exhaustive final regression that 
still retains the control and secondary variables, even 
though they were included in the prior residualizing re- 
gression. In the exhaustive final regression, the control 
and secondary variables are no longer correlated with the 
residually centered predictor. 

In all SRC-CS regressions (1B, 2B, and 3B), the mean 
value remains very similar to the mean value in the cor- 
responding SRC regression (1A, 2A, and 3A). Compared 
to SRC, SRC-CS yields small additional reductions in 
EVIF that occur only within certain lower-order predic- 
tors. These findings suggest that SRC-CS may be limited 
in effectiveness when almost all of the predictors are 
highly clustered. Future research should investigate con- 
ditions in which SRC-CS may be more effective, for in- 
stance, when control and secondary variables comprise a 
greater share of the predictors or predict a high propor- 
tion of variance in the outcome. 

5.4. SRC and Total Net Moderation Effects 

SRC, SRC-Q, and SRC-SC condition inessential multi- 
collinearity, which results in orthogonalized parameters 
with low correlations (as reported for the cancer symp- 
tom data). These lowered correlations serve to validate 
the independence of the interaction and derivative terms, 
and therefore, the adaptation of the signed coefficient 
rule procedure to interpret parameters directly as total net 
moderator effects. Thus, we are no longer limited to post 
hoc interpretations (e.g., Table 4) of the highest-order 
interaction and its lower-order polynomial terms as a set, 
to determine the nature (magnifier and/or buffering) of 
moderator effects at different levels of the interacting 
variables. This same set may be interpreted directly as 
total net moderator effects. Furthermore, because the 
raw regression provides identical standardized (b) and 
unstandardized (b) slope parameters as the counterpart 
SRC or SRC extension, the independence of the interac- 
tion and lower-order polynomial terms and the valid use 
of the adapted signed coefficient rule procedure apply as 
well when only raw regression is conducted, despite the 
higher correlations among these predictors due to ines- 
sential ill-conditioning (Of course, inflated standard er-
rors in raw regression may result in Type II errors, such 
that SRC should still be conducted).  

The approach of standardizing all predictors may be 
used to simplify interpretations for models with interac- 
tion terms involving two or more co-moderator variables, 
which is desirable for gaining insight into more complex 

clusters of predictor variables, such as symptom clusters, 
within the sample. In contrast to assessing unique net 
magnifier effects of individual terms3, the total net mag- 
nifier effect from the interaction and its derivative terms 
does not appear to be affected by the variations in sub- 
group sizes within the sample—the total net magnifier 
findings, which are similar to the interpretations from the 
post hoc analyses reported in Table 4, appear to be gen- 
eralizable, although this claim should also be tested in 
other data. The adaptation of the signed coefficient rule 
in the current study assesses the total net moderator ef- 
fect from a set of terms based on the sum of the stan- 
dardized coefficients of the interaction and its lower- 
order polynomial terms.  

This adaptation provides an analysis of direct effects 
based on the same set of derivative terms that is used in 
post hoc procedures to assess indirect (co-moderator) 
effects along the range of the primary (x) variable. Here, 
the features of SRC are desirable for assessing, within 
the sample, a particular cluster of variables—represented 
3When expressed as standardized scores, it may seem that individual
slopes may be compared, combined into subsets, or both to provide 
greater insights into overall, net moderation effects. Using the original 
(i.e., non-adapted) signed coefficient rule, the sign of the coefficient 
for each interaction term would be compared to the sign of the coeffi-
cient for the primary x term in order to determine whether the interact-
tion term contributes a unique net magnifying or buffering effect (as 
discussed in subsection 2.2). Thus, the highest-order polynomial inter-
action term would be interpreted alone as to whether all co-moderators 
occurring simultaneously with x have the overall joint effect of magni-
fying or buffering the x-y relationship, without assessing the separate—
and perhaps mixed or countervailing—effects of each co-moderator 
variable. Similarly, each lower-order interaction term would be inter-
preted separately to determine whether it magnifies or buffers the x-y
relationship. Of course, the use of standardization means that unique 
net moderator standardized effects do not generalize beyond the sam-
ple. 

More troubling, however, are situations when the original signed 
coefficient rule may not be reliable to yield correct interpretations of 
the moderator effect, even with unstandardized scores, depending on 
the coding scheme for the moderator variable (see subsection 2.2). This 
dilemma occurs when participant subgroups revealed by the interaction 
term are correlated with the y variable but in the opposite direction, as 
Aguinis [18] demonstrated using a binary (0, 1) moderator variable. In 
the current study, the moderator variables are coded on ordinal scales 
in which the lowest value is also zero. Despite the total net magnifier
effect by Pain x Fever x Sleep Problems and its related lower-order 
polynomial terms (discussed in the main text), the standardized coeffi-
cient (b = –0.732) of this interaction term, assessed singularly, reveals 
that it demonstrates a unique net buffering effect as Sleep Problems 
increase. In Table 4, regression 1A, section B.2, when there is com-
plete control of Fever, the magnifier effect at low levels of Sleep Prob-
lems switches to a buffering effect as Sleep Problems increase. Note 
that the two subgroups for these two categories are especially large 
(i.e., 182 and 58 participants, respectively). On the other hand, with 
incomplete control of Fever, the magnifier effect across the range of 
Sleep Problems in Table 4, regression 1A, section B.1 involves only 
15 participants. These characteristics raise the concern that the unique 
net buffering effects of the interaction term, while a sample-wide effect
may be influenced or weighted by the number of participants in each 
subgroup, with the unique effect dominated by the larger subgroups. 
This suspected weighting may be a weakness since the unique effect 
from the signed coefficient rule should be determined solely by effect 
size without additional weighting by subgroup size. 
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by a specific interaction term and its lower-order poly- 
nomial terms. In some situations, the more useful infor- 
mation may be the overall, collective moderating effect 
(magnifying or buffering) by that cluster of variables, 
regardless of the uniform or changing influence by each 
of the component co-moderator variables across the 
range of the primary variable. For instance, in the cancer 
data, stronger net positive magnifier effects occur for 
Pain x Sleep Problems x Fever and its lower-order poly- 
nomial terms when Sleep Problems—rather than Pain— 
is the primary symptom that predicts Depressive Affect, 
an indicator of sickness malaise. These findings support a 
perspective in which sleep problems, such as prolonged 
duration or disruption, may equal or surpass pain as the 
primary symptom of sickness malaise [30]. In other 
situations—when post hoc analysis reveals that magnifier 
and buffering effects occur at different levels of modera- 
tor variable(s)—the overall, collective moderating effect 
(magnifying or buffering) by that cluster of variables can 
afford new insight into which of these different post hoc 
effects may be stronger. For instance, in the cancer data, 
the buffering effects when there is greater control over 
Fatigue/weakness appear stronger than the magnifier ef- 
fects as control over Fatigue/weakness lessens. 

Finally, note that post hoc procedures to assess the 
moderating influence(s) of each co-moderator variable 
are not practical for interpreting interactions with three or 
more co-moderating variables (i.e., at least four interact- 
ing terms). It follows that the total net moderating influ- 
ence may be the only option for interpreting more com- 
plex symptom clusters. 

5.5. Additional Properties of SRC 

SRC may lead to improved model estimates in contexts 
where multicollinearity per se is not the primary concern. 
For instance, SRC allows extended model specifications 
to test curvilinear interactions in order to understand the 
nature and potential limitations of specific monotonic 
relationships. Since analysts are often only able to posit 
relationships that are monotonically increasing or de- 
creasing, x and/or x2 may be statistically significant pre- 
dictors of y. x2 may better reflect the true, underlying 
measurement scale of x, or x2 may represent a true curvi- 
linear relationship [31,32]. This applies, of course, when 
variables interact. For example, an extended specifica- 
tion of regression 2B from Table 2 revealed the prob- 
ability value p = 0.056 for the curvilinear interaction, 
Pain x Fever2 x Sleep, in the raw regression (not shown). 
This tentative finding suggests that the true, underlying 
measurement scale of fever could either be captured bet- 
ter by the quadratic term (Fever2) than the linear term 
(Fever), and/or that the effect of the symptom interaction 
of pain, fever, and sleep on depressive affect could be 
stronger when fever is pronounced.  

Measurement unreliability is yet another context. In an 
article on the use of residual centering to model interac- 
tions among latent variables, Little, Bovaird, and Wida- 
man [29] point out that even in the context of ordinary 
regression (without latent variables), when a product 
term is residually centered, “(t)he variance of this new 
orthogonalized interaction term contains the unique 
variance that fully represents the interaction effect, inde- 
pendent of the first-order effect variance (as well as gen- 
eral error or unreliability)” (emphasis added, p. 500). 
Little and his colleagues illustrate an ordinary regression 
predicting Positive Affect that tests the interaction be- 
tween degree of belief that one is smart and intellectually 
able (Agency) and that successful intellectual perform- 
ance comes about because of unknown causes (Causes). 
The regression coefficient for the two-way interaction 
remains identical in the run when the predictors are mean 
centered and in the run when the interaction term is 
residually centered, while the regression slope for Causes 
increases slightly from 0.04 to 0.05—a change which is 
sufficient, nonetheless, for the Causes regression coeffi- 
cient to become newly statistically significant in the run 
with the residually centered interaction term. The re- 
searchers attribute this change to the removal of multi- 
collinearity and general error or unreliability that stems 
from non-normality in the first-order predictors, that is, 
to the additional “...influence on the regression coeffi- 
cients between mean-centered predictors and their inter- 
action term when the mean-centered term in not com- 
pletely orthogonal” (p. 501).   

Little and his colleagues [29] do not consider, how- 
ever, that the change could result from systematic biases 
in the first-order slopes for Agency and Causes, which 
are not residually centered as well.   

In addition, although remaining unsystematic bias 
from general error or unreliability is not an issue in their 
two-way interaction model, it would become relevant 
when a three-way interaction or curvilinear interaction is 
added. Their use of residual centering conditions general 
error or unreliability from the interaction term alone (and 
not as well from any curvilinear terms, or interaction 
terms from which they derive, had they been specified). 
The SRC approach developed in the current paper 1) 
avoids systematic biases in lower-order polynomial terms; 
and 2) conditions general error or unreliability not only 
from the highest-order polynomial interaction term (as 
does residual centering) but also from any related, lower- 
order polynomial terms (i.e., other interaction terms, 
quadratic terms, one-way terms). This sequential ap- 
proach provides valid estimates for all parameters that 
contribute to simple effects and to post hoc assessments 
of the nature and strength of quadratic or moderator ef- 
fects across the range of x. 
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6. Conclusions and Recommendations 

As signals of multicollinearity, inflated statistics for VIF 
(and corresponding deflated statistics for tolerance) are 
common when estimating QMMR equations. These sta- 
tistics do not distinguish essential from inessential mul- 
ticollinearity, and therefore do not assist the analyst in 
assessing whether problematic multicollinearity may be 
biasing significance tests for some or all of the estimated 
slope coefficients. However, SRC and SRC-Q serve to 
condition all predictor terms for inessential multicollin-
earity, even when first-order components of interaction 
terms are non-normal. Although uncentered or mean- 
centered parameter estimates do not change when SRC 
or SRC-Q is applied, VIF statistics now can be taken to 
represent only essential multicollinearity. Furthermore, 
the SRC-CS variation can be used to reduce even essen- 
tial multicollinearity, especially if it remains problematic.  

The simulations and clinical example reveal that re- 
ductions in VIFs can be dramatic. These reduced VIF 
statistics (i.e., essential VIF or EVIF) can be used to cal- 
culate lower standard errors of regression slope coeffi- 
cients—essential standard errors (ESEs)—from which 
the biasing effect of multicollinearity is conditioned away. 
Clearly, SRC, SRC-Q, and SRC-CS may improve the 
statistical conclusion validity of inferences compared to 
the raw QMMR. In addition, VIFs that improve in mod- 
els of linear interactions may lead analysts to consider 
extended specifications with curvilinear interactions in 
order to target the test of the interaction to the more ex- 
treme values of one or more predictors or to overcome 
restricted specification of monotonic relationships (An 
example of the latter is when x is monotonic and yet only 
a two-way model is specified when there are higher-or- 
der effects, such that the interaction xw may also be tap- 
ping wx2—and w2x and w2x2 as well if we assume that w 
is also monotonic).  

SRC and its extensions can be applied efficiently after 
traditional (non-sequential) residual centering reveals the 
highest-order interaction term from an uncentered or 
mean-centered regression to be statistically significant, 
based on its ESE. The unbiased b and SE estimates of all 
remaining terms can then be obtained using the raw re- 
gression, where inflated VIF values for any of the lower- 
order polynomial terms signify which particular SRC 
regressions should be conducted (i.e., SRC regressions 
should be conducted separately and sequentially for each 
lower-order set of terms that reveal one or more inflated 
VIF values.) From each SRC regression, the analyst ob- 
tains lower ESE estimates to use in place of the SE esti- 
mates and inspects the EVIF values to assess if remain- 
ing multicollinearity continues to be problematic (also 
see [21]). This efficient strategy for applying SRC cor- 
rects for biases in lower-order polynomial terms and par- 
tial correlations that would be introduced by traditional 

(non-sequential) residual centering. The unbiased esti- 
mate of the coefficient for the primary x predictor also 
ensures correct conclusions as to partial versus full mod- 
eration compared to traditional residual centering. 

When interaction terms are interpreted directly (i.e., 
without a post-hoc procedure), SRC, SRC-Q, and SRC- 
CS are unique in assuring correct interpretations about 
the nature of the overall moderation effect by the interac- 
tion term or combined set of terms. In eliminating ines- 
sential multicollinearity, SRC and its extensions lead 
residualized terms to have low correlations with the 
highest-order polynomial interaction and related lower- 
order polynomial terms. As a result, residualized interac- 
tion terms in SRC can be taken to be independent in con- 
trast to uncentered or mean-centered raw regression, such 
that they may be interpreted in novel ways to represent 
overall net buffering or magnifying effects. However, 
SRC and raw regressions provide equivalent slope pa- 
rameter estimates, such that interaction terms from un- 
centered or mean-centered raw regression may also be 
taken to be independent, despite inflated correlations 
among the highest-order polynomial interaction and re- 
lated lower-order polynomial predictor terms, as long as 
essential multicollinearity with secondary variables and 
non-related predictors is not excessive—however, SRC 
may be necessary to determine whether this is so. SRC 
and raw regressions in which predictors are standardized 
allows: 1) regression slope comparisons to determine 
which predictors have stronger effects (which may be 
unduly influenced by subsample sizes, however); and 2) 
summed values of regression slopes to afford broader 
interpretations (e.g., assessing whether there is an overall 
net buffering or magnifying effect across interaction 
terms that include both w and x). When there is a lack of 
appropriate control or secondary variables to perform 
SRC-CS, the latter option may be useful if essential mul- 
ticollinearity among co-moderator variables remains 
problematic.  

I also recommend applying SRC and its extensions for 
estimation of structural equation models (SEM) with 
interaction terms. Although residual centering is a cur- 
rent option for estimation, as in regression it yields unbi- 
ased estimates only for slopes and standard errors of 
highest-order polynomial interaction terms [24,29]. SRC 
and its extensions will also provide unbiased estimates 
for related lower-order polynomial terms, which affords 
opportunities to compare direct effects, assess overall, 
net moderator effects, and apply post hoc procedures to 
interpret the nature of moderator effects within these 
SEM models. 

The current study reveals that SRC, SRC-Q and SRC- 
CS could condition for inessential and essential multicol- 
linearity that may otherwise be misattributed to low in- 
formation within a sample considered to be of insuffi- 
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cient size to ensure statistical power. It is important to 
recognize that Type I (i.e., false positives) and Type II 
(i.e., false negatives) errors may not only stem from bi- 
ased or underpowered samples but also from crudely 
specified models that lack flexibility, scope, and speci- 
ficity. An intriguing issue for future research is the po- 
tential for SRC, SRC-Q, and SRC-CS to protect against 
Type I and II errors in observational, quasi-experimental, 
and even experimental studies. In many cases, investiga- 
tors may not consider synergistic, curvilinear or interac-  
tion-based models, limiting their investigations to one- 
way models of simple or main effects, or the constraints 
from multicollinearity preclude or limit higher-order 
specification. In particular, it would be very useful to 
determine the conditions in which applying SRC and its 
extensions to small “underpowered” samples (with at 
least a minimum number of participants within each in- 
teraction subgroup) sufficiently reduces Type I error and 
improves the chances of deriving replicable findings. The 
impetus for this recommendation stems from the inter- 
pretations in Table 4, which were derived in [21], where 
despite far fewer participants reporting uncontrolled fe- 
ver over no fever, distinctive and even countervailing 
effects were detected within each of these subgroups. In 
this context, hypotheses restricted to one-way polynomial 
predictors regarding the impact of individual physical 
symptoms within the full sample might be less replicable 
in other data than the two- and three-way subgroup ef- 
fects since these symptoms tend to cluster within the 
same individuals and have mutually synergistic effects. 
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