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ABSTRACT 

In this paper, parabolic refocusing lens is designed for the same requirements as Rotman lens. Comparison of results 
obtained with the parabolic refocusing lens with those obtained for the Rotman lens is also given. 
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1. Lens Geometry 

Figure 1 shows the cross-section of a trifocal Parabolic 
refocusing lens [1]. One focal point F0 is located on the 
central axis, and two others F1 and F2 are symmetrically 
located on either side on a parabolic focal arc. Outer 
contour I2 is a straight line and defines the position of the 
radiating elements. I1 is the inner contour of the lens (also 
called the array contour). TEM mode transmission lines 
W(N) connect the inner and outer contours. Two off axis 
focal points F1and F2 are located on the focal arc, and 
makes angles, 0 and – with the X-axis when feeds are 
placed at F1 , F0 and F2 respectively. 

A ray originating from F1 may reach the wave front 
through a general point P(X,Y) on the inner contour I1, 
transmission line W(N) and point Q(N) on the outer con-
tour ,and then trace a straight line at an angle –α and ter-
minate perpendicular to the wave front .Also the ray from 
F1 may reach the wave front from F1 to the point O1, and 
then through transmission line W(0) to the wave-front. 
Similarly rays from other feed points may reach their 
respective wave-front. 

Inner contour and the transmission lines are designed 
from the design equations, which are derived using the 
fact that, at the wave front, all the rays must be in phase 
independent of the path they travel. This requires that the 
total phase shift in traversing the path to reach the wave 
front in each case be equal. Using this concept and refer-
ring [2] to figure 1 following design equations are writ-
ten: 

   1 sin 0r re r reF P W N N F W        (1) 

   2 sin 0r re r reF P W N N F W        (2) 

   0 0r re r reF P W N G W              (3) 

where, 

     2 2

1

2
F P X c Y d            (4) 

     2 2

2

2
F P X c Y d            (5) 

     2 2

0

2
F P X Y               (6) 

F = Distance from point O1 to F1 called the off axis 
focal length. 
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Figure 1. Parabolic Lens Design Geometry. 
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G = Distance from point O1 to F0 called the on axis 
focal length. 

d = F sin (Y- coordinate of point F1) 
c = G – F cos (X- coordinate of point F1) 
N = Indicate the position of the radiating elements, 

called the lens aperture. 
r = Substrate dielectric constant. 
re = Effective dielectric constant of the transmission 

lines. 
Design parameters are normalized relative to the 

maximum lens aperture Nmax and defined as follows: 

maxf F N  

maxg G N  

      max0re rw W W N N    

maxN N   

maxy Y N  and  

maxx X N  

From Equation (4) 
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Normalizing w.r.t Nmax 
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Similarly 
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From Equation (1) 

     10re rW W N F P F N sin             

Dividing above Equation by maxr N  

 1 max sin rw F P F N                (9) 

   1 max sin rF P N w f             (10) 

   2 max sin rF P N w f             (11) 
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Solving for y we get 

 sin sinry f w f                (12) 

From Equation (3) 
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By equating value of  2

1 maxF P N   with Equation (10) 
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Similarly for  2

2 maxF P N   with Equation (11) 
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Adding above two Equations 
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Putting value of 2 2x y  from Equation (13) 
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where 

   
   

2
sin 2 cos

cos

ra g f g

b f g f g

   



  

  
            

From Equation (13) 
2 2 2 2 2x y w g g w     

Putting the value of x and y in above equation 
We get equation in form 
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For the given value of design parameters F, G, Nmax 
and  it is required to calculate the value of , such that 
the height of the two contours (feed and array contour) be 
equal. Y coordinate of array contour is given by Equation 
(12). For maximum value of lens aperture i.e. 

   max

and

sin sinry f w f   

maxN = N ,    η = 1   
         (16) 

ax                
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To equalize the height of the two contours Y coordinate 
of the feed contour i.e. f sin must be equal to ymax i.e. 

   sin sin sinrf f w f    

X



      (17) 

Substituting the value of w and  we get X and Y. This 
completes the design of a trifocal parabolic focal arc 
bootlace lens. 

The relations give the coordinates of the focal arc: 
2 4Y a  

where 

2 2sin 4 cosa F G F            (18) 

2. Phase Error 

Path length error for the lens is defined as the difference 
in path length between a central ray through the origin 
and any other ray [1], both of which is traced from an 
arbitrary point on the focal arc through the lens and ter-
minates normal to the emitted wave front. 

When a feed is placed at one of the focal point, corre-
sponding emitted wave front has no phase error. When 
the feed is displaced from the focal point, the corre-
sponding wave front will have a phase error. However, 
for wide angle scanning lens must be focused at all the 
intermediate points along the focal arc. 

Let a feed be located at point R (Figure 1) on the focal 
arc for the out going beam at an angle –. Let Ra and Rb 

be the phase shift from the feed position to the wave front 
when the ray is passing through P (X, Y) and O1, respec-
tively. The phase error is given by 

aL R Rb                    (19) 

where 

    sina r reR RP W N N           (20) 

   1b r reR RO W   O              (21) 

Let, (RO1) = H Coordinates of point R is given by 
(G-H cos1 , H sin1) where 
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To calculate the value of H 
We use equation  and Equation (18) 2 4Y a X


From Figure 1 for new point (G-H cos1, H sin1) 

    2 2 2
1 1sin sin cos cosH F G H G F      (22) 

To calculate H 
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Normalizing w.r.t Nmax and calculating h 
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Solving the above quadratic equation we get value of h 
and thus we get all the parameters to calculate path length 
error  L. 
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 

max max

1 max                 sin

r

r
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RO N

  r
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         (24) 

3. Specific Design Example 

This section describes an example of the design and 
analysis of rotman lens and parabolic refocusing lens to 
feed a linear array of waveguide horns. It is required to 
design the lens for the following requirements 

G = 3 λ: g = 1.8942 
F = 2.7 λ: f = 1.705 
Angular coverage = ± 35˚ 

Number of antenna elements = 10 
Central frequency = 3.4641 GHz 
The complete structure is assumed to be fabricated in a 

micro strip substrate of thickness 1/16 inch and dielectric 
constant 3.7 and the loss tangent is 0.001. 

4. Result and Discussion 

Figure 2 shows the variation of the normalized phase 
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Figure 2. Variation of the normalized phase error ( maxδL N ) 

with the normalized lens aperture for different value of 
scanning angels ( ) . 
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error ( maxL N ) with the normalized lens aperture for 
different value of scanning angels (). Figure 3 shows 
the variation of normalized phase error with “f ”  for dif-
ferent values of scanning angles. It may be noted that 
error is minimum at specific value of “f ” . Figure 4 
shows the variation of normalized phase error with “g” 
for different values of scanning angles and Figure 5 
shows the Normalized phase error for the Rotman lens Vs 
the Normalized phase error parabolic refocusing lens. 
Table 1 shows the variation of normalized phase error 
“” for different scanning angles. Phase error is 0 for  = 
. 
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Figure 5. Normalized phase error for the rotman lens vs 
parabolic refocusing lens. 
 
Table 1. Variation of normalized phase error “” for dif-
ferent scanning angles, Phase error is 0 for  = . 

Alpha Normalized Phase Error 

10 –0.290871 
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Figure 3. Variation of normalized phase error with “f ”  for 
different values of scanning angles. 5. Concluding Remarks 
 

Refocusing of Rotman type lens using parabolic focal arc 
has been performed. Phase error at the wave front has 
been calculated for the circular and parabolic focal arc 
lenses. Normalized phase error for the lenses has been 
compared. Normalized phase error for the parabolic re-
focusing lens is greater than the Rotman lens. 
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Path length error also depends upon α, as α approach 
towards scanning angle (θ), path length error decreases. 

REFERENCES 
[1] P. K. Singhal, P. C. Sharma and R. D. Gupta, “Recent 

Trends in Design and Analysis of Rotman-Type Lens for 
Multiple Beamforming,” International Journal of RF and 
Microwave Computer-Aided Engineering, Vol. 8, No. 4, 
1998, pp. 321-338. 

[2] P. K. Singhal, P. C. Sharma and R. D. Gupta, “Compari-
son of the Performance of the Rotman Type Lenses Ob-
tained by Different Design Approaches,” TENCON 99. 
Proceedings of the IEEE Region 10 Conference, Cheju 
Island, Vol. 1, September 1999, pp. 738-741. Figure 4. Variation of normalized phase error with “g” for 

different values of scanning angles. 


