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Abstract

The risk-sensitive filtering design problem with respect to the exponential mean-square cost criterion is con-
sidered for stochastic Gaussian systems with polynomial of second and third degree drift terms and intensity
parameters multiplying diffusion terms in the state and observations equations. The closed-form optimal fil-
tering equations are obtained using quadratic value functions as solutions to the corresponding Focker-
Plank-Kolmogorov equation. The performance of the obtained risk-sensitive filtering equations for stochastic
polynomial systems of second and third degree is verified in a numerical example against the optimal po-
lynomial filtering equations (and extended Kalman-Bucy for system polynomial of second degree), through
comparing the exponential mean-square cost criterion values. The simulation results reveal strong advan-

tages in favor of the designed risk-sensitive equations for some values of the intensity parameters.

Keywords: Optimal Nonlinear Filtering, Risk-Sensitive Filtering, Extended Kalman-Bucy Filtering

1. Introduction

Since the linear optimal filter was obtained by Kalman
and Bucy (60’s), numerous works are based on it, see for
example [1-5], of the variety of all those. The determi-
nistic filter model introduced by Mortensen [6] provides
an alternative to stochastic filtering theory. In this model,
errors in the state dynamics and the observations are
modeled as deterministic “disturbance functions”, and an
exponential mean-square cost criterion disturbance error
is to be minimized. Special conditions are given for the
existence, continuity and boundedness of f(X (t)) in
the state equation, which is considered nonlinear, and the
linear function h(X (t)) in the observation equation. A
concept of stochastic risk-sensitive estimator, introduced
more recently by McEneaney [7], regard a dynamic sys-
tem where f (X (t)) is a nonlinear function, linear ob-
servations and existence of parameter & multiplying
the diffusion term in both equations (state and observa-
tions). In [8] were obtained the suboptimal risk-sensitive
filtering equations for polynomial systems of third de-
gree and applied to the pendulum equations [9], in which
the original system was linearized applying Taylor series
around the equilibrium point. In [10,11] it is regarded
f (X (t)) as nonlinear function. This paper presents an
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application of the equations obtained in [10,11] for sin-
gular form of f (X (t)) (polynomial of second and
third degree).

The goal of this work is to obtain the optimal risk-
sensitive filtering equations when the form of f (X (t))
is polynomial of second and third degree and parameter
& multiplying the diffusion term in the state and obser-
vations equations. There filtering equations are obtained
taking a value function as solution of the nonlinear pa-
rabolic partial differential equation and exponential
mean-square exponential cost criterion to be minimized.

Undefined parameters in the value function are calcu-
lated through ordinary differential equations composed
by collecting terms corresponding to each power of the
state-dependent polynomial in the nonlinear parabolic
PDE equations. This procedure leads to the obtention of
the optimal risk-sensitive filtering equations.

The closed-form for risk-sensitive filtering equations
is explicitly obtained in this work. Although the diffi-
culty presented by systems of second and third degree, in
this work is shown an advantage for risk-sensitive filter-
ing equations versus extended Kalman-Bucy and poly-
nomial filtering equations under certain values of the
parameter ¢ . This performance is shown verified in a
numerical example against the mean-square optimal for
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polynomial filtering equations (and extended Kalman-
Bucy for systems of second degree), through comparing
the exponential mean-square cost criterion values in fi-
nite horizon time. The simulation results reveal strong
advantages in favor of the designed risk-sensitive filter-
ing equations for all values of the intensity parameters
(in Table 1) multiplying diffusion terms in state and ob-
servation equations. Tables of the criterion values and
graphs of the simulations are included. This exponential
mean-square cost criterion function contains the parame-
ter & which appear in the dynamic system, which leads
to a more robust solution. This work is organized as fol-
lows: filtering problem statement, optimal risk-sensitive
filtering for stochastic system of second degree, optimal
risk-sensitive filtering for stochastic system of third de-
gree, application for systems of second degree, applica-
tion for systems of third degree, conclusions and refer-
ences.

2. Filtering Problem Statement

Consider the following stochastic model (1), where X(t)
denotes the state process, Y (t) denotes a continuous
accumulated observations process, X (t) satisfies the
diffusion model given by

dX (t)=f(X (t))dt+\/;dw (1) (1)

where f (X (t)) represents the nominal dynamics, and
W is a Brownian motion, and the observation process
Y (t) satisfies the equation:

dY(t):h(X(t))dt+\/;dV\7(t), Y(0)=0, (2)

where & is a parameter and W and W are independ-
ent Brownian motions, which are also independent of the
initial state X (0) . X(0) has probability density
k, exp(—g_'qo(X (0))) for some constant K, .

Let us consider

J= glogE[expijoT L(X (t),m(t),t)dt/Y (t)} 3)

the exponential mean-square cost criterion to be mini-
mize. In the rest of the paper the assumptions (A1)-(A4)

(from [10]) are hold:

e (Al) f,g,heR"with f,,h bounded.

o (A2) D,(|x"~1)<4(x) <D, (|x +1). Here f, is
the matrix of partial derivatives of f with h, defined
similarly. ¢(x) is a continuous, real-valued function
satisfying (A2) for some positive D,, D,.

e (A3) f,heR" with f, h bounded and f, , h, bounded
and globally Holder continuous. (A function U is globally

Copyright © 2011 SciRes.

Holder continuous if there exists « €(0,1], K <o such
that |u(x)—u(y)| <K|x-y|" forall x,y).

® (A4) Given R < oo, there exists Ky <o such that
|#(x)—4(y)| < Ke|x—y] forall |x], |y|<o.

Let q(T,X(t)) denotes the unnormalized condi-
tional density of X (T), given accumulated observa-
tions Y (t) for 0<t<T .Itsatisfies the Zakai stochas-
tic PDE, in a sense made precise, for instance in [12]. It
is assumed that

9(0.X (1)) =exp(==""p(X (1))).
q(T.X (1)) = p(T.X (1)) exp[ &Y (T)-h(x(t)) ]
where p(T,X(t)) is called pathwise unnormalized

filter density. p satisfies the following linear second-
order parabolic PDE with coefficients depending on

Y(t):

“4)

op (- - K
E_(L(T)) p+—P. (5)

where, for every g eR", let
&
Lg :Etr(agxx )+ f 'gX:

L(T)g=Lg-a(Y (T)~h)X gy
6
(X (0)=La(x @) ()), r(rym),

~L(Y (7))~

L denotes the differential generator of the Markov dif-
fusion X (t) in (1). By assumptions (A1) and (A3) in
[10], K is bounded and continuous. (L(T)) is the for-
mal adjoint of L(T). Since Y (08 =0,  p(0,X(t))
=q(0,X (t)). The initial condition for (5) is (4). For
some given Y € C,(0,T], (where C, denote the space
of continuous Y (t) such that Y (0)=0, with the sup
norm | ||). The pathwise filter density p is the unique
“strong” solution to (5) and (4) in a sense made precise
in [12]. Further, p is a classical solution to (5) and (4)
with p continuous on [0,T,]xR" and partial derivatives
Prs Px,» Pxx,» 1> J=1,---,n continuous for 0<T <T,
[13,14].

Moreover, p(T, X (t);Y)> 0. We rewrite (5) as fol-
lows:

B (X () )t Aprop D
where
A=-1 (X ) +a(x )Y On(x)),
+ediv(ay ()
B=(T.X(t))
ICA
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~tr(ag (X (1)
- ediv] 10X -a(X (O)(¥ (T) (X (1), ]

+K(T,X(1)),
(div(a (), =35, (), =1
tr(ay )= Zin,jzl(aij )xixj

These assumptions imply uniform bounds for A and B,
depending on the sup norm [Y| on [0,T,], but not on
& . Taking log transform: Z (T, X (t)) =¢log p(T, X (t)) ,
which satisfies the nonlinear parabolic PDE:

4
oT
with initial condition Z, (0,X (t))=-¢(X (t)). The
optimal risk-sensitive filtering problem consists in found

the estimate C(t), of the state X (t) through verifica-
tion that

2(T.X (1) =5 (X ()-C 1) QU)X ()-C(v)
#p(T)=Y(T)h(X (1)),

is a viscosity solution of (9).
Where X (t)eR", w(t)eR", Y(t), v(t)eR",
f, heR" with f,, h bounded is assumed through-
out. Here h, is the matrix of partial derivatives of h and
the same form for Z, .

:gtr(ZXX)+A-ZX Jr%zX .Z, +B, 9)

(10)

3. Optimal Risk-Sensitive Filtering Problem

3.1. Optimal Risk-Sensitive Filtering for
Stochastic System of Second Degree

Taking (X(t))=A(t)+A ()X (t)+A (t)-XT (t)X(t),
h(X(t))=E(t)+E, (t) X (t) with A(t)eR", A(t)eM
A(t)eT n» E(t)eE(t)eR”, M, where M,
denotes the field of matrixes of dimension ix j and
Ti.j« denotes the field of tensors of dimension
ix jxk n. The following stochastic equations system is
obtained:

dX (t) = A(t)+ A (1) X (1)+ A (1) XT (1) X (t)
+ZdB(t), (11)
dY (t)= E(t)+E, (t) X (t)+/ZdB(t),

where &= 5/ ( 2y° ) The optimal filtering problem con-

nxn?

sists in to obtain the estimate of the state X (t) given

the observations equations, which minimizes the expo-
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nential mean-square cost criterion, taking Z (T, X (t))
(10) as solution of the nonlinear parabolic partial differ-
ential Equation (9).

Theorem 1. The solution to the filtering problem, for
the system (11) with criterion (3) takes the form:

C(t)=A(t)+ A (1)C(1)-Q(1)Q ' (t)C(t)
+Q (1) (t)(dy-E(t) +Q(1)C(1)
+2sA,(1)Q 7 (1), (12)
Q(t)=-A(t)Q(t)-Q(t) A (t)+Q" (t)Q(t)
—E[ (DE (1).
where C(t) is the state estimate vector with initial
conditions with initial condition C(0)=C,, and Q(t)

is a symmetric matrix negative defined, where the initial
condition Q(0)=aq, is derived from initial conditions

for Z.1f (X (t))=X" (t)KX(t), Q(0)=-K.
Proof: The value function is proposed

2(T.X ()= S (X(0)-c) QX)) |
AT YDA

z (0 X(t )) ( ), (C (t)) are func-

tions defined on [0,T],C(t)e R” ( ) is a symmetric

matrix of dimension nxn and p(t) is a scalar func-
tion) as a viscosity solution of the nonlinear parabolic
PDE (9). Z,,Z,, are the partial derivatives of Z re-
spect to X (t) and VZ is the gradient of Z. Then the
partial derivatives of Z are given by:

~Y (t)(E(t)-E, (t)x(t))
1 (14)
Z, =5Q(t)(x(t)—c(t))
2 (X()-C V) V- (VE ().
Zyy :Q(t)'
Let us consider:
A=—A(t)-A(t) X (t)- A (t) X" (t) X (t) (15)
+Y(T)E, (t)
B:—ngz(t)x(t)—eAl(t)Jf%(Y(T)El (1)
< (A1) - A O X (O-A OXT ()X ()
Y (T)E, (1)) ——|E (t)+E ()X (1)
ICA
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Substituting (14) and the expressions for A, B in (9);
we obtain:

+E ()X (1) .

(16)

Collecting the X' (t)X(t), XT (t)X (t)XT(t) and
X" ()X (t)XT (t)X(t) terms, and replacing X (t)
by C(t); we obtain the matrix equation for Q(t). Col-

lecting the X (t) terms, the vectorial equations for
C(t) are obtained (12).

3.2. Optimal Risk-Sensitive Filtering for
Stochastic System of Third Degree

Takingng())=A(t) A(t) X() Az() "(1)-X(1)
+A (X (DX ( (X (1) =E()& ()X (1)
with A(t) e R", ()eMnxn,@(t) s A (1) €Tnens

denotes the field
denotes the field

E(t)eR", E (t )eMnXpwhere M.,

of matrixes of dimension ix j, Tix ik

of tensors of dimension ix jxk and T, denotes
the field of tensors of dimension ix jxkxI|. The fol-
lowing stochastic equations system is obtained:
dX (t) = A(t)+ A (t) X (1) + A (1) X7 (1) X (t)
+AOXT(OX (X ()+edB(),  (17)
dY (t) = E(t)+E, (1) X (t) +VZdB(t), X (0)= X,

where &= 8/(2}/2)
Theorem 2. The solution to the filtering problem, for
the system (17) with criterion (3) takes the form:

C(1)= A)- A (C()-Q(1Q” ()C (1)
-0 (1€ () -1 E() Q) (1),

Q1) =A()QM)+QYAT (1)~ A (1)Q(t)C(1)
-(AMRCH) +A(HRC(Y)

(18)
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—AMCHCT(1)Q()
-(A(MCECT (©R))
A QT (1)
+(AMR()C(H)ET (1)
+Q" (t)Q(t)—&div[ f (C)-
~El(DE (1)

where C(t) is the state estimate vector with initial

conditions with initial condition C(0)=C,, and Q(t)

is a symmetric matrix negative defined, where the initial
condition Q(0)=aq, is derived from initial conditions

for Z.1f p(X (t))= X" (t)KX(t), Q(0)=-K .
Proof: In similar form to Theorem 1.

Y (V)E (t)]

4. Applications

4.1. Application for Systems of Second-Degree.
Optimal Risk-Sensitive Filtering Equations

Consider the following dynamical stochastic system as-
sociated to a continuous stirred tank reactor in which is a
chemical reaction occurs. This reaction is in liquid phase
and has isothermal character between multicomponents
[15].

X, (t)=—(1+ Dy ) X, +u(t) + /2—'92dW1(t),
¥

X, (t) =Dy X, - X, —D, X2 + /%dwz(t).
y

where X, (t) represents the unnormalized concentra-
tion P/C,, of a certain specie P of the reactor, X, (t)
represents unnormalized concentration C, / Cp, of a
certain specie Q. The control variable u is defined as the
relation between the alimentation molar rate by volumet-
ric unit of P, designated by N,- and the nominal con-
centration C,,, this is u=N,./FC,, , where F is the
volumetric flow of alimentation onm’s™. D, =kV /F,
D,, =k,VC,,/F where V is the volume of reactor in
m’, k, and k, are constants of first degree given in
s'. It can take that D, and D,, are considering by
D, =1 and D,, =1.Q is highly sour while P is neuter.
Then, the following dynamical stochastic system is ob-
tained:

(19)

X, (t)==2X, +u( 2'}9/2dW1

(20)
X, (t)=X / —dw, (t

ICA
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Applying the equations (12) to the system (20), the
equations of the optimal risk-sensitive filtering are ob-
tained:

Qll = 4Q11 + Q121Q122 -1,

Q, =3Q,+Q, +Q,,Q, -Q,Q,,,
sz =2Q,,-2Q, + Q122 + szz -1,

. _Q11 .
Cl =T < ~2 |~ 2201 - 12C2
Q11Q22 _le |:Q (Q Q )
+Q12 (anz -Q,C )_Ylez +Y2Q|2:| 21
_2C1 +Q11C1 +Q12C2»
_le A
2 = > 12 22C1 - |2C2
QIIQZZ _le |:Q (Q Q )

+Q22 (Q11C2 -Q,C, )_Y1Q12 +Y2Q11 _25Q|1:|
+C,-C, +Q,C, +Q,,C,.

The initial conditions for the risk-sensitive filtering
equations are: X, (0) =20, X, (0)=10,Y,(0)=2, Y, (0) =1,
C,(0)=1, C,(0)=5 Q,(0)=6, Q,(0)=0.0001,
Q,,(0)=-7, the final time is T =2s. The system
formed by the equations (20) and (21), is simulated using
Simulink in MatLab7. The performance of the designed
equations is compared versus the equations of the poly-
nomial filtering [1] and the equations of the extended
Kalman-Bucy filtering [16], applied to the system (20),
that is optimal with respect to the conventional exponen-
tial mean-square cost criterion.

4.1.1. Polynomial Filtering Equations
The corresponding equations for the polynomial filtering
[1] are given by:

5 & 2y 2
R =4R, +W_T(Plz +R}).

. 2y°
P12 = P11 _3P|2 _2m2P|2 _T(PIIPIZ + P12P22)a

: g 2y
Pzz=2P22+2F’12—4m2|:’22+y—7(|:’é+P222), 22)

2
ity =-2m,+ 2[R, (Y, =m ) Ry (Y, -m )]
m, =m, —m, _mz2 -P,
2
+%[pu (Y, ~m )+ P (¥, -, ) .
where the initial conditions are X, (0)=20, X,(0)=10,

Y,(0)=2, Y,(0)=1, m (0) =1, B, (0)=100, P, (0)=—1,
P, (0)=1x10".
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4.1.2. Extended Kalman-Bucy Filtering Equations
The equations of the extended Kalman-Bucy [13] filter-
ing are given by:

: g 27

R, =4P +W_T(Pé + Pﬁ)

. 2y°

R, =P, -3R, __(Pnplz + Plzpzz)s

¢ 2,7 (23)

3 2 Y 2 2
P, =2R, -2P, +y‘7(P12 + Pzz)a

2
m, =-2m, +%[F)11<Y1 _m1)+ R (Yz _mz):lz

2
m, =m, —m, +%[P}2 (Yl —m1)+ P, (Yz —mz)].

1) Consider the stochastic dynamical system associ-
ated to a continuous stirred tank reactor and the follow-
ing initial conditions for the state and observations equa-
tions: X, (0)=20, X,(0)=10, Y,(0)=2,Y,(0)=1, the
final time is T =2s. The initial conditions for the fil-
tering equations in which case are given by:

a) For risk-sensitive filtering equations:

C,(0)=1,C,(0)=5, Q,(0)=6, Q,(0)=0.0001,

Q, (0)=-7.

b) For polynomial filtering equations:

m, (O) =1, m, (0) =5 R (0) =100, P, (0) =-1

P, (0)=1x10".

c) For Extended Kalman-Bucy filtering equations:

m, (0)=1, m, (0)=5, P, (0) =5, P, (0)=3,

P,(0)=5.

Table 1 presents comparison between the exponential
mean square cost criterion J for the three types of filter-
ing equations; you can see that the J, g values are the
smallest for all values of the intensity parameter & .

2) Consider the stochastic dynamical system associ-
ated to a continuous stirred tank reactor and the follow-
ing initial conditions for the state and observations equa-
tions: X, (0)=50, X,(0)=1, Y,(0)=2, Y,(0)=1, the
final time is T =2s. The initial conditions for the fil-
tering equations in which case are given by:

a) For risk-sensitive filtering equations:

G (0) =1, C, (O) =5, Q; (0) =-7,Q, (0) =0.0001,
Q,(0)=-75.

b) For polynomial filtering equations:

m, (0) =1, m, (0) =5, P, (0) =85, P, (0) =-10,
P,(0)= 2x10".

c¢) For Extended Kalman-Bucy filtering equations:
m, (0) =L m, (0) =5 R (0) =2, R, (0) =5,

P, (0)=10.

ICA



52 M. A. ALCORTA-GARCIA ET AL.

Table 2 presents comparison between the exponential
mean square cost criterion J for the three types of filter-
ing equations; you can see that the J,_ o values are the
smallest for all values of the intensity parameter ¢ .

3) Consider the stochastic dynamical system associ-
ated to a continuous stirred tank reactor and the follow-
ing initial conditions for the state and observations equa-
tions: X, (0)=0.05, X,(0)=50, Y,(0)=2, Y,(0)=1,
the final time is T =2s. The initial conditions for the
filtering equations in which case are given by:

a) For risk-sensitive filtering equations:

C,(0)=1, C,(0)=5, Q,(0)=-6, Q,(0)=0.0001,
Q,, (0)=-7.

b) For polynomial filtering equations:
m, (0) =1, m, (0) =5, B, (0) =100, P, (0) =-5,
Py (O) =1x10".

c¢) For Extended Kalman-Bucy filtering equations:

m, (0)=1, m,(0)=5, B,(0)=1.85, B, (0)=3,

P,(0)=5.

Table 3 presents comparison between the exponential
mean square cost criterion J for the three types of filter-
ing equations; you can see that the J g values are the
smallest for all values of the intensity parameter & .

With these tables, showed that the filter risk-sensitive
is the best, because the values obtained are lower.

The Figures 1, 2 and 3 show the Error, and Error,
which are defined as Error, = X, (t)—C,(t) (in same
form for Error,); and the exponential mean-square cost
criterion valuesin T =2s.

Table 1. Comparison of exponential mean-square cost cri-
terion values J(3) in T = 2s for risk-sensitive, polynomial
and extended Kalman-Bucy filtering equations.

£ s o Jes
0.1 53.4293  69.2292 (t=0.17s) 69.0816(t = 0.14s)
1 53.5165 145.7323 277.3136
10 53.7994 157.2172 235.5110
100 54.7621 858.7622 189.6937
1000 58.5054 58230 185.7343

Table 2. Comparison of exponential mean-square cost cri-
terion values J(3) in T = 2s for risk-sensitive, polynomial
and extended Kalman-Bucy filtering equations.

£ Jes Joor Jes
1 505.8493  705.1152 (t=1.64s) 686.3813 (t=0.28s)
10 513.3591 712.2522 527.0787
100 537.8120 1430.4728 587.0328
1000  622.1946 59067 641.1202
10000  960.423 5597700 673.6555
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Table 3. Comparison of exponential mean-square cost cri-
terion values J(3) in T = 2s for risk-sensitive, polynomial
and extended Kalman-Bucy filtering equations.

& JR*S JF’Dl JK*B
0.1 42.0377 55.6339 70.3916 (t=0.36s)
1 41.9340 56.1153 144.2845
10 41.6143 70.7942 317.9369
100 40.6851 763.7829 678.2942
1000 38.5611 57957 812.9141
10000 36.1603 55918000 859.8006
20
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Figure 1. Graphs of the Error;, Error,, and exponential
mean square cost criterion corresponding to the risk-sensi-
tive optimal filtering equations for a continuous stirred
tank reactor for £ =10, X,(0)=20, X,(0)=10, Y,(0)=2,
Y, (O) =1

4.2. Application for Polynomial System of Third
Degree

4.2.1. Optimal Risk-Sensitive Filtering Equations

The risk-sensitive control equations for third degree po-
lynomial systems will be applied to the problem of ori-
entation of a monoaxial satellite [15]. The description is
as follows: a satellite rotates around a fixed axis without
gravity. The rotation torques is produced by a system of
mini-engines through a controlled explosion of gases in
the opposite direction. The state equations for this model
are given by:

X, (t)=0.5(1+ X (1)) X, (t)+\/zzzdw1 (t)

I
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Xz(t):\/;dwz (1), Y(t)= Xl(t)+\/;dw (1).(24)

where X, (t) represents the orientation angle of the
satellite, measured with respect of a secondary axis
which does not coincide with the principal one. X, (t)
represents the angular velocity with respect to the prin-
cipal axis. Applying the system of equations (18) to the
system (24), the following optimal risk-sensitive filtering
equations are obtained:

Qll = le _CICZQII
o Q,, —¢CC,,
le = O'Ssz + Q11Q12 + lesza

- C22Q12 + Czsz + Q11

sz = lez + Q222 -¢CC,,
-Q,,
1:—C 1 +C,Q), Y
30, 0 (I +CQa+Y)
-Qp,
N A A2\ c 22 _Cz 25
R O )
+CQ, +C,Qp,
. le . . .
C,=—"7< __|(C C Y
2 0.0, - le( Qn +C.Q, + )
-Q,
—=__(C C C
o, gy (Ot G e
+C,Q,,.
20
_ 151
S 1ot
CE
% 05 1 s 2

Error,

0 i H H
0 0.5 1 1.5 2
time
160 .
2 | @ @
g 120 5 : :
S ool ]
g z z z
5 40 .............. .............. .............. ...............
0 i i i
0 0.5 1 1.5 2
time

Figure 2. Graphs of the Error,, Error,, and exponential
mean square cost criterion corresponding to the polynomial
filtering equations for a continuous stirred tank reactor for
£=10, X,(0)=20, X,(0)=10, Y,(0)=2, Y,(0)=1.
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Figure 3. Graphs of the Error,, Error,, and exponential
mean square cost criterion corresponding to the extended
Kalman-Bucy filtering equations for a continuous stirred
tank reactor for £=10, X,(0)=20, X,(0)=10, Y,(0)=2,
Y,(0)=1.

The initial conditions are: X, (0) =0.115, X,(0)=0.073,
Y,(0)=0. C, (0)=0.92, and C, (0) = 0.5, Q,, (0) =—4500,
Q,(0)=100, Q,,(0)=-8500, T =1.8s.

4.2.2. Polynomial Filtering Equations
The corresponding equations for the polynomial filter [1]
are given by:

pll =R, +3P,R, +3R,P, +3R;mm,

2 2P2
+3P,m; +i2—u,
2y £
: 27°P.P, . 242P?2
P, =0.5P, - 7 12 P22:i2_ 7 M
& 2y &
m, =0.5m, +1.5m,P, +0.5mm,

27 R,
2B ).
2
:@(Y’l_ml)_

(26)

2

1) Consider the stochastic dynamical system associ-
ated to a problem of orientation of a monoaxial satellite
and the following initial conditions for the state and ob-
servations equations: X, (0)=0.09, X, (0)=0.65, Y,(0) =2,

Y,(0)=1, the final time is T =1s. The initial condi-
tions for the filtering equations in which case are given

by:
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a) For risk-sensitive filtering equations:
C,(0)=0.92, C,(0)=0.5, Q,(0)=-400, Q, (0) =100,

Q,, (0) =-850.

b) For polynomial filtering equations:

m, (0)=0.92, m,(0)=0.5, B,(0)=10, B, (0) =20,

P,(0)=5.

Table 4 presents comparison between the exponential
mean square cost criterion J for the two types of filtering
equations; it can be saw, that the J, g values are the
smallest for all values of the intensity parameter & .

2) Consider the stochastic dynamical system associ-
ated to a problem of orientation of a monoaxial satellite
and the following initial conditions for the state and ob-
servations equations: X, (0)=0.115, X, (0) =0.073,
Y,(0)=2, Y,(0) =1, the final time is T =1s. The initial
conditions for the filtering equations in which case are
given by:

a) For risk-sensitive filtering equations:

C,(0)=0.92, C,(0)=0.5, Q, (0) =-4500,

Q. (0) =100, Q,, (0) =-8500.
b) For polynomial filtering equations:
m, (0)=0.92, m,(0)=0.5, B, (0)=1500,

P, (0)=-879.21, P, (0) =1000.

Table 5 presents comparison between the exponential
mean square cost criterion J for the two types of filtering
equations; it can be saw, that the J; ¢ values are the
smallest for all values of the intensity parameter & .

The system Equations (24), (25) and (26) is simulated

using Simulink in MatLab7. The performance of the de-
signed equations is compared versus the equations of the
polynomial filter [1], with respect to the exponential
mean-square exponential criterion J.

The Figures 4 and 5 show the Error, and Error,
which are defined as Error, = X, (t)-C,(t) (in same
form for Error,); and the exponential mean- square cost
criterion values.

Table 4. Comparison of mean-square exponential criterion
J(3) for r-s filtering equations and polynomial filtering eg-
uations.

& Jess Joal
0.01 0.3239 2.0321
0.1 0.3232 1.1319

1 0.3198 0.6655

10 0.3063 0.3319
100 0.2800 26.8974

Table 5. Comparison of mean-square exponential criterion
J(3) for r-s filtering equations and polynomial filtering eg-
uations.

£ Jos N,
0.01 0.3842 0.5895
0.1 0.3835 0.4287

1 0.3691 0.4013

10 0.2841 0.3054
100 0.1454 0.2454

0.5
0
0.5

Error,

0.5
0.25

Error,
(=}

-0.25

-0.5

04
03
02
0.1

Criterion

1 1.2 14 1.6 1.8
Time

Figure 4. Graphs of the Error;, Error,, and exponential mean square cost criterion corresponding to the risk-sensitive op-
timal filtering equations for satellite monoaxial for ¢=10, X,(0)=0.115, X,(0)=0.073, Y,(0)=2, Y,(0)=1.

Copyright © 2011 SciRes.
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Figure 5. Graphs of the Error,, Error,, and exponential mean square cost criterion corresponding to the polynomial filter-
ing equations for satellite monoaxial for =10, X,(0)=0.115, X,(0)=0.073, Y,(0)=2, Y,(0)=1.

5. Conclusions

In this paper the equations have been obtained for the
optimal risk-sensitive filtering problem, when the system
is polynomial of second and third degree, with presence
of Gaussian white noise, exponential mean-square cost
criterion to be minimized, with parameter ¢ multiply-
ing the Gaussian white noise in the state and observa-
tions equations, and taking into account a value function
as a viscosity solution of the nonlinear parabolic PDE.

Numerical application is solved for risk-sensitive and
polynomial filtering equations for system of second and
third degree (and Kalman-Bucy for system of second
degree) for some values of parameter &. The perform-
ance for optimal risk-sensitive filtering equations is veri-
fied through of the comparison between the values of the
exponential mean-square cost criterion J for polynomial
and extended Kalman Bucy filtering equations.

It can be seen that the values of the mean square cost
criterion Jg ¢ in final time, are smaller than J,, and
Jy_g for all values given to the intensity parameter & .
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